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Introduction

� Important properties of String Theory (dualities, branes,...) have
been discovered in presence of exact supersymmetry in flat space.

Susy guaranties stability of flat backgrounds from weak to
strong coupling.

� For Phenomonology and Cosmology, susy must be broken

“In a worldsheet perspective”, we work at string weak coupling.

� We can start classically with AdS or flat :

Perturbative loop corrections cannot make AdS nearly flat.

=⇒ We start from a Minkowski background.
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� If “hard” breaking of susy, the susy breaking scale and effective
potential are

M = Ms =⇒ Vquantum ∼Md
s in string frame

=⇒ Minkowski destabilized

� If susy spontaneously broken in flat space classically =

“No-scale model” : [Cremmer, Ferrara, Kounnas, Nanopoulos,’83]

• Vclassical is positive, with a minimum at 0, and a flat
direction parameterized by M , which is a field

• String loop corrections =⇒ Vquantum ∼Md, generically

Better, but still too large.

We need non-generic No-Scale Models.
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� In this talk : We try to improve the quantum stability of flat
backgrounds with spontaneously broken susy.

• Lower the order of magnitude of the potential at 1-loop

This is modest : Higher loops should be included. Their consistent
definition must be addressed.

• However, the quantum potential may induces instabilities for
internal moduli : Tadpoles ? And if not, tachyonic mass terms ?

1-loop is enough to make good improvements about this issue.

• We do this in type I string compactified on tori, but this can
be more general (heterotic).
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� Susy breaking via stringy Scherk-Schwarz mechanism.

• In field theory : Refined version of a Kaluza-Klein dimensional
reduction of a theory in d+ 1 dimensions

If there is a symmetry with charges Q in d+ 1 dim, we can impose
Q-depend boundary conditions

Φ(xµ, y + 2πR) = eiπQ Φ(xµ, y)

=⇒ Φ(xµ, y) =
∑
m

Φm(xµ) ei
m+

Q
2

R
y =⇒ mass =

|m+ Q
2 |

R

=⇒ A multiplet in d+ 1 dim with degenerate states have descendent
which are not-degenerate.

• If Supersymmetry : Q = F is the fermionic number

=⇒ super Higgs M =
1

2R

• Generalized in closed string theory [Rohm,’84][Ferrara, Kounnas, Porrati,’88]

and in open string theory [Blum, Dienes,’97][Antoniadis, Dudas, Sagnotti,’98]
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� Compute the 1-loop effective potential

V1-loop = − Md
s

2(2π)d
(T +K +A+M) ,

where T =

∫
F

dτ1dτ2

τ
1+ d

2
2

Str qL0− 1
2 q̄L̃0− 1

2

K =

∫ +∞

0

dτ2

τ
1+ d

2
2

Str ΩqL0− 1
2 q̄L̃0− 1

2

A =

∫ +∞

0

dτ2

τ
1+ d

2
2

Str q
1
2

(L0− 1
2

)

M =

∫ +∞

0

dτ2

τ
1+ d

2
2

Str Ωq
1
2

(L0− 1
2

)

V ∼
∫

Str e−πτ2M
2

=⇒ The dominant contribution arises
from the lightest states.
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Suppose the classical background is such that there is no
mass scale between 0 and the susy breaking scale M = 1

2R

——— cMs : large Higgs or string scale Ms

——— M : towers of Kaluza-Klein modes of masses ∝M

——— 0 : nB massless bosons and nF massless fermions

=⇒ In string frame, the 1-loop effective potential is dominated by the
KK modes

V1-loop = (nF − nB) ξ Md +O
(

(cMsM)
d
2 e−cMs/M

)
, where ξ > 0
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V1-loop = (nF − nB) ξ Md +O
(

(cMsM)
d
2 e−cMs/M

)
The exponential terms are negligible even for moderate M

E.g. : For cMs ∼
MPlanck

10

we have O
(

(cMsM)
d
2 e−cMs/M

)
< 10−120M4

Planck

when M < 10−3MPlanck

NB : =⇒ R > 102 � Hagedorn radius RH =
√

2/Ms,

=⇒ No “Hagedorn-like phase transition” (no tree level tachyon).
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• Deform slightly the previous background i.e. switch on small
moduli deformations collectively denoted “a”

——— cMs : large Higgs or string scale

——— M : towers of KK modes of masses ∝M

——— aMs : some of the nB + nF states get a Higgs mass aMs

——— 0

• nB(a) and nF(a) interpolate between different integer
values, reached in distinct regions in moduli space.

=⇒ Expand them in “a” to find V1-loop around the initial
background.
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� Because we compactify on a torus (N = 4 in 4 dim), all moduli are
Wilson lines (WL) :

V1-loop = V1-loop

∣∣
a=0

+Md
∑

massless
spectrum

∑
their KK

modes

∑
r,I

Qra
I
r + · · ·

• aIr is the WL along the internal circle I of the r-th Cartan
U(1).

• Qr is the charge of the massless spectrum (and Kaluza-Klein
towers).

• combining states Qr and −Qr =⇒ 0 : No Tadpole

All points in moduli space where there is no mass scale
between 0 and M are local extrema.
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• This is reminiscent of an argument of Ginsparg and Vafa (’87) in
the non-susy O(16)×O(16) heterotic compactified on tori :

At enhanced gauge symmetry points, U(1)26−d → Non-Abelian, there
are additional non-Cartan massless states, with non-trivial Qr.

=⇒ Qr → −Qr is an exact symmetry (underlying gauge symmetry)
of the partition function at any genus =⇒ extremum.

• In the Scherk-Schwarz case : The non-existence of tadpoles should
be exact (including the exponentially suppressed terms) and at any
genus.

But the massless states may not contain gauge bosons. In a non-Cartan
vector mutiplet, we can keep massless the fermions and give a mass to
the bosons. So U(1)’s are still allowed, with charged fermions.
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� At quadratic order [Kounnas, H.P,’16][Coudarchet, H.P.,’18]

V1-loop = ξ
(
nF−nB

)
Md + Md

( ∑
massless
bosons

Q2
r−

∑
massless
fermions

Q2
r

) ∑
their KK

modes

(
aIr
)2

+ · · ·

=⇒ The higher V1-loop is, the more tachyonic it is.

� We are interested in models where nF = nB and tachyon
free at 1-loop to preserve flatness of spacetime (at this order).

[Abel, Dienes, Mavroudi,’15][Kounnas, H.P.,’15][Florakis, Rozos,’16]

= “Super No-scale Models in String Theory” : The no-scale
structure exact at tree level is preserved at 1-loop, up to exponentially
suppressed terms

i.e. the 1-loop potential is locally positive, with minimum
at 0, and with a flat direction M .

NB: nF, nB count observable and hidden sectors d.o.f.
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� In this talk : We show that tachyon free models with
V1-loop = 0 (or > 0) exist at 1-loop, for d ≤ 5.

• In 9 dimensions : We find the models stable with respect to
the open string Wilson lines.

=⇒ V1-loop < 0 =⇒ runaway of M

• In d dimensions : We have

- Open string Wilsons lines

- Closed string moduli (which also WLs) : NS-NS metric GIJ and RR
2-form CIJ
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� Note that in Type II and orientifold theories, there exist non-susy
models with

V1-loop = 0 i.e. NF = NB are any mass level !

[Kachru, Kumar, Silverstein,’98]

[Harvey,’98]

[Shiu, Tye,’98] [Blumenhagen, Gorlich,98]

[Angelantonj, Antoniadis, Forger,’99]

[Satoh, Sugawara, Wada,’15]

However

Moduli stability has not been studied (⇒ tachyonic at 1-loop).

There are no exponentially suppressed terms at 1-loop, but this
does not change the fact that V2-loops has no reason to vanish.

[Iengo, Zhu,’00][Aoki, D’Hoker, Phong,’03]

When a perturbative heterotic dual is known, it only has nF = nB.
[Harvey,’98][Angelantonj, Antoniadis, Forger,’99]
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In 9 dimensions

� Type I compactified on S1(R9) with Sherk-Schwarz susy
breaking

• Closed string sector : The states with non-trivial winding n9

are heavier than the string scale =⇒ exponentially suppressed

For n9 = 0, the momentum
m9

R9
−→

m9 + F
2

R9

• Open string sector : 32 D9-branes generate SO(32) on their
world volume. Switch on generic Wilson lines (=Coulomb branch)

W = diag
(
e2iπa1 , e−2iπa1 , e2iπa2 , e−2iπa2 , . . . , e2iπa16 , e−2iπa16

)
momentum

m9

R9
−→

m9 + F
2 + ar − as
R9

(The Chan-Paton charges are absorbed in the WLs : Qrar → ar)
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� T-duality R9 → R̃9 = α′

R9
yields a geometric picture in

Type I’, where WLs become positions along X̃9 :

• S1(R9) becomes S1(R̃9)/Z2 i.e. a segment with 2 O8-orientifold
planes at X̃9 = 0 and X̃9 = πR̃9.

• The D9-branes become 32 D8 “half”-branes :
16 at X̃9 = 2πarR̃9 and 16 mirror 1

2 -branes at X̃9 = −2πarR̃9.

• 1
2 -branes and mirrors 1

2 -branes can be coincident on an O8-plane,
ar = 0 or 1

2 =⇒ SO(p), p even

• Elsewhere, a stack of q 1
2 -branes and the mirror stack =⇒ U(q)
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� We look for stable brane configurations.

• A sufficient condition for V1-loop to be extremal with
respect to the ar is that there is no mass scale between 0 and M .

Thus, we may concentrate on ar = 0 or 1
2

only, i.e. no brane in the
bulk.

• Moreover, this special case yields massless fermions because

m9 +
F

2
+ ar − as = m9 +

1

2
+

1

2
− 0 can vanish

(where m9 is a winding number in the T-dual picture)

i.e. Super-Higgs and Higgs compensate

This is a good point to have nF − nB ≥ 0.
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� We may also consider the configurations with some ar = ±1
4

.

This introduces a mass scale =
M

2
=⇒ Such a background does not

yield automatically an extremum of V1-loop

These WLs are special because :

• m9 + 1
2 + 1

4 − (−1
4) can vanish =⇒ massless fermions

NB : WL’s = 0, 1
2 , ±1

4 are the only ones that can yield massless
fermions.

• Bosons m9 + 0 + 1
4 − 0 and Fermions m9 + 1

2 + 0− 1
4 have

degenerate masses M/2. They cancel exactly in

V ∝
∫

dτ2

τ
1+ d

2
2

Str
1 + Ω

2
e−πτ2M

2
= (nF − nB) ξ Md + exp. suppressed

This formula remains true in such a background, but the
argument for extremality does not apply, and we have to see.
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• SO(p1)× SO(p2)× U(q) × U(1)2 for Gµ9, RR-2-form Cµ9

nB = 8

(
8 +

p1(p1 − 1)

2
+
p2(p2 − 1)

2
+ q2

)
- Closed string sector : dilaton, GMN in NS-NS sector + RR
2-form CMN

- The open strings start and end at the same stack of
1
2
-branes.
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• The massless fermions arise from open string only, which
are stretched between “opposite stacks” (WLs and
Scherk-Schwarz compensate)

nF = 8

(
p1p2 +

q(q − 1)

2
+
q(q − 1)

2

)
Bifundamental (p1, p2) and antisymmetric ⊕ antisymmetric
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� Compute nF − nB, with p1 + p2 + 2q = 32

=⇒ nF − nB is minimal for p1 = 32, p2 = 0, q = 0

• This suggests that this configuration (which yields an extremum of
V1-loop because there are no brane in the bulk) yields an absolute
minimum.

This will be seen by explicit computation of V1-loop.

• Moreover, we will see that the other extrema with higher nF − nB

are not minima.
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� We have described the moduli space where p1, p2 are even.

The moduli space admits a second, disconnected part, where
p1, p2 are odd

If one 1
2
-brane is frozen at a = 0, and another one frozen at

a = 1
2
, the configuration is still allowed on S1(R̃9)/Z2

[Schwarz,’99]

W = diag
(
e2iπa1 , e−2iπa1 , e2iπa2 , e−2iπa2 , . . . , e2iπa15 , e−2iπa15 , 1,−1

)
Only 15 dynamical WLs.
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All previous formula remain identical, with p1, p2 odd.

=⇒ nF − nB is minimal for p1 = 31, p2 = 1, q = 0

• This suggests that this brane configuration is also stable and yields
an absolute minimum of V1-loop (in its own moduli space).

• It has an open string gauge group SO(31)× SO(1), with 8
fermions in the “bifundamental” (p1, 1).

NB : In our notations, SO(1) is a trivial group {e} : Not a gauge
symmetry. This notation is to remind the frozen brane at a = πR̃9

which yields stretched strings which are fermions in the fundamental of
SO(p1).
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� To demonstrate these expectations, we compute the 1-loop
potential

It involves the torus + Klein bottle + annulus + Möbius amplitudes :

T =
1

2

∫
F

d2τ

τ
11
2

2

∑
m9,n9

η8η̄8

{(
V8V̄8 + S8S̄8

)
Λm9,2n9 −

(
V8S̄8 + S8V̄8

)
Λm9+ 1

2
,2n9

+
(
O8Ō8 + C8C̄8

)
Λm9,2n9+1 −

(
O8C̄8 + C8Ō8

)
Λm9+ 1

2
,2n9+1

}
,

K =
1

2

∫ +∞

0

dτ2

τ
11
2

2

1

η8

∑
m9

(V8 − S8)Pm9

A =
1

2

∫ ∞
0

dτ2

τ
11
2

2

1

η8

∑
m9

∑
α,β

(
V8Pm9+aα−aβ − S8Pm9+ 1

2
+aα−aβ

)
M = −1

2

∫ ∞
0

dτ2

τ
11
2

2

1

η̂8

∑
m9

∑
α

(
V̂8Pm9+2aα − Ŝ8Pm9+ 1

2
+2aα

)
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V1-loop =
Γ(5)

π14
M9

∑
l9

N2l9+1(W)

(2l9 + 1)10
+O

(
(MsM)

9
2 e−π

Ms
M
)

where W = diag
(
e2iπa1 , e−2iπa1 , e2iπa2 , e−2iπa2 , . . . , e2iπa16 , e−2iπa16

)
W = diag

(
e2iπa1 , e−2iπa1 , e2iπa2 , e−2iπa2 , . . . , e2iπa15 , e−2iπa15 , 1,−1

)
N2l9+1(W) = 4

(
−16− 0 − (trW2l9+1)2 + tr (W2(2l9+1))

)
= −16

(
N∑

r,s=1
r 6=s

cos
(
2π(2l9 + 1)ar

)
cos
(
2π(2l9 + 1)as

)
+N − 4

)

where N = 16 or 15
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V1-loop =
Γ(5)

π14
M9

∑
l9

N2l9+1(W)

(2l9 + 1)10
+O

(
(MsM)

9
2 e−π

Ms
M
)

� For ar = 0, 1
2
,±1

4

N2l9+1(W) = nF−nB =⇒ V1-loop =
(
nF−nB

)
ξ Md+O

(
(MsM)

9
2 e−π

Ms
M
)

• For ar = ±1
4

∂V1-loop

∂ar

∣∣∣∣
ar=± 1

4

∝ (p1 − p2)

Tadpole if p1 6= p2 : The bulk branes are attracted to the largest of the
p1-stack or p2-stack.

Extremum if p1 = p2 : But the WL of U(1) in U(q) = U(1)× SU(q) is
tachyonic. One brane moves towards X̃0 = 0 or πR̃9, regenerating the
tadpole.

The branes in the bulk are highly unstable (tadpoles).
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• When all branes at ar = 0 or 1
2

(=⇒ No tadpole)

For p1 ≥ 2, SO(p1) has WLs. Their masses are ≥ 0 if p1 − p2 ≥ 2.

For p2 ≥ 2, SO(p2) has WLs. Their masses are ≥ 0 if p2 − p1 ≥ 2.

Both cannot be satisfied simultaneously !

=⇒ one stack must not have WLs =⇒ p2 must be 0 or 1.
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� Conclusion in 9 dim :

• SO(32) and SO(31)× SO(1) are the only stable brane
configurations in their respective moduli spaces.

• M is running away.

NB : 0− nB = −8× 504 and nF − nB = −8× 442, which is higher
because

• the dimension of SO(31) is lower

• the frozen 1
2 -brane at a = 1

2 induces a fermionic bifundam (p1, 1).

NB : In lower dim, we have more O-planes on which we can
freeze more 1

2
-branes =⇒ nF − nB ≥ 0.
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In d dimensions

� Type I on T 10−d with metric GIJ andScherk-Schwarz along X9

M =

√
G99

2
Ms

� Type I’ picture obtained by T-dualizing T 10−d :

• 210−d O(d− 1)-planes located at the corners of a
(10− d)-dimensional box.

• 32 “half” D(d− 1)-branes.

� V1-loop is extremal when the 32 1
2
-branes are located on the

O-planes.
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• SO(pA) at corner A

• massless fermionic
bifundamental (p2A−1, p2A)

• The box is squeezed along
X̃9 only (the other strings
are super heavy
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nB = 8

(
8 +

210−d∑
A=1

pA(pA − 1)

2

)
, nF = 8

210−d/2∑
A=1

p2A−1p2A
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� The WL masses can be found from the potential, or

mass2 ∝
( ∑

massless
bosons

Q2
r −

∑
massless
fermions

Q2
r

)
∝ TRB

− TRF

where TR is the Dynkin index of the representation R of a group G

TRδab =
1

2
trTaTb, (a,b=1...,dimG)

When p2A−1 and p2A ≥ 2, both SO(p2A−1) and SO(p2A) have WLs :

- For SO(p2A−1), we have 8 bosons in the Adjoint and 8× p2A fermions
in the Fundamental =⇒ mass2 ∝ (p2A−1 − 2)− p2A

- For SO(p2A), =⇒ mass2 ∝ (p2A − 2)− p2A−1

Incompatible ! =⇒ One stack must not have WLs :

SO(p2A−1) with 0 or 1 frozen 1
2
-brane at corner 2A
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For SO(p2A−1), mass2 ∝ p2A−1 − 2− 0 or 1

• It is > 0 i.e. the WLs are stabilized

• Except for SO(2) and SO(3)× SO(1) where mass = 0.
In that case, we need to see if the quartic terms (or higher) in V1-loop

introduce instabilities. 34 / 40



� For the non-tachyonic brane configurations what is the sign
of nF − nB ?

• Many models have nF − nB < 0
Lowest value for SO(32) : nF − nB = −8× 504

• 23 models have nF−nB = 0. Need enough O-planes =⇒ d ≤ 5

- SO(4)×
[
SO(1)× SO(1)

]14
: There are 8× 14 neutral fermions

-
[
SO(5)× SO(1)

]
×
[
SO(1)× SO(1)

]13
: SO(5) + 8 fermions in

the Fundamental + 8× 13 neutral fermions

- Other models with SO(4), SO(3), SO(2)’s.

• The maximal value of nF − nB = 8× 8

- [SO(1)× SO(1)]16 : No gauge group, 8× 16 neutral fermions

NB: All these models have an Abelian gauge group
U(1)10−d × U(1)10−d generated by GµJ , CµJ . 35 / 40



� We can compute V1-loop

• V1-loop depends on open string WLs

aIα = 〈aIα〉+ εIα, 〈aIα〉 ∈
{

0,
1

2

}
, α = 1, . . . , 32, I = d, . . . , 9

NB : εIα are not small. V1-loop will be the full answer.

NB : The εIα go by pairs (mirrors), or are frozen to 0.

• V1-loop depends on GIJ

• V1-loop does not depend on the Ramond-Ramond moduli
CIJ because they are also WLs, but there are no perturbative states
charged under the associated U(1)’s, CµI .
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� For the metric not to introduce a mass scale < M , we assume

G99 � |Gij| � G99, |G9j| �
√
G99, i, j = d, . . . , 8

V1-loop =
Γ
(
d+1

2

)
π

3d+1
2

Md
∑
l9

N2l9+1(ε,G)

|2l9 + 1|d+1
+O

(
(cMsM)

d
2 e−cMs/M

)

N2l9+1(ε,G)=4

{
−16 −

∑
(α,β)∈L

(−1)F cos
[
2π(2l9+1)

(
ε9α−ε9β+G9i

G99 (εiα−εiβ)
)]

×H d+1
2

(
π|2l9+1|

(εiα−ε
i
β)Ĝij(ε

j
α−ε

j
β
)

√
G99

)
+

∑
α

cos
[
4π(2l9+1)

(
ε9α+G9i

G99 ε
i
α

)]
H d+1

2

(
4π|2l9+1| ε

i
α Ĝ

ij ε
j
α√

G99

)}
where Ĝij = Gij − Gi9

G99 G
99 G9j

G99 and Hν(z) = 2
Γ(ν) z

νKν(2z)
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V1-loop =
Γ
(
d+1

2

)
π

3d+1
2

Md
∑
l9

N2l9+1(ε,G)

|2l9 + 1|d+1
+O

(
(cMsM)

d
2 e−cMs/M

)
• From N2l9+1(ε,G), we recover the masses ∝ p2A−1 − 2− p2A of the

εIα

• The SO(2) and SO(3)× SO(1) WLs are massless

N2l9+1(ε,G) turns out to be totally independent of these WLs !
They are flat directions at 1-loop (up to exp. supp. terms)

• Setting the massive ones at εIα = 0

N2l9+1(0, G) = nF − nB =⇒ V1-loop =
(
nF − nB

)
ξ Md + · · ·

Independent of GIJ =⇒ flat directions !

(Except M = Ms

√
G99/2 unless nF − nB = 0)
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• The fact that the NS-NS moduli GIJ are massless was obvious
because
i) they are WLs of the GµJ ’s which generate U(1)10−d

ii) there are no charged perturbative states :

=⇒
∑

massless
bosons

Q2
r −

∑
massless
fermions

Q2
r = 0

• Same thing for the RR moduli CIJ , which are WLs of the CµJ ’s
which generate U(1)10−d

• They should be stabilized in the heterotic dual

(G+ C)IJ |Type I = (G+B)IJ |heterotic

at enhanced gauge symmetry points, where there are additional
massless states with non-trivial Qr.
These states have winding numbers =⇒ they are D-string in Type I.

• We expect only very few WLs such as those of SO(2) and
SO(3)× SO(1) to require an analysis at higher genus to see if they are
stabilized or not.
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Conclusion

� In open string theory compactified on a torus, we have found
at the quantum level but weak coupling, backgrounds

• where all open string moduli are stabilized.
(Additional models with SO(2) or SO(3)× SO(1) factors require
2-loops analysis)

• If nF 6= nB, all closed string moduli except M are flat
directions at 1-loop.
However they are expected to be stabilized at 1-loop in an heterotic
framework.

• The “Super No-Scale Models”, nF = nB, provide
consistent Minkowski vacua at 1-loop (up to exponentially
suppressed terms).
Even if non-trivial, it is modest, since
- Higher loops constraints are expected for maintaining flatness.
- The dilaton is expected not be stabilized in perturbation theory.
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