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Introduction

B Important properties of String Theory (dualities, branes,...) have
been discovered in presence of exact supersymmetry in flat space.

Susy guaranties stability of flat backgrounds from weak to
strong coupling.

B For Phenomonology and Cosmology, susy must be broken

“In a worldsheet perspective”, we work at string weak coupling.

B We can start classically with AdS or flat :
Perturbative loop corrections cannot make AdS nearly flat.

= We start from a Minkowski background.

2/40



B If “hard” breaking of susy, the susy breaking scale and effective

potential are
M = M == Vquantum ~ Msd in string frame

=— Minkowski destabilized

B If susy spontaneously broken in flat space classically =

“NO-Scale model” . [Cremmer, Ferrara, Kounnas, Nanopoulos,’83]

® Vi lassical 1S positive, with a minimum at 0, and a flat
direction parameterized by M, which is a field

e String loop corrections = Vguantum ~ M d generically

Better, but still too large.

We need non-generic No-Scale Models.
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B In this talk : We try to improve the quantum stability of flat
backgrounds with spontaneously broken susy.

e Lower the order of magnitude of the potential at 1-loop
This is modest : Higher loops should be included. Their consistent
definition must be addressed.

e However, the quantum potential may induces instabilities for
internal moduli : Tadpoles 7 And if not, tachyonic mass terms ?
1-loop is enough to make good improvements about this issue.

e We do this in type I string compactified on tori, but this can
be more general (heterotic).
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B Susy breaking via stringy Scherk-Schwarz mechanism.

e In field theory : Refined version of a Kaluza-Klein dimensional
reduction of a theory in d 4+ 1 dimensions

If there is a symmetry with charges @) in d + 1 dim, we can impose
Q-depend boundary conditions

O(at,y +2mR) = ¢V B2, y)

m+Q lm + ¢
_ Q) M, ¢) N _— 7 " 21
x y Z .'L' mass R

= A multiplet in d + 1 dim with degenerate states have descendent
which are not-degenerate.

o If Supersymmetry : @ = F is the fermionic number

1
super Higgs M 5

° Generalized in Closed String theOI"y [Rohm,’84][Ferrara, Kounnas, Porrati,’88]
and ln Open String theory [Blum, Dienes,’97][Antoniadis, Dudas, Sagnotti,’98]
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B Compute the 1-loop effective potential

M

W(T+IC+A+M),

Vl-loop = -

dmdr
where 7 :/ ! d2 StquO_fq —3
F ot
T,

+o0o -

K = / dT’{l StrQqlo—2glo—2
0o it
+o0

A= [T Sugited

+00
M= / dTZ Str Qg2 3 (Lo—3)

YV~ fStr e~™M? . The dominant contribution arises
from the lightest states.
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Suppose the classical background is such that there is no
mass scale between 0 and the susy breaking scale M = .}

2R
— cM; : large Higgs or string scale Mj
—— M : towers of Kaluza-Klein modes of masses o« M
——— 0 : np massless bosons and nr massless fermions

= In string frame, the 1-loop effective potential is dominated by the
KK modes

Vidoop = (nF —nB) M+ (’)((CMSM)% e_CMS/M) , where £ > 0
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Victoop = (nr — ng) E M7 + O<(0MSM)% e_CMS/M)

The exponential terms are negligible even for moderate M

Mpian
E.g. : For M ~o =K
10
we have O((CMSM)% efcMs/M) <1070 Mgy,
when M < 10_3 MPlaan

NB: = R > 10?>> Hagedorn radius Ry = v/2/Mj,

= No “Hagedorn-like phase transition” (no tree level tachyon).

8 /40



e Deform slightly the previous background i.e. switch on small
moduli deformations collectively denoted “a”

— cM; : large Higgs or string scale

M : towers of KK modes of masses oc M

—— aMyg : some of the ng + ng states get a Higgs mass a Mg
—F 0

e ng(a) and nr(a) interpolate between different integer
values, reached in distinct regions in moduli space.

=— Expand them in “a” to find Vi.joop around the initial
background.
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B Because we compactify on a torus (N =4 in 4 dim), all moduli are
Wilson lines (WL) :

Vl—loop = Vl—loop}a:(] + M Z Z Z Qra£ +o

massless their KK 7,1
spectrum  modes

° ai is the WL along the internal circle I of the r-th Cartan
U(1).

e (), is the charge of the massless spectrum (and Kaluza-Klein
towers).

e combining states ), and —@), = 0 : No Tadpole

All points in moduli space where there is no mass scale
between 0 and M are local extrema.
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e This is reminiscent of an argument of Ginsparg and Vafa (’87) in
the non-susy O(16) x O(16) heterotic compactified on tori :

At enhanced gauge symmetry points, U(1)26=¢ — Non-Abelian, there

are additional non-Cartan massless states, with non-trivial @),.

=  Q, — —Q, is an exact symmetry (underlying gauge symmetry)
of the partition function at any genus = extremum.

e In the Scherk-Schwarz case : The non-existence of tadpoles should
be exact (including the exponentially suppressed terms) and at any
genus.

But the massless states may not contain gauge bosons. In a non-Cartan
vector mutiplet, we can keep massless the fermions and give a mass to
the bosons. So U(1)’s are still allowed, with charged fermions.



[ | At quadratic Ol"deI' [Kounnas, H.P,’16][Coudarchet, H.P.,’ 18]

Vl—loong(nF_nB)Md'f—Md( Z Q%— Z Q% Z (a{)2+

massless massless their KK
bosons fermions modes

= The higher Vi.io0p is, the more tachyonic it is.

B We are interested in models where nr = ng and tachyon
free at 1-loop to preserve flatness of spacetime (at this order).

[Abel, Dienes, Mavroudi,’15][Kounnas, H.P.,’15][Florakis, Rozos,’16]

= “Super No-scale Models in String Theory” : The no-scale
structure exact at tree level is preserved at 1-loop, up to exponentially
suppressed terms

i.e. the 1-loop potential is locally positive, with minimum
at 0, and with a flat direction M.

NB: ng, ng count observable and hidden sectors d.o.f.
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B In this talk : We show that tachyon free models with
Vi-loop = 0 (or > 0) exist at 1-loop, for d < 5.

e In 9 dimensions : We find the models stable with respect to
the open string Wilson lines.

= Vidoop <0 == runaway of M

e In d dimensions : We have
- Open string Wilsons lines

- Closed string moduli (which also WLs) : NS-NS metric G;; and RR
2-form C7py
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B Note that in Type II and orientifold theories, there exist non-susy
models with

Vitoop = 0 i.e. Np = Np are any mass level !
[Kachru, Kumar, Silverstein, 98]
[Harvey, 98]
[Shiu, Tye,’98] [Blumenhagen, Gorlich,98]
[Angelantonj, Antoniadis, Forger,’99]
[Satoh, Sugawara, Wada,’15]

However
e Moduli stability has not been studied (= tachyonic at 1-loop).

@ There are no exponentially suppressed terms at 1-loop, but this
does not change the fact that Vo.j50ps has no reason to vanish.

[lengo, Zhu,’00][Aoki, D’Hoker, Phong, 03]

@ When a perturbative heterotic dual is known, it only has np = np.
[Harvey,’98][Angelantonj, Antoniadis, Forger,’99]
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In 9 dimensions

B Type I compactified on S'(Rg) with Sherk-Schwarz susy
breaking

e Closed string sector : The states with non-trivial winding ng
are heavier than the string scale = exponentially suppressed

mog mo + L
For ng =0, the momentum — — ——=2

Ry Ry

e Open string sector : 32 D9-branes generate SO(32) on their
world volume. Switch on generic Wilson lines (=Coulomb branch)

W = dlag (6227ra1 ’ 6—227m1 ’ 62171'0,27 6—2171'0,27 . 6227ra16’ 6—227ra16)

ey

mg m9+§+ar—as
—_— —

Ry Ry
(The Chan-Paton charges are absorbed in the WLs : Q,a, — a,)

momentum
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B T-duality Ry — Ry = }% yields a geometric picture in
Type I’, where WLs become positions along X9 :

. Sl(Rgz becomes S{(Rg)/Z} i.e. a segment with 2 O8-orientifold
planes at X° =0 and X° = 7Ry.

° Tlle D9—bran§s become 32 D8 “half”—branes~ : B
16 at X? = 27wa, Ry and 16 mirror %-branes at XY = —2ma, Ry.

) %—branes and mirrors %—branes can be coincident on an O8-plane,

ap=00r 3 = SO(p), p even

e Elsewhere, a stack of g 3-branes and the mirror stack = U (q)
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B We look for stable brane configurations.

e A sufficient condition for Vi.j50p to be extremal with
respect to the a, is that there is no mass scale between 0 and M.

Thus, we may concentrate on a, — 0 or % only, i.e. no brane in the
bulk.

e Moreover, this special case yields massless fermions because

F 1 1 .
m9+§+ar—as=m9+§+§_0 can vanish

(where myg is a winding number in the T-dual picture)

i.e. Super-Higgs and Higgs compensate

This is a good point to have np — ng > 0.
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B We may also consider the configurations with some

M
This introduces a mass scale = > =—> Such a background does not

yield automatically an extremum of Vi_joep
These WLs are special because :
® my + % + % — (—i) can vanish = massless fermions

NB: WL's =0

fermions.

, 2, :I:% are the only ones that can yield massless

e Bosons mg + 0 + % — 0 and Fermions mg + % +0— % have
degenerate masses M /2. They cancel exactly in

V / dTQ 1—|-Q —7r7'2./\/12

= (np —np)¢& M? + exp. suppressed

This formula remains true in such a background, but the

argument for extremality does not apply, and we have to see.
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q %—branes images
— 1
ata=—7

P2 %—branes

_1
p1 3-branes at a = 3

ata=0

q %—branes
1

ata:Z
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q é—brancs images

P —_1
ata=—3

P2 %-l)ranes

1

j23 %—branes ata=j;

ata=0

q %—hm.ncs
P =1
at a = 3

e SO(p1) x SO(p2) x U(q) x U(1)? for Gpg, RR-2-form Cg

—1 -1
ng = 8(8 + p1(p12 ) + pg(p22 ) +q2>

- Closed string sector : dilaton, Gjsn in NS-NS sector + RR
2-form Cyn

- The open strings start and end at the same stack of
%-branes.
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q %—branos images

5 —_1
ata=—3

P2 %—bmnes

=1
j21 %—bmnes ata=;

ata=0

q %—bra.ucs
P =1
at a = 3

e The massless fermions arise from open string only, which
are stretched between “opposite stacks” (WLs and
Scherk-Schwarz compensate)

S 8<p1p2 N q(q2— D, q(q2— 1))

Bifundamental (p1,p2) and antisymmetric @ antisymmetric
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B Compute ng — ng, with p1 + ps + 2¢ = 32

>

e This suggests that this configuration (which yields an extremum of
Vi-loop because there are no brane in the bulk) yields an absolute
minimum.

This will be seen by explicit computation of Vi_jo0p-

e Moreover, we will see that the other extrema with higher ngp — ng
are not minima.



¢ 5-branes lmages

. = 1
ata=—3

P2 %-branes
P =1
”m %—brancs ata=g3

ata=0

B We have described the moduli space where p1, ps are even.

The moduli space admits a second, disconnected part, where
p1, p2 are odd

If one %—brane is frozen at a = 0, and another one frozen at
a= %, the configuration is still allowed on S'(Ry)/Zs
[Schwarz,’99]

W = diag(emﬂ'al, 6_2”“11, 62271'0,2’ 6—2271’(12’ B 62@71‘11157 6_2””115, 1’ 71)

Only 15 dynamical WLs.

23 /40



All previous formula remain identical, with pq, p2 odd.

>

e This suggests that this brane configuration is also stable and yields
an absolute minimum of V) joep (in its own moduli space).

e It has an open string gauge group SO(31) x SO(1), with 8
fermions in the “bifundamental” (pi,1).

NB : In our notations, SO(1) is a trivial group {e} : Not a gauge
symmetry. This notation is to remind the frozen brane at a = TRy

which yields stretched strings which are fermions in the fundamental of
SO(p1).



B To demonstrate these expectations, we compute the 1-loop
potential

It involves the torus + Klein bottle + annulus + Mobius amplitudes :

1 d>r Zm n _ _ _ _
T=3 /f T {(ngg + 9558) Ao 2ng — (VoS5 + SsVa) Ay 1 90,

+ (0803 + C3C8) Amg 2ng+1 — (OsCs + 0808)Am9+%,2n9+1}

oo dTQ 1
|5 S (k= S0P,
0 [/

N
o

v

—_

T2
dT
I ZZ VsPmo+aa—ag — SSngJr +aa —a/;)

7'2 mg «a,f

1 dr &
M = / 7? 8 ZZ ‘/ES mo+2aa SSPm9+%+2aa)

2

K=

1
A=3,
,7_7
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L)
Viddoop = 14 Z (2l + 1)10

lg

+ O((MM)3e ™)

where W — diag (62171'(11 , 672171'(11 , e?zﬂ'ag7 672171'(127 o ,62”(116, 67227ra16)

W = diag(e2ma1 , 672171'a1 , 6217ra27 672171%27 L 762171'a157 67227“1157 17 _1>

Nogg 11 (W) = 4(—16 — 0 — (tr W) g (W20t D)y)

N
= —16( Z cos(2m(2ly + 1)ar) cos(27(2ly + 1)as) + N — 4)
r,s=1
r#s
where N = 16 or 15



_T'0)
Vl-loop - 7T14 Z (2l9 + 1)10

lg

+O((MM)2e ™37

B For a, = O,%,:I:;i

9 _ M
Natgr1(W) = np—ng =  Viieop = (np—np) E MI+O((M;M)2e ™M
e For a, = :I:i

8Vl-loop

day ar::ti

o (p1 — p2)

Tadpole if p; # po : The bulk branes are attracted to the largest of the
pi-stack or po-stack.

Extremum if p; = ps : But the WL of U(1) in U(q) = U(1) x SU(q) is
tachyonic. One brane moves towards X" = 0 or 7Ry, regenerating the

tadpole.

The branes in the bulk are highly unstable (tadpoles).

27 /40

)



e When all branes at a, = 0 or % (= No tadpole)

For p; > 2, SO(p1) has WLs. Their masses are > 0 if p; — py > 2.

For ps > 2, SO(p2) has WLs. Their masses are > 0 if po — p; > 2.

Both cannot be satisfied simultaneously !

=  one stack must not have WLs —=- ps must be 0 or 1.
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B Conclusion in 9 dim :

¢ SO(32) and SO(31) x SO(1) are the only stable brane

configurations in their respective moduli spaces.

e M is running away.

NB :0—ng=-8x504 and np —np = —8 x 442, which is higher
because

e the dimension of SO(31) is lower

e the frozen %—brane at a = % induces a fermionic bifundam (pg,1).

NB : In lower dim, we have more O-planes on which we can
freeze more %-branes — ng —ng > 0.

29 /40



In d dimensions

B Type I on T1°~¢ with metric G;; and Scherk-Schwarz along X°

VG99
2

M = My

B Type I’ picture obtained by T-dualizing T~ :

e 210=d  O(d — 1)-planes located at the corners of a

(10 — d)-dimensional box.

e 32 “half” D(d — 1)-branes.

B Vi.00p is extremal when the 32 %-branes are located on the
O-planes.
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e SO(p4a) at corner A

e massless fermionic
bifundamental (paa_1,p24)

7

e The box is squeezed along
P X9 only (the other strings
) are super heavy

XT

)"rn

s at ds = (1/2,0,0) pa atfiy = (1/2,0,1/2)

p1 3-branes at d; = (0,0,0) Pz at @ = (0,0,1/2)

o “r
Direction of Scherk-Schwarz
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p7

)‘(s
Po
X7
X0
pa ot @ = (1/2,0,0) iy = (1/2,0,1/2)
L 1oy —
p1 5-branes at @, = (0,0,0) Py ab @ = (0,0,1/2)
__—___)
Direction of Scherk-Schwarz
210—d 1
—d
”B=8(8+ Y palpa—l) . /2
A=1 2 ’ B Z D2A-1P2A
A=1
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B The WL masses can be found from the potential, or

maSSQOC( >oi- > Q%)O(TRB_TRF

massless massless
bosons fermions

where T’k is the Dynkin index of the representation R of a group G
1
TROap = 3 tr T, Ty, (ap=1....dimG)

When pas—1 and peg > 2, both SO(p24—1) and SO(p24) have WLs :

- For SO(p24—1), we have 8 bosons in the Adjoint and 8 x py4 fermions
in the Fundamental = mass® o (paa_1 — 2) — p2a

- For SO(p24), —> mass’

o (p2a —2) —paa—1
Incompatible ! = One stack must not have WLs :

SO(p2a—1) with 0 or 1 frozen %—brane at corner 2A



P

at|id, = (1/2,0,1/2)

ps at @y = (1/2,0,0)

p1 S-branes at @ = (0,0,0), Pz at @ = (0,0,1/2)

Direction of Scherk-Schwarz

For SO(pga_1), mass? < paa_1 —2—0or 1
e It is > 0 i.e. the WLs are stabilized

e Except for SO(2) and SO(3) x SO(1) where mass = 0.
In that case, we need to see if the quartic terms (or higher) in Vi jo0p
introduce instabilities. 34 /40



B For the non-tachyonic brane configurations what is the sign
of np —np 7

e Many models have np — ng < 0
Lowest value for SO(32) : np — ng = —8 x 504

¢ 23 models have ng — npg = 0. Need enough O-planes = d < 5

: There are 8 x 14 neutral fermions

- S0(4) x [SO(1) x SO(1)

:|14
- [S0O(5) x S0(1)] x [SO(1) x SO(1)]* : SO(5) + 8 fermions in
the Fundamental + 8 x 13 neutral fermions

- Other models with SO(4), SO(3), SO(2)’s.

e The maximal value of np —ng = 8 X 8

- [SO(1) x SO(1)]'6 : No gauge group, 8 x 16 neutral fermions

NB: All these models have an Abelian gauge group
U(l)w*d X U(l)lo*d generated by G5, CJ. 35/ 40



B We can compute Vi.i00p

® V1.100p depends on open string WLs

2

NB : 5é are not small. Vi_j50p Will be the full answer.

NB : The ¢/, go by pairs (mirrors), or are frozen to 0.

® Vi.loop depends on Gy

1
al = (al) + &I <aé)€{0,f}, a=1,...,32, I—=d,...

because they are also WLs, but there are no perturbative states

charged under the associated U(1)’s, Cpr.
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B For the metric not to introduce a mass scale < M, we assume

G” < |Gij| € Gog, |Goj| € VGog, i,j=4d,...,8

(%) Nogg11(g, G) 4 _
Vidoop = —giir M"Y o + 1771 +O((CMSM)2 CMS/M)
T2 Io 9

Nayg1(e,G)=4 {—16—< %GL(—I) cos [27r(2l9+1)( 55—&—099 Ga E/J‘))]

(el —eb) G (ed,—eT)
g (o

+2a:cos[47r(2l9+1)(€ + (}()5 )]Hd+1<47r‘219+1|5aﬁ>}

where GV = G — g;; G%» g oo and Hy(z) = % 2V K, (22)



F%

G)
Vl-loop Md Z N2lg+1 £, +0 ((CMSM)g e—cMs/M>

|2l9 + 1|d+1

e From Ny, 11(g, ), we recover the masses «x paa_1 — 2 — poa of the

I

€a

e The SO(2) and SO(3) x SO(1) WLs are massless

Noig11(e, G) turns out to be totally independent of these WLs !
They are flat directions at 1-loop (up to exp. supp. terms)

e Setting the massive ones at (-:fl =0
Notg41(0,G) =np —ng = Vileop = (nr —np) E M+
Independent of G;; — flat directions !

(Except M = MgV G? /2 unless np — ng = 0)
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e The fact that the NS-NS moduli Gj; are massless was obvious
because
i) they are WLs of the G, ;’s which generate U(1)!0~4
i1) there are no charged perturbative states :

— > Q- > Q=0

massless massless
bosons fermions

e Same thing for the RR moduli C7;, which are WLs of the C},;’s
which generate U (1)'9~¢

(G + C)rlrype1 = (G + B)1j|heterotic

at enhanced gauge symmetry points, where there are additional
massless states with non-trivial @,
These states have winding numbers = they are D-string in Type I.

e We expect only very few WLs such as those of SO(2) and
SO(3) x SO(1) to require an analysis at higher genus to see if they are
stabilized or not.
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Conclusion

B In open string theory compactified on a torus, we have found
at the quantum level but weak coupling, backgrounds

e where all open string moduli are stabilized.
(Additional models with SO(2) or SO(3) x SO(1) factors require
2-loops analysis)

e If ngy # np, all closed string moduli except M are flat
directions at 1-loop.
However they are expected to be stabilized at 1-loop in an heterotic
framework.

e The “Super No-Scale Models”, ng = ng, provide
consistent Minkowski vacua at 1-loop (up to exponentially
suppressed terms).

Even if non-trivial, it is modest, since
- Higher loops constraints are expected for maintaining flatness.

- The dilaton is expected not be stabilized in perturbation theory.
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