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At present superstring perturbation theory can be described
using two different but related approaches

– as integration over supermoduli space
· · · ; D’Hoker, Phong; Donagi, Witten; Witten

– using picture changing operators (PCOs)
Friedan, Martinec, Shenker; Knizhnik; Verlinde, Verlinde; · · ·

The goal of this talk will be to discuss some subtleties in the
second approach and their resolution.

References:

A.S., arXiv:1408.0571

A.S., E. Witten, arXiv:1504.00609

Related approach has been discussed in open string field theory
Erler, Konopka, Sachs
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Bosonic string amplitudes

Unintegrated vertex operators:

Ai = cc̄Vi, Vi : dimension (1,1) primary in matter CFT

g-loop, N-point amplitude

A(A1, · · ·AN) = (−2πi)3g−3+N
∫

Mg,N

ω6g−6+N

Mg,N: Moduli space of genus g Riemann surface with N
punctures with coordinates (m1, · · · ,m6g−6+2N).

ω6g−6+2N: A (6g-6+2N)-form in Mg,N defined via:

ω6g−6+2N =

〈{6g−6+2N∏
i=1

(ηi|B) dmi

}
A1 · · ·AN

〉

(ηi|B) =
∫

d2z η z
iz̄ b(z) + c.c., η z

iz̄ : Beltrami differential
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It is useful to define a p-form ωp on Mg,N via〈
exp

[∑
i

(ηi|B)dmi

]
A1 · · ·AN

〉
=
∑

p

ωp

ωp satisfies useful identity:

ωp(QBA1,A2, · · · ,AN) + · · ·+ ωp(A1, · · · ,QBAN) = (−1)pdωp−1(A1, · · ·AN)

– useful for proving gauge invariance.

If A1, · · · ,AN−1 are BRST invariant and AN = λ for some λ, then∫
Mg,N

ω6g−6+2N(A1, · · ·AN−1,QBλ) =

∫
Mg,N

dω6g−7+2N(A1, · · · , λ) = 0

up to boundary terms.
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Superstring amplitudes

We shall focus on heterotic string theory

(Generalization to type II is straightforward)

World-sheet theory has bosonic ghosts β, γ

‘Bosonization’ of β-γ system:

β = ∂ξ e−φ, γ = η eφ

ξ, η fermionic, φ bosonic

Picture number:

q for eqφ, 1 for ξ, −1 for η, 0 forβ, γ

PCO: X (z) = {QB, ξ(z)} carries picture number 1
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NS sector vertex operator: cc̄e−φVNS

VNS: a dimension (1,1/2) superconformal primary in matter SCFT

R sector vertex operator: cc̄e−φ/2VR

VR: a dimension (1, 5/8) primary in matter SCFT

GSO projection: built into the definition of SCFT

Sum over spin structures: built into the definition of
∫

Mg,N
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On a genus g Riemann surface, we need a total picture number
2g-2 to get non-zero result.

m NS vertex operators and n R vertex operator carries total
picture number −m− n/2.

⇒ we need to insert 2g− 2 + m + n/2 PCO’s at y1, · · · y2g−2+m+n/2.

Naive guess: Insert a factor of

2g−2+m+n/2∏
α=1

X (yα)

into the bosonic string integration measure.

– true locally if the yα’s are independent of mi, but not otherwise.
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{yα}

Mg,N

Pg,m,n

Sg,m,n

Consider a fiber bundle Pg,m,n with base Mg,N (N=m+n) and fiber
the possible choice of PCO locations.

Fiber is (2g-2+m+n/2) complex dimensional space.

A choice of PCO locations⇔ section Sg,m,n of Pg,m,n
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Introduce p-forms ω6g−6+2N in Pg,m,n via:

∑
p

ωp =

〈
exp

[∑
i

(ηi|B)dmi −
∑
α

∂ξ(yα)dyα
1

X (yα)

]


2g−2+m+n/2∏
a=1

X (ya)

A1 · · ·AN

〉

For given choice of section yα(m), the amplitude is given by

A(A1, · · ·AN) = (−2πi)3g−3+N
∫

Sg,m,n

ω6g−6+N

= (−2πi)3g−3+N
∫

Mg,N

〈6g−6+2N∏
i=1

[
dmi

{
(ηi|B)− ∂ξ(yα)

∂yα
∂mi

1
X (yα)

}]


2g−2+m+n/2∏
a=1

X (ya)

A1 · · ·AN

〉

Verlinde, Verlinde

10



ωp satisfies the identity:

ωp(QBA1,A2, · · · ,AN) + · · ·+ ωp(A1, · · · ,QBAN) = (−1)pdωp−1(A1, · · ·AN)

– can be used to prove decoupling of pure gauge states as
before

The same identity can also be used to prove the section
independence of the amplitude.

For BRST invariant Ai’s, dωp(A1, · · ·AN) = 0.

If we have two sections S and S′, consider R ⊂ Pg,,m,n bounded
by S and S′.∫

S
ω6g−6+2N −

∫
S′
ω6g−6+2N =

∫
R

dω6g−6+2N = 0

up to contributions from the boundary of the moduli space.
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Problems with spurious poles

ωp is expected to have singularities in Pg,m,n above the singular
boundaries of Mg,N (degenerate Riemann surfaces)

– associated with IR divergences and have well understood
interpretations.

Spurious poles: Poles of ωp above regular points in Mg,N, coming
from:

1. Collision of PCOs with each other or with vertex operators

2. For g ≥ 1 the integrand has poles where no two operators
coincide

– associated with γ developing a zero mode, causing path
integral over γ to diverge. 12



The spurious poles occur over complex codimension one
subspaces of Pg,m,n

– real codimension two.

A typical section Sg,m,n will intersect loci of spurious poles.

How to integrate ω6g−6+2N through these singular subspaces?
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Resolution via vertical integration

C2

C1

C
L

-

6

Mg,N

yi

3-dimensional view

:

S1
C C

S1

S2

2-dimensional view

L: Spurious pole locus

Choose the integration cycle Sg,m,n to be

S1 ∪ C ∪ S2

so that the spurious pole locus intersects Sg,m,n along a ‘vertical
segment’. A.S.
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C2

C1

C
L

-

6

Mg,N

yi

3-dimensional view

:

Along each fiber of the vertical segment, only yi varies, keeping
other coordinates of Pg,m,n fixed.

The yi dependent part of the integral:∫ y(2)
i

y(1)
i

(−∂ξ(yi))dyi = ξ(y(1)
i )− ξ(y(2)

i )

This has perfectly well defined correlator.

The right hand side is well defined and unambiguous even
though the path may run through a pole. 15



The amplitude defined this way behaves as if we have integrated
along a smooth section

– satisfies the usual identities required to prove gauge
invariance and section independence.

If there are multiple PCOs to be moved from one configuration to
another, move them one by one as if there are multiple vertical
segments.

e.g. (y(1)
1 ,y(1)

2 )→ (y(2)
1 ,y(1)

2 )→ (y(2)
1 ,y(2)

2 )

y1 →

y2 ↑

(1) (2)

(2)

(1)

L

or (y(1)
1 ,y(1)

2 )→ (y(1)
1 ,y(2)

2 )→ (y(2)
1 ,y(2)

2 )

– represent two different choice of integration cycles and the
difference vanishes by the usual argument.
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Complete algorithm: A.S., Witten

1. Divide Mg,N into small cells.

2. Over each cell, choose PCO locations avoiding spurious
poles.

3. At the boundary between two cells, moves the PCO
assignment in one cell to the other using vertical integration

– corresponds to adding correction terms at each boundary
between cells

4. At the intersection of boundaries, we need to add further
terms due to mismatch in the vertical integration prescription.
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1

2

3 P

Mg,N

Suppose we have two PCOs.

In 1→ 2 we move them as (y(1)
1 ,y(1)

2 )→ (y(2)
1 ,y(1)

2 )→ (y(2)
1 ,y(2)

2 )

In 2→ 3 we move them as (y(2)
1 ,y(2)

2 )→ (y(3)
1 ,y(2)

2 )→ (y(3)
1 ,y(3)

2 )

In 3→ 1 we move them as (y(3)
1 ,y(3)

2 )→ (y(1)
1 ,y(3)

2 )→ (y(1)
1 ,y(1)

2 )

This leaves a gap in the integration cycle over P.
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y1 →

y2 ↑

(1) (2) (3)
(1)

(2)

(3)

R1

R2

Note the hole R1 ∪ R2 left behind at P.

We need to ‘fill the hole’ by enacting a 2D vertical segment
above the codimension 2 subspace P of Mg,N.

Integration over R1:∫
R1

(−∂ξ(y1)dy1) ∧ (−∂ξ(y2)dy2) = {ξ(y(1)
1 )− ξ(y(2)

1 )}{ξ(y(1)
2 )− ξ(y(2)

2 )}

Integration over R2:∫
R2

(−∂ξ(y1)dy1) ∧ (−∂ξ(y2)dy2) = {ξ(y(1)
1 )− ξ(y(3)

1 )}{ξ(y(2)
2 )− ξ(y(3)

2 )}

Total contribution: Sum of the two 19



This process continues if there are more than two PCOs.

Additional corrections at the intersection of the codimension
two intersections etc.

The principle remains the same: Fill the hole.

Often it is not unique.

Different choices correspond to different choices of integration
cycles.

Difference between the integrands is a total derivative whose
integral vanishes up to boundary terms.
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An example of three PCOs

We need to ‘fill’ the region bounded by the red, blue and green
lines by squares lying parallel to the coordinate axes.
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Boundary terms

In order to remove possible ambiguities associated with
integrals of total derivatives we need to fix the PCO arrangement
near the boundary of the moduli space.

Insight from string field theory: Interacting fields carry picture
numbers −1 and −1/2.

This translates to the following prescription for separating type
degeneration:

The number of PCOs on each component should be such that
the picture number is conserved by assigning the degenerating
node to carry either picture number −1 or picture number −1/2.
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Example: Consider genus 2 amplitude of two NS sector states.

Required number of PCOs: 2g-2+m+n/2 = 4

Now consider the degeneration associated with two loop
tadpole.

×,−1

×. − 1

−1

−1

T1

T2

Required PCO distribution: 3 on T1, 1 on T2

This makes working with zero picture vertex operator
problematic.

Similar counting involving R degeneration shows that 1 PCO
must be inserted on the neck. 23



Conclusion

We have a complete description of perturbative superstring
amplitudes at any genus based on PCO insertions.

The description itself has ambiguities due to the freedom of
choice in the PCO distribution.

However the on-shell amplitudes are free from all the
ambiguities.
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Even though the procedure seems complicated, once we know
that there is a well defined procedure, we can manipulate the
expressions to get simple results in special cases.

Example: Two loop dilaton tadpole due to Fayet-Iliopoulos term
generated at one loop.

Explicit calculation using PCOs gives results in perfect
agreement with effective field theory predictions.
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