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Overview and Motivations



Black holes and 2D CFT

In some situations, a black hole is dual to an ensemble in a 2D CFT

Black hole
decoupling
−−−−−−−−→ AdS3

holography
←−−−−−−−→ 2D CFT

A b.h. microstate is dual to a “heavy” operator (∆H ∼ c � 1)

and (in some cases) is described by a 10D classical geometry

(Lunin, Mathur)

R4,1 × S1

AdS3 × S3

r ∼ RHor −→
no horizon!

g 2
s N � 1

ds2
H

←→

g 2
s N � 1

OH 2



Holographic probes

Microstates can be probed by “light” operators (∆L ∼ O(c0))

3-point correlators

〈OL(1)〉ds2
H
←→ 〈ŌH(∞)OH(0)OL(1)〉

They are extracted from the asymptotic expansion of ds2
H

If OH and OL are susy they do not depend on the moduli

They can be used to test the map between gravity and free CFT

4-point correlators

〈OL(z)ŌL(1)〉ds2
H
←→ 〈ŌH(∞)OH(0)OL(z)ŌL(1)〉

They are derived by solving the wave equation in ds2
H

They generically depend non-trivially on the moduli

Unitarity requires that they do not vanish at large Lorentzian time
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The D-brane system



Extremal near-horizon limits: 4D

The extremal 4-charge black hole in type II on R3,1 × T 6

D6123456 D212 D234 D256
decoupling
−−−−−−−−→ AdS2 × S2 × T 6 ←→ 1DCFTyU−duality

KKM12345(6) D15 D512345 P5
decoupling
−−−−−−−−→ AdS3 × S2 × T 5 ←→ 2DCFT

The 2D CFT is the (4, 0) MSW theory; it is not well-understood

The system simplifies if KKM → 0 and R6 →∞
⇒
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Extremal near-horizon limits: 5D (Strominger, Vafa)

The extremal 3-charge black hole in type IIB on R4,1 × S1 × T 4

D15 D512345 P5
decoupling
−−−−−−−−→ AdS3 × S3 × T 4 ←→ 2DCFT

with vol(T 4) ∼ `4
s and R(S1)� `s

The 2D CFT is the (4, 4) D1D5 CFT with c = 6n1n5 ≡ 6N � 1

The CFT has a 20-dim moduli space:

free orbifold point ←→ RAdS � `s

strong coupling point ←→ RAdS � `s
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The D1-D5 CFT



The D1-D5 CFT

Symmetries:

(4,4) SUSY with SU(2)L × SU(2)R R-symmetry ←→ S3 rotations

The orbifold point: sigma-model on (T 4)N/SN
The elementary fields are 4 bosons, 4 fermions and twist fields

Chiral primary operators: O(j,j̄) with h = j , h̄ = j̄ (and their

descendants with respect to L−n, J−−n, G−−n−1/2) are protected

Spectral flow:

NS−→ R

j −→ j + N
2

, h −→ h + j + N
4

(anti)CPO−→ RR ground states with h = h̄ = N
4
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A simple D1D5 state (Maldacena-Maoz et al.)

States carrying D1-D5 charges are RR ground states (h = h̄ = N
4 )

Note: h, h̄ ∼ c ⇒ “heavy” states ⇒ classical geometry

A simple example:

|0〉NS

←−
−−

AdS3 × S3

spectral flow
−−−−−−−−−−→

←−
−−

φ→ φ− τ , ψ → ψ − σ

|N/2,N/2〉R

←−
−−

AdS3 ×′ S3

with (φ, ψ) S3 coordinates and (τ, σ) AdS3 coordinates

The geometry dual to the maximally rotating RR ground state

|N/2,N/2〉R is AdS3 ×′ S3 with S3 non-trivially fibered over AdS3
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The graviton gas

If Ok is a (anti)CPO of dimension k one can consider its descendants

Ok,m,n,q ≡ (J+
0 )m(L−1)n(G+1

− 1
2

G+2
− 1

2

)q Ok

Spectral flow maps Ok,m,n,q to a D1-D5-P state with h > h̄ = N
4

“Semi-classical” states are coherent states

|B1,B2, . . .〉NS ≡
∑

p1,p2,...

(B1Ok1,m1,n1,q1 )p1 (B2Ok2,m2,n2,q2 )p2 . . . |0〉NS

When B2
i ∼ N � 1 the pi -sum is peaked for pi ≈ B2

i /k

What is the gravitational description of |B1,B2, . . .〉NS?
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The gravity side



Superstrata: construction

Holography associates to Ok a sugra field φk : Ok ←→ φk

At linear order in Bi |B1, . . .〉NS is a perturbation of the vacuum

|0〉NS + Bi Oki ,mi ,ni ,qi |0〉NS ←→ AdS3 × S3 + Bi φki ,mi ,ni ,qi

where φki ,mi ,ni ,qi solves the linearised sugra eqs. around AdS3 × S3

φk,m,n,0 =
ρn

(ρ2 + 1)
n+k

2

sink−m θ cosm θ e i [(k−m)φ−mψ+(k+n)τ+nσ]

One can extend the linearised solution to an exact solution of the

sugra eqs. valid for B2
i ∼ N

The non-linear extension is non-unique: ambiguities are fixed by

imposing regularity
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Superstrata: result

The non-linear solutions are smooth and horizonless

The solutions are asymptotically AdS3 × S3 but in the interior AdS3

and S3 are non-trivially mixed

There is a continuous family of solutions, parametrised by Bi , for

fixed values of the global D1, D5, P charges

R4,1 × S1

AdS3 × S3

←− r ∼ RHor no horizon!

(Bena, Ceplak, Heidmann, SG, Martinec, Russo, Shigemori, Turton, Warner)
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Holographic 3-point correlators



HHL correlators (Kanitscheider, Skenderis, Taylor)

We compute

〈OL〉H ≡ 〈ŌH(∞)OH(0)OL(1)〉

with

OH
spectral flow
−−−−−−−−−−−→

∑
p1,...

(B1Ok1,m1,n1,q1 )p1 . . .
holography
←−−−−−−−→ ds2

H

OL = Ok
holography
←−−−−−−−→ φk

〈ŌHOHOL〉 do not depend on the CFT moduli

One can extract 〈Ok〉H from the geometry ds2
H

φk
ρ→∞−→ ρ−k 〈Ok〉H

One can compare 〈Ok〉H with the value computed in the orbifold

CFT

11



An example

OH =
∑

p1,p2
(B1O1)p1 (B2O2)p2

with O1, O2 CPOs of dimension 1 and 2

From the CFT

〈O1〉H ∼ B1 , 〈O2〉H ∼ B2

This agrees with the gravity result as a consequence of the linear

construction of ds2
H

There is a CPO O ′1 such that 〈O ′1O1O2〉 6= 0 ⇒

〈O ′1〉H ∼ B1B2

This agrees with the gravity result, including the numerical

coefficient, as a consequence of the non-linear terms needed for

regularity of ds2
H
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A technical remark

For operators of dimension greater than 1 the holographic map is

complicated by the possible mixing between single-particle CPOs

and between single-particle and multi-particle CPOs

Ok + O ′k + Ok−1O1 + . . .
holography
←−−−−−−−→ φk

The map has been worked out for k ≤ 2 providing non-trivial

evidence of the map

OH
holography
←−−−−−−−→ ds2

H

at the full non-linear level
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Holographic 4-point correlators



HHLL correlators

How to compute holographically

CH(z , z̄) ≡ 〈ŌH(∞)OH(0)OL(z , z̄)ŌL(1)〉

OL(z , z̄) ≡ Ok(z , z̄) ←→ φk(ρ; z , z̄)

Solve the linearised e.o.m. for φk in the background ds2
H ←→ OH

Pick the non-normalisable solution such that

at the boundary (ρ→∞)

vev of OL(z , z̄)
↗

φk(ρ; z , z̄)
ρ→∞−→ δ(z − 1) ρk−2 + b(z , z̄) ρ−k

↘
source for ŌL(1)

in the interior (ρ→ 0) φ(ρ; z , z̄) is regular

The correlator is given by

CH(z , z̄) = 〈OH |OL(z , z̄)ŌL(1)|OH〉 = b(z , z̄)
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A simple example

We take

OH =
∑
p

(B O1)p , OL = O1

OH flows to a RR ground state ⇒ P = 0

The ensemble of RR ground states corresponds to a “small black

hole” (massless limit of BTZ)

ds2

R2
AdS

=
dρ2

ρ2
+ ρ2(−dτ 2 + dσ2) + dΩ2

3

The geometry ds2
H dual to OH approximates the small black hole

geometry in the limit B2 → N

Computing CH for heavy states with P 6= 0 has been possible only

for small B until now
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Results

Gravity

CH = α e−iτ
∑
l∈Z

e ilσ
∞∑
n=1

exp

[
−iα

√
(|l |+ 2n)2 + (1−α2)l2

α2 τ

]
√

1 + 1−α2

α2
l2

(|l|+2n)2

+N(1−α2)e−iτ

with z = e i(τ+σ), z̄ = e i(τ−σ), α =
(

1− B2

N

)1/2

Free CFT

CH =
1

|z ||1− z |2
+

B2

2N

|z |2 + |1− z |2 − 1

|z ||1− z |2
+

(N − B2)B2

N

(
1− 1

N

)
1

|z |
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The OPE interpretation

The 4-point function can be reconstructed from the z → 1 OPE

OH

_
OH

OL

OL

_

OL(z)ŌL(1) ∼ |1−z |−2(1+(1−z)J+(1−z)2T+. . .)

+
∑
n,`

(1− z)n+`(1− z̄)n:OL∂
n+`∂̄nŌL :

+ stringy operators

The first line gives the affine identity block, which dominates in the

light-cone limit (z̄ → 1)

In the second line are non-BPS double-trace operators with

h = 1 + n + `+
γn`
N

, h̄ = 1 + n +
γn`
N

The operators in the third line are dual to string modes and have

h, h̄→∞ in the sugra limit
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A comment on the method

Holographic correlators of single-trace operators (like OL) are usually

computed by summing Witten diagrams

This technique has not been extend to correlators with multi-trace

operators (like OH)

Even for single-trace correlators, Witten diagrams in AdS3 are

subtle: no holographic correlator in a 2D CFT has ever been

computed before

Our approach bypasses Witten diagrams:

OH

_
OH

OL OL

_

+

OH

_
OH

OL OL

_

+ . . . →

OL OL

_

X
ds2H

In a certain limit: 〈ŌHOHOLŌL〉 → 〈ŌLOLOLŌL〉
(SG, Russo, Wen)
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Late-time behaviour and unitarity



The late time behaviour of the HHLL correlator

We focus on the limit B2 → N ⇔ α→ 0

in which ds2
H approximates the “small b.h.”

In this limit the series giving CH is dominated by terms with n� |l|
2α :

CH ∼ e−iτ
[

1

1− e i(σ−τ)
+

1

1− e−i(σ+τ)
− 1

]
α

1− e−2iα τ

The time-dependence of the correlator is controlled by α:

for τ � α−1 one has CH ∼ τ−1;

this is the same behaviour of the 2-point function in the “small b.h.”

for τ & α−1 CH stops decreasing with τ and oscillates

Correlators in a pure or thermal state in a unitary theory with finite

entropy do not vanish at late times

The late-time behaviour of CH is consistent with unitarity already at large

c
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Summary and outlook



Summary

The identification of black hole microstates with “heavy” states of a

dual CFT provides a guide to their gravitational description

At strong coupling (some) heavy states are described by smooth

horizonless geometries

HHL and HHLL correlators can be extracted from these geometries

and can be used to substantiate the map between states and

geometries and to probe the unitarity of the gravity picture

If probed for a short time microstates are indistinguishable from the

black hole, but for sufficiently long times microstates deviate from

the black hole and produce correlators that are consistent with

unitarity already at large c
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Outlook

Classical supergravity works well for atypical states in the black hole

ensemble

For some observables, deviations from a typical state and the

classical black hole should be exponentially suppressed in the entropy

How much of our analysis can be extended to typical states?

And what about microstates of non-BPS black holes?

It is possible that classical supergravity probes cannot resolve the

structure of typical states

Does one need to resort to full string theory?
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Extra slides



A technical remark

The e.o.m. for φ ←→ OL is complicated

It is simpler to compute

C̃H(z , z̄) ≡ 〈ŌH(∞)OH(0)ÕL(z , z̄)ÕL(1)〉

with

ÕL ≡ GḠOL
holography
←−−−−−−−→ φ̃ minimally coupled scalar in 6D

Since GOH = 0, CH and C̃H are related by the Ward identity

C̃H(z , z̄) = ∂∂̄ [|z | CH(z , z̄)]

The WI is a non-trivial check on the gravity computation when both

CH and C̃H can be computed

22



The small B limit

When B2 � N OH , spectrally flowed to the NS sector, is light

OH
spectral flow
−−−−−−−−−−−→

∑
p

BpOp −→ O ≡ OL for B2 = 1

Naively one expects 〈ŌHOHOLŌL〉 → 〈ŌLOLOLŌL〉 for B2 = 1

This is not correct! There is an order of limit problem:

HHLL: take N →∞ with B2/N fixed and then B2/N → 0

LLLL: take B2 = 1 first and then N →∞

But it works for z → 1, more precisely

the B2 → 0 limit of the HHLL correlator correctly captures

all the single-trace operators exchanged between OL and ŌL
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Reconstructing the LLLL correlator

One can uniquely reconstruct CL ≡ 〈ŌL(z1)OL(z2)OL(z3)ŌL(z4)〉 from

for z1 → z2, CL = limB2→1 CH
CL is symmetric under z2 ↔ z3 exchange

CL is consistent with the flat space limit (RAdS →∞)

the operator with the lowest dimension exchanged for z2 → z3 is

protected

One finds

CL =

(
1− 1

N

)
(1 + |1− z |−2) +

2

πN
|z |2(D̂1122 + D̂1212 + D̂2112)

where D̂i1i2i3i4 is the Witten contact digram with operators of dimension

i1, . . . , i4

(The generalisation to generic CPOs is under construction)
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