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curves on the CY3 X as. Captured by topological free energy Fiy oy = In Zy s 0f Xy ps

[Haghighat, Iqbal, Koz¢az, Lockhart, Vafa 20131
[Haghighat, Kozeaz, Lockhart, Vafa 20131
LSH, Igbal 20131

Compute the topological string partition function Zx as using the refined topological vertex

-) assign trivalent vertex to each intersection

2 2 2 B e
e e e o [nl+ 1A =] p]

e in s e B e g Zy(t,q)Z(%) :

n
X SAt/n(t_pq_y) S,Lb/n(q_pt_y )
~ t 3 . =3 |
o= T (1-v-es)”
(4,7) €V

-) glue vertices according to web diagram

2mim\ (v
E :(_6 )l |CM1>\1VCu§A§ut

v

-) choose preferred direction

must be common to all vertices of diagram Bharaga



preferred direction



3 different choices for the preferred direction:



3 different choices for the preferred direction:

1) horizontal:




3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips




3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W™ 2 ({v}, {m})




3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W™ 2 ({v}, {m})

2) vertical:

il



3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W™ 2 ({v}, {m})

2) vertical: decompose diagram into horizontal strips



3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W™ 2 ({v}, {m})

2) vertical: decompose diagram into horizontal strips
building block: W'~V ({h}, {m})



3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W™ 2 ({v}, {m})

2) vertical: decompose diagram into horizontal strips
building block: W'~V ({h}, {m})

3) diagonal:

il



3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips
building block: W22 ({v}, {m})

2) vertical: decompose diagram into horizontal strips
building block: W'~V ({h}, {m})

3) diagonal: decompose diagram into diagonal strips

where k£ = ged(N, M)



3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips a
building block: W™ 2 ({v}, {m})

building block: W22~ ({h}, {m}) N[

bo Ba

2) vertical: decompose diagram into horizontal strips R i _(

3) diagonal: decompose diagram into diagonal strips
building block: W, "BN ({h}, {v})

generic form of the buﬂdmg block

L 1
ngl.::BaLL i @ Z H ja BJ Qz i—79 Q7 )jﬂg ((Q’L 71— ]) Qpa q, )
Fg= 1‘70‘ O‘J ’LZ J V 4 q’ ‘753 Q’L] =7 /Q7Q7t)

i
k 8t




3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips a
building block: W™ 2 ({v}, {m})
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3 different choices for the preferred direction:

1) horizontal: decompose diagram into vertical strips a

building block: W™ 2 ({v}, {m})
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Alternative view on the three gauge theories: Newton polygons as dual of web diagrams
Example: (N, M) = (3,2)
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-) decomposition into three vertical strips W57 *

-) for diagonal decomposition: choose different fundamental domain
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Newton Polygons

Alternative view on the three gauge theories: Newton polygons as dual of web diagrams
Example: (N, M) = (3,2)

7 8 9 7 8 9
4 5 6 4 5 6

1 2 3 1 2 3

> 15

dual Of web 10 10N011 [ Nc12 N\ 10 [\ o11 [\ U12

: 7 8 9 7 8 9

diagram

4 5 6 4 5 6

1 2 3 1 2 3

presentation of the web diagram associated
with alternative fundamental domain

r -) all fundamental domains equivalent

-) lead to same partition function
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Need to choose independent Kahler parameters of Xy s



BPases of independent Kahler parameters

For each of the expansion we can choose a suitable set of N M + 2 independent Kahler parameters:



BPases of independent Kahler parameters

For each of the expansion we can choose a svitable set of N M + 2 independent Kahler parameters:
Example: (IV, M) = (3,2)




BPases of independent Kahler parameters

For each of the expansion we can choose a suitable set of NV A + 2 independent Kahler parameters:

Example: (IV, M) = (3,2)
1) horizontal: (,0,61,62; C1,1Co, €357, E)

he

hs

V6

hs

Sw_|_8w_|_1w

cl



BPases of independent Kahler parameters

For each of the expansion we can choose a svitable set of N M + 2 independent Kahler parameters:
Example: (IV, M) = (3,2)
1) horizontal: (,0,31,32; c1,Co,C3;T, F)
series expansion: p — b; — by — 00
B Lo 1 2 :
by — o0




BPases of independent Kahler parameters

For each of the expansion we can choose a suitable set of N M + 2 independent Kahler parameters:
Example: (IV, M) = (3,2)
1) horizontal: (,0,31,32; c1,Co,C3;T, F)
series expansion: p — b; — by — 00
bi—r o0 | 2 3

b2 HEE WAL, G,
gavge theory: [/ (2) x U(2) x U(2)




BPases of independent Kahler parameters

For each of the expansion we can choose a suitable set of NV A + 2 independent Kahler parameters:

Example: (IV, M) = (3,2)
1) horizontal: (,0,61,32; c1,Co,C3;T, F)
series expansion: p — b; — by — 00
DirERessise
/b\g S TO0
gauge theory: U(2) x U(2) x U(2)

2) vertical: (7, b D)

hs

I
I
I
I
I
I
I
I
I
I
__________________________

N |
I
| i
I e
: <'> h,4 ms b4 h3
. L
' 1
I
I
I

V1 44

D =mi 4 ma



BPases of independent Kahler parameters

For each of the expansion we can choose a suitable set of NV A + 2 independent Kahler parameters:

Example: (IV, M) = (3,2)
1) horizontal: (,0,31,32; c1,Co,C3;T, F)
series expansion: p — b; — by — 00
DirERessise
/b\g S TO0
gauge theory: U(2) x U(2) x U(2)

2) vertical: (7, b D)

series expansion: - — ¢y — o©
/C\Q FAE ARG,

he

ha

h1

(V) -- o



BPases of independent Kahler parameters

For each of the expansion we can choose a suitable set of NV A + 2 independent Kahler parameters:

Example: (IV, M) = (3,2)
1) horizontal: (,0,31,32; c1,Co,C3;T, F)
series expansion: p — b; — by — 00
DirERessise
/b\g S TO0
gauge theory: U(2) x U(2) x U(2)

2) vertical: (7, b D)

series expansion: - — ¢y — o©
/C\Q FAE ARG,

gauge theory: U(3) x U(3)

he

ha

h1

(V) -- o



BPases of independent Kahler parameters
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Flop transition for any two curves in the diagram:

Series of flop and SL(Z,Z) transformations for X5 5 ~ X 1 1k qpal, Rey 20161
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Flop Transitions and Duality
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Flop transition for any two curves in the diagram:

Series of flop and SL(Z,Z) transformations for X35 ~ Xg1 1 I(;bal, Rey 20161
SL(2, Z) transtormation
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Flop Transitions and Duality
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Flop Transitions and Duality
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Flop tramsition for any two curves in the diagram:

—
Series of flop and SL(Z,Z) transformations for X5 5 ~ X 1 1k qpal, Rey 20161
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Flop Transitions and Duality
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Flop transition for any two curves in the diagram:

Series of flop and SL(Z,Z) transformations for X35 ~ Xg1 1 ok ey 201
Cut diagram along dashed line and re-glue
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Duality leaves partiton function invariant

Zg)g({h}, {’U}, {m}, 61,2) = 26,1({h/}7 {?jl}’ {m/}7 6172) [Bastian, SH, Igbal, Rey 20171
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Kahler parameters implied by dvality transformation
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Duality leaves partiton function invariant
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Duality leaves partiton function invariant

Zg)2({h}, {U}, {m}, 61,2) = 26,1({h/}7 {?}/}, {m/}, 6172) [Bastian, SH, Iqbal, Rey 20171
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Kahler parameters implied by dvality fransformation

Vertical expansion of Ze .1 gives rise to a gauge theory with gauge group I/ (6) and part. fet. 2 (ert)
Symwetry transformations do not flop any curve whose area is proportional to V/

—> partition functions Z ;. (3 2) and Z (ert) have same asymptotic expansion



Generalisation to (N,M)

Puality conjectured to hold for generic (N, M)

XNM ~ XNM/kk where k = ged(N, M)



Generalisation to (N, M)

Puality conjectured to hold for generic (IV, M)

XNM ~ XNM/kk where k = ged(N, M)

New+ton polygon (dual of the topic web diagram)




Generalisation to (N, M)

Puality conjectured to hold for generic (IV, M)

XNM ~ XNM/kk where k = ged(N, M)

New+ton polygon (dual of the topic web diagram)

Fundamental domain

for tiling the plane




Generalisation to (N, M)

Puality conjectured to hold for generic (IV, M)

XNM ~ XNM/kk where k = ged(N, M)
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Generalisation to (N, M)

Duality conjectured to hold for generic (1V, M)

XN,M ~ XNM/kk Where k = ged
New+ton polygon (dual of the topic web diagram) - §
=N
- 3

equivalent tiling of the plane
by these two lines, which visit

every inequivalent point
exactly once




Consequence: dualities between Calabi-Yau threefold (extended wmoduli space)
NM = N'M’

X NX / /
NM O~ AN R0 N M) = ged(N, M)
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Consequence: dualities between Calabi-Yau threefold (extended moduli space)
NM = N'M’
ged(N, M) = ged(N', M")

Xnm~ XNy for

example: X6,5 ~ X1073
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Consequence: dualities between Calabi-Yau threefold (extended moduli space)
NM = N'M’
ged(N, M) = ged(N', M")

Xnm~ XNy for

eanlple: X6,5 ~ X1073
~ X152 ~ X301 ~ X556

~ X310 ~ X215 ~ X1 30
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Summarise dvalities for generic (IV, M) (partially conjectural):
Extended moduli space of X n ps:

NM = N'M'
ged(N, M) = ged(N', M")

LSH, Igbal, Rey 20161

XN.Mm ~ XN/ M for

walls of Kahler cones

intermediate Kahler cone(s) that are passed through
in the series of flop- and symmetry transformations
connecting Xy, a and Xpn/



Consequences for General Configuration (N,M)

Summarise dvalities for generic (IV, M) (partially conjectural):
Extended moduli space of X n ps:
NM = N'M'
gcd(N, M) = ged(N', M")
Partition function invariant (proven for A1 = 1) [SH, Igbal, Rey 20161
ZN,M({h}, {U}, {7n}7 61,2) ] ZN’,M’ ({h/}, {U/}, {m’}, 61,2) [Bastian, SH, Igbal, Rey 20171
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Consequences for General Configuration (N,M)

Summarise dvalities for generic (IV, M) (partially conjectural):
Extended moduli space of X n ps:
NM = N'M'
gcd(N, M) = ged(N', M")
Partition function invariant (proven for M = 1) [SH, Igbal, Rey 20161
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Summarise dvalities for generic (IV, M) (partially conjectural):
Extended moduli space of X n ps:

NM = N'M'
X AR X / /
N,M N',M for scd(N. M) — ged(N', M)
Partition function invariant (proven for A/ = 1) e e
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Consequences for General Configuration (N,M)

Summarise dvalities for generic (IV, M) (partially conjectural):
Extended moduli space of X n ps:

NM = N'M'
X AR X / /
N,M N',M for scd(N. M) — ged(N', M)
Partition function invariant (proven for A/ = 1) e e
ZN,M({h}v {U}v {m}, E1,2) — ZN’,M’ ({h’}’ {U,}, {m’}7 61,2) [Bastian, SH, Igbal, Rey 20171

Weak coupling regions within given Kahler cone:

quiver gauge theories with gauge groups
Ghor = [U(M)]N J\
T-dvality

fmw—>oo

Gyert = [U(N)]M

Gaiag = [UNM/E)]® for k= ged(N, M)

represent low energy limits of LSTs

triality of LSTs
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Dihedral Symwetries of Configuration (N,1)

Web of dvalities among different theories can be turned into symmetries for individual theories
LSH, Bastian 20181

Example (N,M)=(21);

S5 = s ! o
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Dihedral Symwetries of Configuration (N,1)

Web of dualities among different theories can be turned into symwetries for individval theories
LSH, Bastian 20181

Example (N,M)=(21);

1 < 1 S
SQ Q\/ L Sé 7
hy m dval web diagrams hy A
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a1 = vy + ha, G =30 S TR ay=my+ hy, a5, = mo + ha,
S =ho+vy+ hy, R—25=m1 —vy. S’:h2+m1+h1, R’—ZS’:’U2—m1.
Implies the following symwmetry of the partition function:
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Generalising to include other dvality transtformations:
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Generalising to include other dvality transtformations:
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Generalising to include other dvality transtformations:
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Generalising to include other dvality transtformations:
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Generalisation to (N,1): Symwetry group

G(N) X\ where

shuffling’ of roots

Explicitly

12

G(N)

({G2(N), G5(N)|(G2(IN))?

= (G3(N))* =

)1”12
)1”13
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Generalisation to (N,1): Symwetry group

Do e

G(N) >< o G(N) = ¢ :Di:flg N =D
_)i_flg N = 3,

\ : Dl et

shuffling’ of roots

Explicitly

12

G(N) = ({G2(N), Go(N)[(G2(N))* = (G2(N))* = (G(N) - Qé(N)f”DZ 1})

P ORIt
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{3 for TN =13



Generalisation to (N,1): Symwetry group

il
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\ DI FaE NS

shuffling’ of roots
Explicitly

G(N)

12

({G2(NV), G5(N)[(G2(N))* = (G5(N))* = (G2(N) - gé(N);’): 1})

2 508 16 1 8 Ly By ==
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Conclusions and Further PDirections

Studied dvalities in a class of Little String Orbifolds:

5

k

k

efficiently described by dual F-theory compactification on a class of toric CY3folds X s

partition function Zy 5, compute as topological string partition function on X, as

Kahler cone of X as contains three weak coupling regions in which web diagram

decomposes into parallel strips

weak coupling regions give rise to different (but equivalent) expansions of Zy 5 that can

be interpreted as instanton partition functions, realising a friality of 5dim quiver gauge th.:
Ghor = [UM))Y = Gie = [UMNY < Gaing = [U(EE))* for k= ged(N, M)

implies (dihedral) symmetries of the partition function



Conclusions and Further PDirections

Studied dvalities in a class of Little String Orbifolds:

* efficiently described by dual F-theory compactification on a class of toric CY3folds X n as

*  partition function Zy 5, compute as topological string partition function on X as

*  Kahler cone of X as contains three weak coupling regions in which web diagram
decomposes into parallel strips

*  weak coupling regions give rise to different (but equivalent) expansions of Zy 5s that can
be interpreted as instanton partition functions, realising a friality of 5dim quiver gauge th.:
G el e @ N e G R ar e — e G R

*  implies (dihedral) symmetries of the partition function
Future directions:

* study implications of triality on W-algebras associated with AGT dval theories
* Generalisation to other LSTs than A-series

* study extended web of dualities by considering further weak coupling regions in the

extended moduli space of x  ,, further dvalities: [U))N = [U)Y
for NM = N'M’
ged(N, M) = ged(N', M")



