We start with a simple remark about
amplitudes



The 12> 1 amplitude in String Theory



The 1> 1 amplitude in String Theory
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Energy is automatically conserved if we have on shell operators V.

XY = oK1

Ai_q = 2k9(2m) P8P~ (k) — ko)

Similar story for two point functions in AdS.
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Preliminaries



Black holes and quantum systems



Basic Assumption

(central dogma)

A black hole seen from the outside can be
described as a quantum system with order S
degrees of freedom (qultS) (coupled to the rest of spacetime)




Geometry of a Black Hole made from
collapse

Singularit
6 y Oppenheimer Snyder 1939

interior

star One exterior, one interior.



Full Schwarzschild solution

singularity

Eddington, Lemaitre, Einstein,
Rosen, Finkelstein,
Kruskal

ER

Right
exterior

Left
exterior

Vacuum solution. No exotic matter.
Two exteriors, sharing the interior.



If one black hole = quantum system,

What do these two connected black holes

correspondto ?



Wormhole and entangled states

\ / \ / Connected through theinterior
‘ [

| {

— W. Israel
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In a particular entangled state




The near horizon region

Left exterior .
Right exterior

TED) =) e P /2|E) L |Ey) R

n

Boost = exact symmetry = %(Hr — Hj)

\

(No simple bulk lattice discretizations in gravity)



Two other approximate symmetries

RS

Left exterior _ .
Right exterior

E = global time translation symmetry XV xY + constant

P = Spatial translation x1 o xl + constant



This talk will be about these two other
(approximate) symmetries

T XO They move us behind the horizon

They move us from one side to the other

Left exterior . _
Right exterior



We will discuss this for near extremal black
holes.

These are described by Nearly-AdS, gravity.

A similar structure appears in the SYK model.

We will now review both cases.



Review of nearly AdS, gravity



Near extremal black holes

N'AdSzX Sz _—

eS|

horizon



Nearly-AdS, gravity

Jackiw-Teitelboim
Almheiri-Polchinski

S = ¢ UR+2/K] +/¢(R+2)+2¢b/K+Sm[guy,x]

| l

Fixes
Only extermal entropy S, Metric to AdS,

Matter moves in a rigid
AdS, spacetime

Boundary becomes dynamical = boundary graviton = only
physical degree of freedom for gravity



The surprisingly simple gravitational
dynamics of N-AdS,

NAdS, = AdS, + location of boundary

21 —d7? + do*?
ds® = —5
sin” o

Dynamics of the boundaryis SL(2) invariant.

Proper time along the boundary = time of the
asymptotically flat region =time of the quantum
system



, —dr?+ do?
ds® = —
AdS, sin” o

Simplest case = Boundaries are infinitely far away.
Matter moves effectively in all of AdS, and is not
affected by the motion of the boundary.

The boundary is still dynamical and tells us how to
translate to the physical boundary time = time of
the dual quantum system.

Then the Hilbert space splits as:

(Hl X H’m X H’I")/SL(2)94’ Common motion of the three

of them is not physical



e Each of the three systems is described by an
SL(2), invariant action.

* The matter moves in a rigid AdS,

* Each boundary is like a massive particle with
spin (or in an electric field in AdS,)

nabyayb = —1 Embedding coordinates

Rescaled embedding coordinates
X(u) , X -X=0 X - X=-1

t

Proper time along the boundary = time of the dual quantum system.



SL(2) gauge constraint:

Q? _|_ Q?n ‘|‘ Q,,C} — O a = gauge index

Now one would be tempted to say that the symmetries we want are Q?,, , the
matter generators, since they are the ones that move the matter in AdS, .

But these do not have a translations to the boundary theory since they are not
gauge invariant.

So, we will write gauge invariant ones by “gravitationally dressing” them.



Short review of SYK



SYK

Sachdev-Ye-Kitaev

SYK: N Majorana fermions with all to all
interactions.

The theory has a simple large N limit, with an

effective action which is a function of two times:
G(U/l, U’2)

This becomes the fermion two point function
when we impose the equations of motion.

At low energies, it develops an approximate
conformal symmetry.



e Scaling solution.

G.=|t1 — ?52|_2A

* Inthe IR thereis a family of solutions that are
obtained by applying a time reparametrization to
the above one, u =2 f(u).

, , A
Gy = [f'(u1)f (u2)]*Ge(f(ur) — fluz)) = [(fﬁjf;l@((fj)ﬂ
Kitaev

* Thisis only an approximate symmetry and it is
explicitly broken.

G =Gy +Go=[f'(u)f (w2)]® [ e + G (f (). f(u2)




Low energy SYK action

S = —Naw [{fi(u),u} — N2 [{f(u),u} + Scont[5.C

{f)u}_ f %?/2 xa

%(l,cosh f,sinh f)

Same as the action of the boundaries in the gravity theory

Analogous to the action of

(Hl X Hm X HT)/SL(2>9 matter for the gravity theory.

Independent of f(u).
Q + @ +Er =0

Becomes exactin the limit:

N — o0, (8T) — oo, %:ﬁxed Sy — 00



Construction of gauge invariant
generators



Momentum generator

Vectors: Xla“ , Xﬁ’

Construct gauge invariant generators. First

P x (X; X X,).Qm

Translation along the geodesics joining the left and right points

XL XXR

XL -Xr



Two others: XlQm ] Xer

Linear combinations give
Boost

Energy

Xp+ X

* vV—2Xgp-Xpg



These are expressions for three gauge invariant
SL(2) generators,
GA — eé(Xla X?“) ng

They act on the physical Hilbert space.
- Hilbert space is infinite dimensional
Do not confuse them with the SL(2), constraints.

They include quantum gravity corrections (finite
Schwarzian coupling).

Do not include effects of other topologies (S, =2

oo )

The X dependence can be viewed as a
gravitational dressing.



* They do not commute with the Hamiltonian
since X,(u,), X,(u,) depend on time.

* Only depend on time due to the boundary
positions. G (ug, u,)

e To the extentthat we can solve for the
boundary positions = we can write

GA (O, O) — Aé GB (UZ ] u”l") Conserved charges
t

Operator in the boundary theory (Schwarzian)



Expressions purely in terms of
boundary quantities.

* Use the gauge constraints to write
Qn = —(Q) + Q)

* Rewrite them all in terms of boundary quantities,
and their derivatives.

~

P = (04, — Oy, ) log|—2X,.X,.] = (0y, — 0y, )¢

0= +pm +Tr = pm = —Tpr — T = (aul o 8ur)(:cr(ur) B ml(ul))
* Similar expression for the other two.

e |tinvolvesthe distance between the two
boundaries.



Distance between the two boundaries

(_Qxll,x,r,)A X <¢27¢37~>

Could be extracted by taking the logarithm of the
correlator.

¢ =log[-2X,.X,] = — L log[s] .4)7]

Well defined as long as the operator does not
vanish.

Is OK in the scaling limit we defined before.

N — oo, (BT) — o0, %:ﬁxed

It is a quantity that is well defined only around

this “wormhole” phase. Like the phase of a
superconductor.

Previously thought of in terms of “complexity”susskind etal




* Now we will now work to get more explicit,
but approximate, forms for the generators.

 These will have the advantage of being well
defined in the finite N theory.



Semiclassical limit

3T

S—5

e Gravity (Schwar2|an) is weakly
coupled and close to classical.

~ 5> 1

e Boundaries follow classical
trajectories + small fluctuations.

27U

tr =1+ e (uy) , tr = Uy + €-(Uy) ,

'&/ET



e \WWe can now calculate the distance in terms of
classical solutions + small fluctuations.

* The generators G* have a simple
approximation in terms of €

> / 1/ / 11/
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All evaluated at u; =u,=0



* We can also expand correlators in € and, as
long as we get the same combination 2 we
are getting these generators.

!/ 4/
tltr

coshQ(ELgiﬁ)

t; = u; + € (uy)

?

A

t’r‘ :’ZLT—I-ET(’[LT) , U %Tu

* The gauge constraints set these combinations
of € equal to the matter charges. (In the

appropriate gauge).

Q + Q@ +Q@r =0



Global energy

JM, Qi

 Two identical coupled SYK models

Hcoupled — Hr + HT‘ -+ @szjwﬁ

* Ground stateis very close to the thermofield
double state at some temperature given by a
combination of nand J.

E~ ™ % [Hcoupled — <Hcoupled>0]

1 B dependent through . Empty wormbhole

Redshift factor, makes it equal to unit normalized global AdS, energy



~o

E ~ —(6{,!/ — 62//) ™~ Ilcoupled — <Hcoupled>0



Hcoupled = H, +H, + ZM¢{¢¥,

/

Involves a coupling between the left and right systems

Related to the traversable wormhole construction
Gao, Jafferis, Wall



Side Comment

Rindler coordinates.

Global energy is

A

—
__~
T

00

E=/ Too=Ei+E.+ ) _ ¢ié}, Ez=/
Sphere ; -

Hemisphere

Similar to: Hcoupled — Hr + Hr + WWW



End of side comment



Operator-State map in NCFT,

Operators are mapped to states of the two sided system.
Vacuum —> TFD.

Matrix elements of correlators = Related to OTOC

(O(0)|GA (7, 0)|O(s))

Pt

Pb

(a) (b) (c)



Related to out of time order
correlators or OTOC

Measuring distance via correlators

Bulk matter

OTOC - simple bulk displacements.

(Pb Here we simply invert the logic.



Relation to “size”

Some papers have been proposing a relation between the momentum of bulk particles
to “size”. It was proposed as a conjecture, or “experimental”’ relationship, with some
rescaling factors, etc.

Roberts, Stanford, Streicher;
Susskind; Brown, Gharibyan, Streicher, Susskind, Thorlacius, Zhao; Qij, Streicher

Size is the number of operators that we have to apply to the infinite temperature TFD to
create the state we care about.
The infinite temperature TFD is a very simple state consisting of essentially Bell pairs

of fermions

Size can be measured by the left-right correlator.
S = 1)),
_ 1D 0]
Hcoupled — Hr + Hr + Z,L“?bl @D;Z Gives a precise relation



Bulk momentum is related to the time derivative of size

P« [B,E| « [H, — H,,H, + H, + uS] & S

This relates size” to symmetry generators and “explains” its
previously observed properties.



Order from Chaos

H,+H =7y Of(-u)0i(u) - (- )TFD] ~ cosh@E — sinh @P

J

ei&BEe—iﬂB _

2T

¢iiB pe—iiB  _ 0y (% Z O{(—u)Oﬂ(u)) ~ —sinh @iE + coshiiP

E—-P 2nu F ; j j
—Pr = ——==_lm_<Fn)_[0/(-u)0;(u) - (O] (-u)O;(w))o]
po= T = im0 Y [0/(-w)0i(w) — (O (~u)Oi(w)d]

Hcoupled — Hr + Hr + Z,Mw‘g wﬁ == Only this term grows



Comments about exploring the
Interior



Interactions behind the horizon



H=H; +Hp

Evolvethe TFD, backwards, insert some
excitations with unitary operators.




We expect that the initial state is describing the
Wheeler de Wit patch

\(




We can evolveit with the
decoupled hamiltonian

H=H; +Hp

From the boundary theory they should NOT
Interact in any way.

Fortunately, their interactionis behind the
horizon so we cannot see it from either
boundary.



We can evolveit with the
coupled hamiltonian

H=H; +Hpr+ H;in:

We can now see the interaction.

It is OK because the underlying Hamiltoniar
has an interaction between the two sides.

Make that interaction behind the horizon
more real. But always through the lens of
a particular evolution.

create
Acting with two sided operators we can)(e the interior



A black hole is not a 'state’”. It is a
state + a particular time evolution.

It is a space-time after all



Bulk near inner horizon?

1) We do not know the boundary conditions for the bulk matter beyond the
region covered by the physical boundaries.

2) Similar to Coleman de Luccia decays to AdS. We expect that corrections due to
irrelevant operators give a divergence at the inner horizon.



Some more conceptual comments



Analogy between two coupled SYK
models and " superconductors”.

e Superconductor” = System with a
spontaneously broken U(1) global symmetry.

SYK model for charged fermions.

H = Zz’j;kl W@D]@Ek&l

Sachdev

Two copies plus boundary interaction. (q >4 is simpler)
_ RN R
Hcoupled — Hl + H?“ -+ 77% %ﬂpl W~

Preserves U(1)xU(1),



Wormhole solution or TFD - breaks spontaneously U(1),—U(1), .
But preserves U(1), + U(1),

Goldstone mode

o=JA

AdS,

p=]A

If instead we had the interaction:

Hy + Hy + ip(v 9 + 4 v])

Symmetry would also be explicitly broken, and one value of QY = f A
would be selected.

State displays spontaneous + explicit breaking of this symmetry.



Time superfluids

e We start with two time translation
symmetries: H, and H,

e The wormhole, or the TFD state break
spontaneously H,+ H, . But preserves H, - H,

* The Goldstone mode is the relative time shift
between the two sides. This is one of the
physical modes of the wormhole (the other is
the mass of both black holes).

Au) = e AU TED) oc Y e AuB=bE/2|F VN E,)



Time shifted one.

Ordinary evolution is just a simple motion in the space of time shifted wormhole:

A’U, — U”I“ _|_ Ul Goldstone is linear in time because the Hamiltonian is
the broken symmetry.



Space-time superfluids

The time-superfluid picture is valid for any wormhole or TFD.

When the wormhole or TFD are those of a Nearly AdS, or CFT;

Then on each side we have more symmetries, including and approximate SL(2)
conformal symmetry.

The TFD is breaking this to a common SL(2) symmetry.
The Goldstones are: The mass and the time shift.

In addition the symmetries are explicitly broken by the Hamiltonian.



Conclusions

We explored the symmetries of the near
horizon region of near extremal black holes or
SYK modes.

Constructed 'exact” SL(2) generators.

Discussed approximate expression in the
semiclassical limit.

Explained why and how size”’ is connected to
energy and momentum.



Slogans

 Order from chaos.
* Time superfluids

e Spacetime superfluids.



