DARK MATTER-DARK RADIATION INTERACTIONS AND COSMIC REIONIZATION JCAP 1808 (2018) no.08, 045

Vikram Rentala

Indian Institute of Technology Bombay

(w Subinoy Das, Rajesh Mondal and Srikanth Suresh)

Observational constraints on reionization

• Quasar absorption spectra traces neutral hydrogen

Observational constraints on reionization

Gunn-Peterson trough

Above $z \simeq 6$, $\bar{x}_{\mathrm{H}\,\mathrm{I}} \equiv \frac{n_{\mathrm{H}\,\mathrm{I}}}{n_B} \gtrsim 10^{-3}$

Observational constraints on reionization

• Optical depth to CMB

$\tau=0.058\pm0.012$

 $\tau \sim \int n_e \sigma_T dl$

 $z_{\rm reio} \leq 10$

When does reionization happen?

Seiler, Jacob et al. astro-ph/1902.01611

Can we constrain dark matter particle physics models with these observations?

Outline

- Self-interacting dark matter
- ETHOS framework
- Structure formation
- Constraints from Cosmic Reionization
- Future observables
- Conclusions

Astrophysical and cosmological evidence for dark matter

Problems with the standard LCDM Small scales

- Missing satellite problem (Klypin et al, Moore et al, 1999)
- Too big to fail problem (Boylan-Kolchin et al, 2011)
- Core cusp problem (Oh et al, 2010)

Baryonic feedback or dark matter self interactions?

(Bullock et al 2000, Benson et al 2002, Governato et al 2010)

Large scales

- Hubble tension (Zhang et al, 2017)
- **σ**₈ tension (Battye et al 2014)
- Effective number of neutrinos (Mangano et al 2005, Lesgourges et al 2016)

Self-interacting dark matter

Spergel, Steinhardt PRL, 1999

 $\frac{\sigma(\chi\chi\to\chi\chi)}{m_{\chi}} \lesssim 1 \ {\rm cm}^2 \ {\rm g}^{-1}$ $\lesssim 1 \text{ barn/GeV}$

Harvey et al, Science, 2015

Dark matter and dark radiation

Light particles are generic: Goldstone bosons, chiral fermions, gauge bosons

CMB: $\Delta N_{\text{eff}} < 0.3$

Evolution of cosmological perturbations

What is the impact of Dark Matter-Dark Radiation interactions on reionization?

- Impact on structure formation
- Impact on reionization

Impact on structure formation

ETHOS framework

(Cyr-Racine et al 2016)

Particle physics -> Cosmology

Basic idea: Map all the particle physics parameters to coefficients of a red-shift series expansion of the collision term

 $-\dot{\kappa} \simeq 1/\lambda \simeq (n\sigma)$ $\dot{\kappa}_{\chi} \sim \sum a_n (1+z)^{n+1}$

ETHOS model 1

(Cyr-Racine et al, Binder et al 2016)

Decoupling of DM and DR

- Comoving Hubble scale $(aH)^{-1}$
- Scattering length λ

Ear

Early times
$$\lambda \ll (aH)^{-1}$$
Late times $\lambda \gg (aH)^{-1}$

DM and DR are tightly coupled (dark acoustic oscillations)

DM and DR are decoupled (DM free streams)

* We will assume that this transition takes place in the radiation dominated universe

Decoupling of dark matter and dark radiation

Jeans scale (pre-decoupling)

$$R_J \sim c_s t_{\text{turn-around}}$$

 $c_s \simeq c/\sqrt{3}$
 $t_{\text{turn-around}} \sim \frac{1}{\sqrt{G\rho}} \sim \frac{1}{aH}$

Jeans scale (post-decoupling)

$$R_J \sim v_r t_{\text{turn-around}}$$

$$t_{\text{turn-around}} \sim \frac{1}{\sqrt{G\rho}} \sim \frac{1}{aH}$$

 $p_{\chi} = m_{\chi} v_r \sim (1+z)$

Evolution of Jeans scale in ETHOS 1

Evolution of Jeans scale in ETHOS 1

Evolution of Jeans scale in WDM models

Evolution of Jeans scale in WDM models

Linear Power Spectrum (z=124)

Non-Linear power spectrum (z=8)

from N-body simulation Lyman-alpha constraints rule out m_x < 3.5 keV

Halo mass distribution (z=8)

from Halo finding algorithm

Halo mass distribution (z=8)

from Halo finding algorithm

Impact on reionization

From structure to reionization

From structure to reionization

From structure to reionization

With suppressed small scale structure we need higher values of N_{ion} in order to achieve reionization!

What value of N_{ion} do we need for successful reionization?

HI brightness temperature (z = 8)

N_{ion} 23 100 321

Can we estimate N_{ion}?

$$N_{\gamma}^{\text{halo}} = N_{\text{ion}} \frac{M_{\text{halo}}}{m_H}$$

$$N_{\rm ion} = 8 \left(\frac{N_{\rm ion}^{\rm b}}{4000}\right) \left(\frac{M_{\rm b}/M_{\rm halo}}{1/5}\right) \left(\frac{\epsilon_{\rm esc}}{10\%}\right) \left(\frac{\epsilon_{\rm SF}}{10\%}\right)$$

Depends on metallicity, IMF, SF efficiency, escape fraction

Large systematic uncertainties!

However, $N_{
m ion} \leq 500\,$ can be safely assumed

Our Results

 Constraint on a₄ from demanding consistency with global history of reionization

Future: HI brightness power spectrum

Future 21 cm surveys could measure this difference

GMRT, LOFAR, MWA, PAPER, SKA, HERA ...

Other future observations

How can we reduce systematic uncertainties on N_{ion}?

- Direct observations of early galaxies that reionized the universe (using near IR observations)
- Pop III stars (JWST)
- Improved galaxy formation simulations matched to data

Conclusions

- Dark Matter Dark radiation interactions can lead to suppression of the small scale matter power spectrum
- Global history of reionization can set strong constraints on DM-DR interactions
- Need to have a realistic understanding of the astrophysical uncertainties
- 21 cm surveys could potentially detect the impact of DM-DR interactions on cosmological perturbations

QUESTIONS, COMMENTS, SUGGESTIONS?

Backup Slides

Robustness check

$Model/\bar{x}_{\rm HI}(z=8)$	40%	50%	60%
ΛCDM	28	24	19
ETHOS $a_4 = 0.6 \times 10^5 \mathrm{Mpc}^{-1}$	121	100	80
ETHOS $a_4 = 4.2 \times 10^5 \text{Mpc}^{-1}$	380	300	234
ETHOS $a_4 = 1.2 \times 10^6 \text{ Mpc}^{-1}$	955	721	541
WDM $m_{WDM} = 2.0 \text{ keV}$	69	58	47
WDM m_{WDM} = 1.0 keV	282	226	178
WDM $m_{WDM} = 0.7 \text{ keV}$	1155	861	645

Global history of reionization

Pritchard (2011)

EDGES, SARAS, DARE ...

Abundance Matching

The Current Status of Galaxy Formation - Silk, Joe et al. arXiv:1207.3080