## A scalable quantum architecture for dark matter detection

#### **Daniel Carney** JQI/QuICS, University of Maryland/NIST Theory Division, Fermilab







#### Based on

- *Gravitational direct detection of dark matter* **DC**, S. Ghosh, G. Krnjaic, J. M. Taylor, 1903.00492
- Ultralight dark matter detection with mechanical quantum sensors
   DC, A. Hook, Z. Liu, J. M. Taylor, Y. Zhao, 1908.04797
- Work in progress w/ above people
- Preliminary experimental work (details later in talk)



#### Dark Matter Mass $\log[m/\text{GeV}]$





 $n_{DM} \approx \frac{0.3}{\mathrm{cm}^3}$ 1 GeV $m_{\chi}$ 

## **Central questions**

- What are the fundamental limits imposed by quantum mechanics on the detection of small forces/impulses?
- Given these limits, can we detect dark matter purely through its gravitational interaction? (Spoiler: yes, if heavy DM)
- Using the same technology, what other DM/particle physics targets can we look for?

## Quantum force sensing

Wide variety of mechanical systems coupled to light used to do quantum-limited force sensing.

Routinely achieve force sensitivities at or below the  $10^{-18-21}$  N/ $\sqrt{Hz}$  level.

These devices range from single electrons to huge devices (eg. LIGO m = 40 kg)



#### Matsumoto et al, PRA 2015



Aspelmeyer ICTP slides 2013

## PHYSICAL REVIEW LETTERS Highlights Recent Accepted Collections Authors Referees Search Press

**Featured in Physics** 

## Demonstration of Displacement Sensing of a mg-Scale Pendulum for mm- and mg-Scale Gravity Measurements

About

2

Nobuyuki Matsumoto, Seth B. Cataño-Lopez, Masakazu Sugawara, Seiya Suzuki, Naofumi Abe, Kentaro Komori, Yuta Michimura, Yoichi Aso, and Keiichi Edamatsu Phys. Rev. Lett. **122**, 071101 – Published 19 February 2019

Physics See Synopsis: Gravity of the Ultralight

 $F_{grav} = G_N m^2/d^2 \sim 10^{-17} N$  for two masses m = mg separated by d = mm

#### Quantum opto/electromechanical sensing





Strategy: imprint mechanical displacement onto light, measure light, infer force

Aspelmeyer, Marquant, Kippenberg (Rev. Mod. Phys. 2014)

### Quantum measurement noise

light phase shift ~  $x(t_1)$ 



Quantum mechanics imposes fundamental source of noise: the act of measurement itself.

Shot noise: random variations in laser phase read out in detector

Backaction noise: random variations in laser amplitude  $\rightarrow$  random radiation pressure on mechanics

readout light phase via interferometer  $\rightarrow$  learn x(t)

#### Noise and sensitivity

Total (inferred) force acting on the sensor:

$$F_{in}(t) = F_{sig}(t) + F_{th}(t) + F_{meas}(t)$$
  
thermal noise forces  
(environmental) measurement added-noise force  
(fundamental quantum issue)

**Key in what follows:** Noise = stochastic, Brownian

# Detecting monochromatic forces (narrowband sensing)





### **Ultralight DM detection**

Suppose DM consists entirely of a single, very light field:  $m\phi \leq 1 \text{ meV}$  ( $\lambda \geq 10^{-3} \text{ m}$ ).

Locally, this will look like a wave with wavelength > detector size.

If the field couples to an extensive quantity, produces sinusoidal force, coherent for some time  $T_{coh}$ :

$$\mathcal{L}_{int} = g_{B-L} A \overline{n} n$$



$$F = g_{B-L} N_n F_0 \sin(\omega_s t)$$

#### Detection strategy and reach

Tune laser to achieve SQL in "bins".

Integrate as long as possible for each bin (coherence time or eg. laser stability limit)

NB: this is off-resonant, can do better with resonant scan, much more time intensive



# Detecting fast impulses (broadband sensing)

Extreme example:

 $F(t) = \Delta p \Box(t) \rightarrow F(\omega) = \Delta p/2\pi$  flat distribution

Sensitivity set by integral of noise over many frequencies

Cannot integrate for indefinite period of time  $\rightarrow$  calls for different measurement protocols

## Signal to noise

As an observable we will use the total impulse delivered to the sensor:

$$I = \int_{-t_{int}/2}^{t_{int}/2} dt \ F_{sig}(t)$$

The game is then to see this impulse above the noise:

$$\begin{split} \langle \Delta I^2 \rangle &= \int dt dt' \; \langle F_{\rm noise}(t) F_{\rm noise}(t') \rangle \ &= \Delta I_T^2 + \Delta I_{\rm meas}^2 \end{split}$$



#### Impulse measurements naturally reduce noise



→ Output light phase  $\phi \sim x(t_1) - x(t_2) \sim v$ , momentum transfer to sensor  $\Delta p \sim 0$ → No radiation pressure ("backaction noise evasion")

#### Heavier DM targets

Dark Matter Mass  $\log[m/\text{GeV}]$ 



#### DM-SM interactions via light mediators



 $m\phi \gtrsim 1 \text{ MeV} (\lambda \lesssim 10^{-13} \text{ m})$ dominated by single boson exchange (eg. WIMP detection via Z exchange)

 $m\phi \lesssim 0.1 \text{ meV} (\lambda \gtrsim 10^{-3} \text{ m})$ dominated by eikonal limit  $\rightarrow$  long-range force

In particular:  $\phi$  = graviton (exactly

### Long-range DM detection

Motion of the Earth through the galaxy: v  $\sim$  220 km/s

 $\rightarrow$  flyby time  $\tau \sim$  b/v  $\sim 10^{\text{-6-8}}$  sec

 $\rightarrow$  signal: near-instantaneous impulse (broadband up to MHz-GHz)



#### Detection reach with various noise reduction



$$\Delta I^{2} = \Delta I_{T}^{2} + \Delta I_{\text{meas}}^{2}$$

$$\int$$

$$\Delta I_{\text{meas}} = 10^{-\epsilon_{B}} \Delta I_{SO}$$

(NB: actual numbers are preliminary/ unpublished, but scaling is accurate) Light Science & Applications

Article | OPEN | Published: 30 May 2018

#### A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black l

Stefan L. Danilishin ⊠, Eugene Knyazev, Nikita V. Voronchev, Fari Sebastian Steinlechner, Jan-Simon Hennig & Stefan Hild

Light: Science & Applications 7, Article number: 11 (2018) | Dow

Review: Advanced quantum techniques for future gravitational-wave detectors

Danilishin, Khalili, Miao 1903.05223

Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

J. Aasi, J. Abadie [...] J. Zweizig

Nature Photonics 7, 613–619 (2013) Download Citation 🛓



**IOP**science

# Back-action evasion and squeezing of a mechanical resulting a cavity detector

A A Clerk<sup>1,4</sup>, F Marquardt<sup>2</sup> and K Jacobs<sup>3</sup> Published 30 September 2008 • IOP Publishing and Deutsche Physikalische Gesellschaft



#### Letter | Published: 21 July 2013

## Array of sensors

In the impulse problem:

Signal ~  $1/b^2$  $\rightarrow$  want small impact parameter

Number flux ~ A/m $\chi$  $\rightarrow$  want large area

$$R = \frac{\rho v A}{m_{\chi}} \sim \frac{50}{\text{year}} \left(\frac{m_{\text{Pl}}}{m_{\chi}}\right) \left(\frac{A_d}{10^2 \,\text{m}^2}\right)$$

Obvious solution: build a large, tightly packed array!



#### Movie

#### Correlated signals vs. uncorrelated noise

SNR ~ √N

Impulse detection: N = sensors near track

Ultralight detection: N = total # sensors

Also, crucial advantage: exquisite background rejection



#### Three big experimental asks



### Three big experimental asks



#### Gravitational detection is the end game

~10 million-1 billion sensors

~10 mK &/or UHV environment

Thermally limited detection (~50 dB backaction evasion):

$$SNR^{2} = \frac{G_{N}^{2}m_{\chi}^{2}}{v} \frac{L}{d^{4}} \frac{m_{d}^{2}}{PA_{d}\sqrt{m_{a}k_{B}T}}$$
$$\approx 10^{4} \times \left(\frac{m_{\chi}}{1 \text{ mg}}\right)^{2} \left(\frac{m_{d}}{1 \text{ mg}}\right)^{2} \left(\frac{1 \text{ mm}}{d}\right)^{4}$$



#### Direct DM detection via gravity



1903.00492 D.C., S. Ghosh, G. Krnjaic, J. M. Taylor

## Science program

End goal: gravitational DM detection. Find or rule out any DM candidates with masses  $\sim m_{pl}$  and up (until flux-limited).

Shorter term: ultralight detection, various long range force models,...

Experiments now beginning with pair of mg-scale pendula  $\sim$  1 kHz, ultralight search & tech pathfinder.

Single physical array, with multiple detection modes controlled by state prep & readout





Photo from Dave Moore (Yale)

#### **Quantum Optomechanical Architectures for Dark Matter Detection**

28-29 October 2019 Joint Quantum Institute, University of Maryland US/Eastern timezone

## Fundamental Physics Innovation









Cindy Regal, JILA (quant-ph exp)

Dave Moore, Yale (hep-ex) Gordan Krnjaic, FNAL (hep-ph)

## **Open questions**

Can we do gravitational detection of sub-Planck candidates?

Can we go below the thermal noise floor? (Quantum error correction?)

What other targets are there--eg. DM-SM with heavy mediators? "Chunky" DM candidates? Neutrinos? Gravitational waves? → Each requires its own measurement strategy (but with same physical devices!)

How do we physically implement large arrays?

#### **Entanglement-Enhanced Measurements**



Slide from Monika Schleier-Smith





"Input noise" (note signal is part of F<sub>in</sub>)

## Non-gravitational DM detection targets

Very broadly, we should be sensitive to anything that produces a classical force!

In terms of DM, obvious guess is to then consider any DM scenario with a boson of mass  $m_{\phi} < meV \sim 1 mm^{-1}$  that couples to standard model.

| # new particles | type of particles          | signal                        |
|-----------------|----------------------------|-------------------------------|
| 1               | Boson m <sub>¢</sub> < meV | coherent waves                |
| ≥2              | +others, mass arbitrary    | long-range<br>DM-SM couplings |

#### Detecting monochromatic forces at the SQL

The "SQL" is a frequency-dependent concept: Tune laser power to a certain value  $\rightarrow$  achieve SQL at a certain frequency

