v DM Searches

(a case study, or three?)

Patrick Fox

Fermilab

Based on Bramante, PF, Kribs, Martin (1608.02662) Eby, PF, Harnik, Kribs (1904.09994) and de Gouvea, PF, Harnik, Kelly, Zhang (1809.06388)

Some Detectors

Detector	Mass	Energy	
LUX/XENON1T	~1 ton	~1-30* keV	
CDMS	~few kg	"	
DAMA	~250 kg	"	
Borexino	~300 ton	>~150 keV	
SNO	~1000 ton	>~ 1 MeV	
lcecube	~10 ⁷ ton	>~10 GeV	
DUNE (near/far)	~75 ton/40,000 ton	>~ 5 MeV	

* this upper limit is typical upper limit of "search window"

Some Comments

Detector	Mass	Energy	
LUX/XENON1T	~1 ton	~1-30' keV	
CDMS	~few kg		
DAMA	~250 kg		
Borexino	~300 ton	>~150 keV	
	~1000 ton	>~ 1 MeV	
Icecube	~107 ton	>~10 GeV	
DUNE (near/far)	~75 ton/40,000 ton	>~ 5 MeV	
	_	_	

- Both DM and neutrino detectors are looking for low rate signal
 Low backgrounds
- Often similar technologies e.g. LAr vs LXe
 - Excellent tracking, energy resolution, PID, etc
- Larger volumes and higher thresholds
 - Non-standard DM models can pass thresholds

Use neutrino detectors for DM (and vice versa) Broaden and strengthen the search program

DM @ neutrino detectors

 Indirect effects e.g. solar capture of DM followed by annihilation into neutrinos

Useful to look off axis

Other places with detectors near (but not on) beam lines? e.g. protoDUNE/LHC

Useful to look off axis 120 GeV

Other places with detectors near (but not on) beam lines? e.g. protoDUNE/LHC

[Tucker-Smith and Weiner]

Inelastic scattering of DM

[Tucker-Smith and Weiner]

Inelastic Dark Matter (iDM)

[Tucker-Smith and Weiner]

(Suppress all thoughts of DAMA, impure or otherwise)

 $\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2\mu_{N_Y}^2 m_{\chi}} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \frac{f(\vec{v}, \vec{v_E})}{v} \sigma_N F^2(E_R)$

$$v_{min} = \sqrt{\frac{1}{2m_N E_R}} \left| \frac{m_N E_R}{\mu_{N\chi}} + \delta \right| + \mathcal{O}\left(\frac{E_R}{m_\chi}, \frac{\delta}{m_\chi}\right)$$

Inelastic Dark Matter (iDM)

Requires "large" momentum exchange to upscatter
Favours high velocity tail of phase space distribution
Increased modulation
Prefers heavy targets e.g. iodine, xenon, tungsten,...
Recoil spectrum has a peak

Sensitivity increased by going to higher recoil

Experimental situation

Experiment	Exposure [tonne-days]	Energy range $[\text{keV}_{nr}]$	
PICO	1.3	7-20– $\mathcal{O}(1)\mathrm{MeV}$	
LUX	14	1-30	
PandaX	33	1-30	
CRESST	0.052	30 - 120	

Experimental situation

Experiment	Exposure [tonne-days]	Energy range $[keV_{nr}]$
PICO	1.3	$7-20-\mathcal{O}(1)\mathrm{MeV}$
LUX	14	1-30
PandaX	33	1-30
CRESST	0.052	30 - 120

The Inelastic Frontier

Analyze existing data out to 500 keV recoil energies, assume no new events above background

Can we do better?

First a model...

Inelastic DM

• Two mass eigenstates: only off-diagonal coupling to mediator

Loop induced elastic scattering rate?

• Abundance of excited state: "primordial" and "regenerated"? $au(\chi_2 \to \chi_1 + \ldots)$

$$\frac{n_{X_2}}{n_{X_1}} \approx 4 \times 10^{-12} \left(\frac{1 \,\mathrm{TeV}}{M_{X_1}}\right) \left(\frac{\tau_{X_2}}{\tau_U}\right) \left(\frac{\langle \sigma_{X_1 X_1 \to X_2 X_2} v \rangle}{3 \times 10^{-26} \mathrm{cm}^3 \,\mathrm{s}^{-1}}\right)$$

• Relic abundance?

Dirac fermion coupled to vector, with small Majorana masses

$$V_{\mu} \left(\chi_{1}^{\dagger} \bar{\sigma}^{\mu} \chi_{1} - \chi_{2}^{\dagger} \bar{\sigma}^{\mu} \chi_{2} \right) + m_{\tilde{H}_{1}^{0}} (\chi_{1} \chi_{\tilde{H}_{2}^{0}} + h_{\tilde{H}_{1}^{0}}) \quad \tilde{H}_{1}^{0} \quad \tilde{H}_{1}^{\pm} \quad \tilde{H}_{1}^{0} \\ + \delta_{1} \left(\chi_{\tilde{\ell}} \chi_{1} + hzc. \right) + \delta_{2} \left(\chi_{\tilde{\ell}} \chi_{2} + h. q_{\ell} \right) \\ \text{direct detection:}$$

Mass eigenstates only have off-diagonal coupling $\tilde{S}^{I,inelastic} \sim ($ e.g. (almost) pure Higgsinos of SUSY

$$\delta_{\tilde{H}} \simeq m_Z^2 \left(\frac{\sin^2 \theta_W}{M_1} + \frac{\cos^2 \theta_W}{M_2} \right) + \mathcal{O}\left(\frac{1}{M_{1,2}^2} \right) = \begin{cases} 192 \,\text{keV} \left(\frac{10^7 \,\text{GeV}}{M_1} \right) & M_2 \gg M_1 \gg \mu \\ 640 \,\text{keV} \left(\frac{10^7 \,\text{GeV}}{M_2} \right) & M_1 \gg M_2 \gg \mu \end{cases}$$

iDM—Higgsino model

Couples to Z, makes definitive predictions

Relic abundance:
$$\Omega h^2 = 0.10 \left(\frac{\mu}{1 \text{ TeV}}\right)^2$$
 (all χ_1)

Direct detection:

$$\sigma_{\rm n}^{\tilde{H}} \sim \frac{\pi m_n^2 \alpha_W^2}{8 m_W^4} \times (\text{velocity factor}) \sim 10^{-39} \, \text{cm}^2 \times (\text{velocity factor})$$

iDM—loop level elastic rate

[Hisano et al.; Hill and Solon]

FIG. 2: SI cross sections for low-velocity scattering Coble MEIGC & Control of Streetion the proton as a function of m_h , for the pure cases indi- the proton, evaluated in Cated 1. Horeward in the charm sca bight presents for uncertainty from the form the fight of the charm sca

Higgsino decay

Excited Higgsino has a short-lived loop decay to a photon

$$\Gamma_{\chi_2^0 \to \chi_1^0 + \gamma} \simeq \alpha_{\rm em} \, \alpha_W^2 \, \frac{\delta^3}{4\pi^2 m_{\chi_1^0}^2}$$

$$\ell_{\chi_2^0} = \frac{cv}{\Gamma_{\chi_2^0 \to \chi_1^0 + \gamma}} = 20 \text{ km} \left(\frac{cv}{400 \text{ km/s}}\right) \left(\frac{400 \text{ keV}}{\delta}\right)^3 \left(\frac{m_{\chi_1^0}}{1 \text{ TeV}}\right)^2$$

Illuminating the Inelastic Frontier

See also "Luminous DM" [Feldstein, Graham, Rajendran] and "DM in 2 Easy Steps" [Pospelov, Weiner, Yavin]

Large x-sec for $\chi_1 N \rightarrow \chi_2 N$ Decay time (not) long on detector (Earth) scales Decays to mono energetic photon Direct detection bounds satisfied [large/small (δ, σ)]

- Abundant heavy target
- Large volume, low threshold detector

Detector	Xenon 1T	Borexino	SNO	DUNE	IceCube
Mass (ton)	1	300	10 ³	3×10^{4}	107
Threshold (MeV)	10 ⁻³	0.15	1	1 – 10	10 ⁴

Illuminating the Inelastic Frontier

See also "Luminous DM" [Feldstein, Graham, Rajendran] and "DM in 2 Easy Steps" [Pospelov, Weiner, Yavin]

Large x-sec for $\chi_1 N \rightarrow \chi_2 N$ Decay time (not) long on det Higgsino h) scales Decays to mono en atural for tion Direct detection All natural for tion

- Abundant heavy target
- Large volume, low threshold detector

Detector	Xenon 1T	Borexino	SNO	DUNE	IceCube
Mass (ton)	1	300	10 ³	3×10^{4}	107
Threshold (MeV)	10 ⁻³	0.15	1	1 – 10	10 ⁴

Illuminating the Inelastic Frontier

See also "Luminous DM" [Feldstein, Graham, Rajendran] and "DM in 2 Easy Steps" [Pospelov, Weiner, Yavin]

Large x-sec for $\chi_1 N \rightarrow \chi_2 N$ Decay time (not) long on det Higgsino h) scales Decays to mono en atural for tion Direct detection All natural for tion Direct detection All natural satisfied [large/small (δ, σ)]

Abundant heavy target

—Pb
—Borexino

 Large volume, low threshold d 	letector
---	----------

Detector	Xenon 1T	Borexino	SNO	DUNE	IceCube
Mass (ton)	1	300	10 ³	3×10^{4}	107
Threshold (MeV)	10 ⁻³	0.15	1	1 – 10	10 ⁴

Arrival

Position of Cygnus in sky (dec. ~45°N) 1 sidereal day = 23 hours 56 minutes 4 seconds 0.0030

Arrival

Position of <u>Cygnus</u> in sky (dec. ~45°N) 1 sidereal day = 23 hours 56 minutes 4 seconds

Position of <u>Cygnus</u> in sky (dec. ~45°N) 1 sidereal day = 23 hours 56 minutes 4 seconds

Scatter

DM lifetime ~ radius of Earth Depends upon overburden and geology

For DM heavier than the target the scatter is forward

$$\cos^2 \theta_{\max}^{\text{lab}} = 1 - \left(\frac{m_T v_{\text{out}}^{\text{cm}}}{\mu_1 v_{\chi}}\right)^2 = \left(1 + \frac{m_T}{m_2}\right) \left(1 - \frac{m_T}{m_1} + \frac{2 m_T \delta}{(m_1 v_{\chi})^2}\right)$$

TeV DM scatters by less than 10°

Combination of these effects is a strong daily modulation in the signal, and sensitivity to lab latitude

Great for signal/background discrimination

Luminous Rate

Rate $\sim n_T n_\chi \sigma v V$.

Complicated 6d integral, sensitive to lifetime, speed, position etc...

Solid angle Prob. to decay in det.

$$\Gamma = \sum_{\pm} \int d^3 r_s \, d^3 v_{\rm MB} \left\{ n_T(r_s) \, \frac{\rho_{\chi}}{m_1} \left[\frac{R_D}{|\vec{r_s} - \vec{r_D}| \, \theta_{\rm max}^{\rm lab}} \right]^2 \, P(v_{\rm out,\pm}^{\rm lab}, L, \tau) \right.$$
2 c.o.m.
scattering angles $\times f_{\rm gal}(v_{\rm MB}) \, |F(q_{\pm})|^2 \, \frac{d\sigma \, v_{\chi}}{d \cos \theta^{\rm cm}} \, |J_{\pm}(v_{\chi})|^2 \, \Big\}$

x-sec isotropic in c.o.m. frame

$$P_0(|\vec{r}_s - \vec{r}_D|, v_f) = 2 e^{-|\vec{r}_s - \vec{r}_D|/v_f \tau} \sinh \frac{L_D}{2v_f \tau}$$

Borexino

Borexino Detector Nuclear recoil electron recoil 10^{8} Stainless steel sphere CoGeNT Nylon outer vessel 10^{7} • 278 tons of scinting ator, ~5m radius CoGeNT Nylon inner vessel pp 10^{6} ⁷Be **Fiducial volume** 10^{-10} ¹³N-15O ~1300 days of data counts/ton/keV_{nr}/year 10° ~150 keV threshold, maybe lower? ⁸B 10^{2} CDMS-II 17 F 10^{2} • Good energy resolution 10^{1} hep Muon 10^{0} 00^h N_h 500^h 600 10^{-1} 300 400 600 700 200 700 100 200 300 400 800 900 100 10^{-2} 1707.09279 ^{11}C 10 10 ²¹⁰Po 10 ²¹⁰Pc pile-up ²¹⁰Bi pp pp ²¹⁰Bi ext bkg Events / (day x 100 t x N) 0 0 0 ⁸⁵Kr ⁸⁵Kr ⁷Be ⁷Be 100 t × N rs from ⁶He Total fit: p-value=0.7 ı), we ι Γotal able to **CNO** thin lir CNO 0 ow the 10 pep pep day he lownce Co Events / electro 10⁻³ he ligh 10^{-3} is trer even lo 500 1000 500 1000 1500 2000 25001500 e 1a. Energy (keV) Energy (keV) olv bel the XENON-100 detector to low-energy electron recoil figure 1, as well as figures 2 and 3, we indicate this u $E_r = 50$ keVee. Besides Borexino and XENON-100, also "Yesterday SnitSon refutio-elecson scattering at low recoil ene comparable to to the limits shown in figure 1 because reactor anti-neutrinos, and thus the neutrino spectrum v GEMMA is section 4 when discussing neutrino magnetic Residuals tomorrow's 500 1000 1500

Neutrino-nucleus interactions:

Energy (keV)

Borexino

Neutrino-nucleus interactions:

5

Borexino

Neutrino-nucleus interactions:

Energy (keV)

A bound

- Expect ~5 events/day—weak bound, no benefit from large exposure
- Use modulation to our advantage to measure background

Collaboration could (should!) do a full modulation analysis (sidereal/Cygnus time)

Sensitivity to the Inelastic Frontier

Limited by backgrounds at small splitting Ideally would have a low threshold, large volume, low background (i.e. low <u>mass</u>) detector

Gas drift TPC's: DMTPC, DRIFT, CYGNUS

Energies ~10 keVee — ~ 200 keVee. 1m³, 10m³,1000m³ volumes. Low mass (gass filled). No ¹⁴C.

Projected Sensitivity at CYGNUS

Projected Sensitivity at CYGNUS

The Photon Phrontier

- iDM challenges direct detection in unique ways—raise energy threshold
- Luminous process to probe inelastic DM
- Whole Earth is target, multiple elements
- Search for de-excitation photon in large volume (not mass!), low threshold detectors
 - Borexino, JUNO, CYGNUS
 - Can beat traditional direct detection experiments, at large and small delta
- Novel sidereal day modulation, latitude dependence

