Seeing the dark matter halo through Gaia's eyes

with machine learning

Marat Freytsis

 $Tel\ Aviv/IAS \longrightarrow Rutgers$

GGI, Next Frontiers in the Search for Dark Matter September 19, 2019

Tim Cohen, MF, Mariangela Lisanti, Lina Necib, Bryan Ostdiek and FIRE collaboration members: Shea Garrison-Kimmel, Andrew Wetzel, Robyn Sanderson, Philip F. Hopkins [arXiv:1907.06652, 07190, 07681]

Gaia and dark matter

- Gaia: the largest 5D/6D catalog of local astronomical objects ever
- Can it teach us about the dark matter halo of the Milky Way?
- Why improve our halo models?
 - ► Astronomers: Learn galactic formation histories
 - Particle physicists: Halo feeds into detection rates
- Older stars act as tracers for (some) dark matter
- The challenge: identifying old stars with Gaia only

Plan

- Gaia and DM
- Halo models and stellar tracers
 - ► Toy models & merger histories
 - ► Finding visible tracers of DM
- Machine learning with Gaia through FIRE
 - General methods
 - Validating performance
- A first look in the full Gaia DR2

Toy models of Milky Way visible galaxy

central bulge + (thin & thick) disk

us: $\sim 8 \, \text{kpc}$ out

 $M_{
m stellar} pprox 5 imes 10^{10} M_{\odot}$

 $z_{
m disk} pprox 0.6(3)\,{
m kpc} \ R_{
m disk} pprox 15\,{
m kpc} \ R_{
m bulge} pprox 4\,{
m kpc}$

Toy models of the Milky Way

rotation curves (
$$v_c(r) = \sqrt{rac{GM}{r}}$$
) \Longrightarrow visible galaxy inside DM halo

$$egin{aligned} R_{
m halo} \sim 100 \, {
m kpc}, M_{
m halo} \sim 10^{12} M_{\odot} \ {
m flat} \, v_c(r) &\Longrightarrow M(r) \propto r \
ho(r) \propto r^{-2} \ v_c(R_{
m halo}) \sim 200 \, {
m km/sec} \end{aligned}$$

- collisionless
- nonrelativistic
- self-gravitating
- isotropic/isothermal

Toy models of the Milky Way

rotation curves (
$$v_c(r) = \sqrt{rac{GM}{r}}$$
) \Longrightarrow visible galaxy inside DM halo

$$egin{aligned} R_{
m halo} \sim 100 \, {
m kpc}, M_{
m halo} \sim 10^{12} M_{\odot} \ {
m flat} \ v_c(r) &\Longrightarrow M(r) \propto r \
ho(r) \propto r^{-2} \ v_c(R_{
m halo}) \sim 200 \, {
m km/\,sec} \end{aligned}$$

- collisionless
- nonrelativistic
- self-gravitating
- isotropic/isothermal

Toy models of the Milky Way

rotation curves
$$(v_c(r) = \sqrt{\frac{GM}{r}}) \Longrightarrow$$
 visible galaxy inside DM halo

$$egin{aligned} R_{
m halo} \sim 100 \, {
m kpc}, M_{
m halo} \sim 10^{12} M_{\odot} \ {
m flat} \, v_c(r) &\Longrightarrow M(r) \propto r \
ho(r) \propto r^{-2} \ v_c(R_{
m halo}) \sim 200 \, {
m km/\,sec} \end{aligned}$$

- collisionless
- nonrelativistic
- self-gravitating
- isotropic/isothermal

Hierarchical merger model

Where did all this come from?

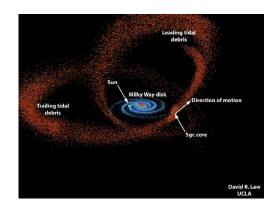
- 1. Density fluctuations after big bang lead to protogalactic fragments of $O(10^6-10^8 M_{\odot})$
- 2. Fragments evolve in isolation creating stars/globular clusters
- 3. Collisions and tidal disruptions lead to distribution of halo (stars and DM)
- 4. Gas in the mergers interacts and collapses to disk
- 5. Young, metal rich stars produced in the disk

The last major merger occurred $\sim 10\,\mathrm{Gyr}$ ago Minor mergers still happening

Hierarchical merger model

Where did all this come from?

- 1. Density fluctuations after big bang lead to protogalactic fragments of $O(10^6-10^8 M_{\odot})$
- 2. Fragments evolve in isolation creating stars/globular clusters
- 3. Collisions and tidal disruptions lead to distribution of halo (stars and DM)
- 4. Gas in the mergers interacts and collapses to disk
- 5. Young, metal rich stars produced in the disk


The last major merger occurred $\sim 10\, Gyr$ ago Minor mergers still happening

Old stars as tracers

Local halo imprinted with merger history

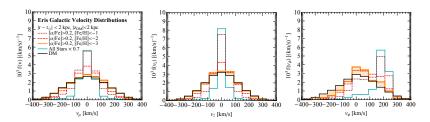
Stars and DM interact (almost) only through gravity

To find DM, find stars from early mergers

Tracing DM

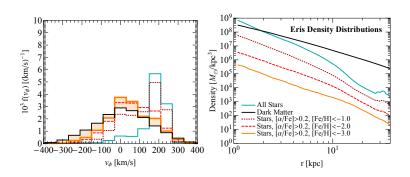
How to detect the oldest stars?

Early merger \longrightarrow old star \longrightarrow low metallicity


$$[\mathrm{Fe}/\mathrm{H}] = \log_{10}\left(rac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}
ight) - \log_{10}\left(rac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}
ight)_{\odot} < C$$

Also helps not to look directly in the disk

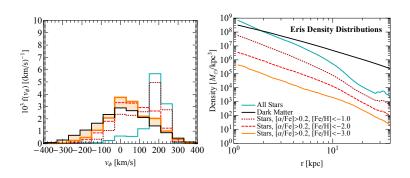
$$|z| > z_{\rm cut}$$


Does this work?

Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same velocity distributions!

Tracing DM results in simulation



Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same density profile!

Can stellar tracers of virialized DM be isolated in practice?

Tracing DM results in simulation

Herzog-Arbeitman, Lisanti, Madau, Necib [arXiv:1704.04499]

Old stars and DM share the same density profile!

Can stellar tracers of virialized DM be isolated in practice?

Catalogs of real data

Phase space

- Gaia DR1 (2-D location for 1.1 billion stars)
 - Crossmatched with Hipparcos Tycho-2 catalog (2 million stars)
- Gaia DR2 (5-D PS for 1.3 billion stars)

Spectroscopy + v_r

- RAdial Velocity Experiment
- Sloan Digital Sky Survey

RAVE-TGAS (255,922 stars)

Gaia-SDSS (193,162 stars)

Catalogs of real data

Phase space

- Gaia DR1 (2-D location for 1.1 billion stars)
 - ► Crossmatched with Hipparcos Tycho-2 catalog (2 million stars)
- Gaia DR2 (5-D PS for 1.3 billion stars)

Spectroscopy + v_r

- RAdial Velocity Experiment
- Sloan Digital Sky Survey

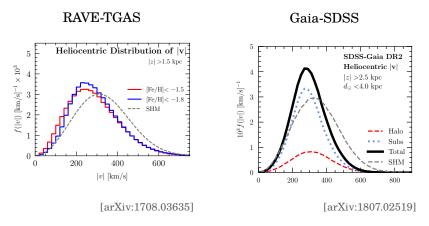
RAVE-TGAS (255,922 stars)

Gaia-SDSS (193,162 stars)

Catalogs of real data

Phase space

- Gaia DR1 (2-D location for 1.1 billion stars)
 - Crossmatched with Hipparcos Tycho-2 catalog (2 million stars)
- Gaia DR2 (5-D PS for 1.3 billion stars)

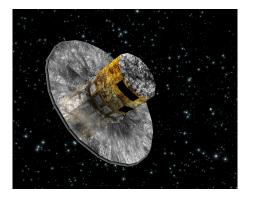

Spectroscopy + v_r

- RAdial Velocity Experiment
- Sloan Digital Sky Survey

RAVE-TGAS (255,922 stars)

Gaia-SDSS (193,162 stars)

...and real-world results


virialized DM velocities smaller than standard halo model \Longrightarrow potential implications for DM direct detection

But accuracy limited by cross-correlating data

Plan

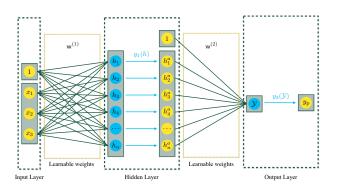
- Gaia and DM
- Halo models and stellar tracers
 - ► Toy models & merger histories
 - ► Finding visible tracers of DM
- Machine learning with Gaia through FIRE
 - ► General methods
 - Validating performance
- A first look in the full Gaia DR2

Letting Gaia see on its own

DR2: 5-D kinematics and 2-band spectroscopy on 1.3 billion stars

Not enough information to extract metallicity conventionally Idea: Use neural network classifier as old star distribution fitter

Gaia data format details

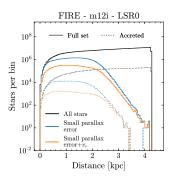

Stellar information provided

- Galactic longitude and latitude (ℓ, b)
- Proper motion in right ascension and declination $(\mu_{\alpha,\delta})$
- Parallax
- Blue- and red-band magnitude ($G_{BP,RP}$)

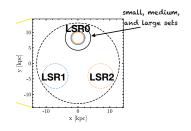
Provides 5D phase-space information (radial v missing) Complementary information to parallax in G

if neural network can learn distance—luminosity function Residual information about metallicity also in *G*?

Feed-forward NN classification

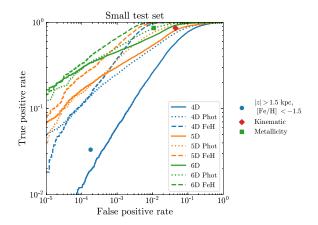

$$\ell_{\text{BCE}}(\{y_t\}, \{y_p\}) = -\sum_i \left(y_{t,i} \log y_{p,i} + (1-y_{t,i}) \log (1-y_{p,i})\right)$$

Requires event-by-event labels for (simulated) training sample


• Use FIRE simulations with labels from known history

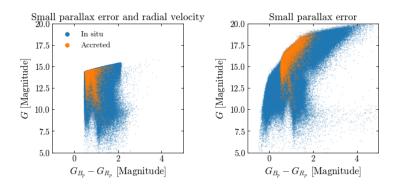
Network and training procedure

- Train 5-layer network
 - ▶ 7 inputs à la Gaia
 - ▶ 3 hidden layers of 100 nodes each
 - star classified as accreted or not
- Label from FIRE merger history
 - Remove metallicity middleman
- 600 million stars per viewpoint
- Include measurement uncertainty by resampling each star within its errors 20 times



Crosschecks and transfer learning

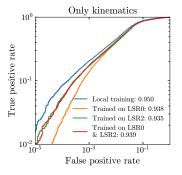
- Maybe just learn particular local distribution/merger history?
 - Compare different observations
 - Compare different simulations
- Systematic errors in FIRE mocks?
- Compensate via transfer learning
 - ► Lower NN layers learn simple cuts
 - ► High-level observables in top layer
 - ► Train full network on a dataset
 - Reset *top layer only* and retrain *only that layer* on new data
 - ► Requires much less data in 2nd set
 - Reduce sensitivity to complex features in original training set

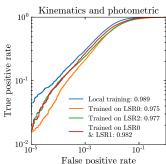

Classifying close stars

Close stars have multiple parallax measurements

→ radial velocity recovered, full 6-D PS information available Photometric data help when only reduced PS information exists

A closer look at photometric data

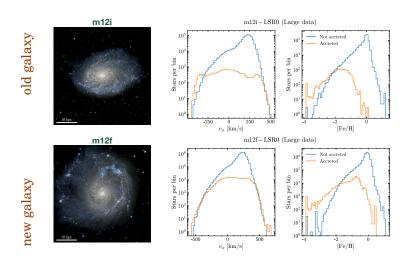



At smaller distances, training data doesn't cover full HR diagram Luminocity-distance relations not fully learned

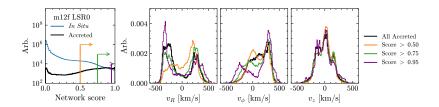
must be careful training set goes out as far as real data with photometry

Comparing viewpoints

Testing on LSR1



training on multiple viewpoints ⇒ improved generalization

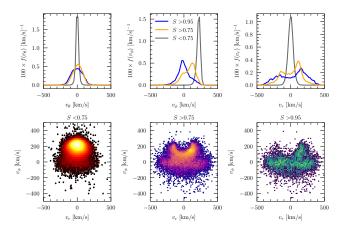


Trying a new galaxy

Different merger history indicated by v_{arphi} distribution

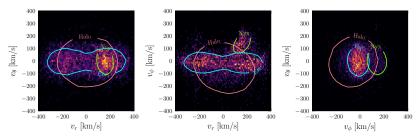
Reconstruction of underlying kinematics

Too loose \implies *in situ* contamination Too strong \implies distortion due to aggressive cuts on disk-like stars


Plan

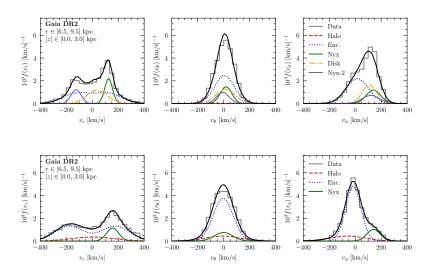
- Gaia and DM
- Halo models and stellar tracers
 - ► Toy models & merger histories
 - Finding visible tracers of DM
- Machine learning with Gaia through FIRE
 - General methods
 - Validating performance
- A first look in the full Gaia DR2

First look at Gaia DR2

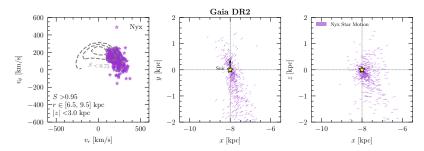

Have an (expected) 60% pure accreted Gaia DR2 dataset

• Contains 21 304 stars with full 6D information

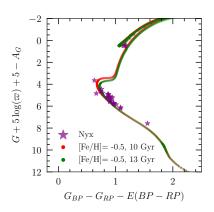
Gaia-Enceladus clearly visible


Gaussian component analysis

All stars within $r \in [6.5, 9.5]$ kpc and |z| < 3 kpc

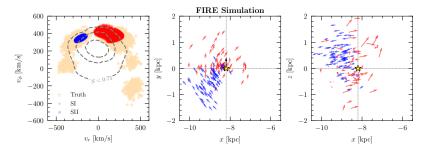

Well described by a multi-component Gaussian analysis if $3^{\rm rd}$ r-asym. component is added to halo and Enceladus

More components and looser cuts


Looser cuts give evidence second (possibly related) new component

Nyx alone

Nyx in position space


Dating Nyx

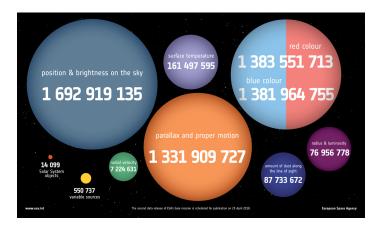
Only a 27 stars cross-correlated with spectroscopic surveys

- weak evidence of old isochrone consistency
- follow-up surveys will make a big difference

Why should you believe us?

Identical analysis performed on FIRE ${\tt m12f}$ simulation Correctly identifies 2 largest streams

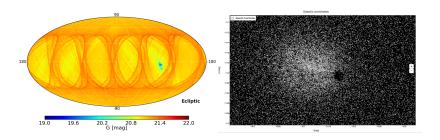
Conclusions


- Hierarchical mergers imply old stars are efficient DM tracers
 - metallicity and kinematics serve as efficient selection criteria
 - ► Gaia has no access to metallicity; cut-based analyses insufficient
- Modern machine learning techniques allow the full resolving power of the Gaia dataset to be brought on the problem
 - ► Kinematic and spectral information can be as powerful
 - ► Training must be performed carefully to avoid sample bias
 - ► Transfer learning techniques help control systematics
- ML gives a path to unlocking the full potential of the Gaia
 - Ask us for our catalog if you're interested
- Analysis of stars with only 5D PS in the near future
- Can be say anything about unvirialized/unresolved DM?

Thank you!

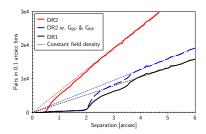
The Gaia mission

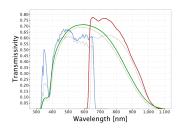
- A space-based celestial object observatory
 - Launched 2013
 - ▶ Data taking since 2014
 - On a Lissajous orbit around Earth's L2 point
- Mission until 2022 (maybe 2024+)
- Data release schedule
 - DR1: 14 September 2016
 - ▶ DR2: 25 April 2018
 - ► EDR3: Q3 2020
 - ▶ DR3: Q3/Q4 2021
 - ► FR: ????
- Position, velocity and spectrophotometry for resolved objects


Gaia in numbers

Next best:

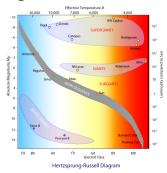
- Proper positions/proper motions: ~ 58 million (UCAC2)
- With radial measurement: $\sim 120,000$ (Hipparcos)


Data taking

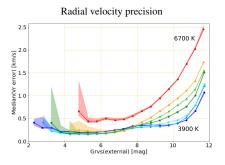

- Continuous scanning (0.75 deg² active area)
 - ► ~ 70 million resolved objects/day
 - $ightharpoonup \sim 600$ million measurements/day
- Sensitivity limited by scan trajectory/local density
- Objects with velocities $\gtrsim 1$ arcsec/yr hard to identify

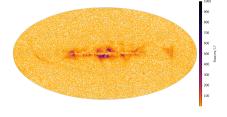
Angular resolution

- DR2 angular resolution
 - $ightharpoonup \sim 0.4 \ \mathrm{arcsec}$
 - \triangleright Will improve by 10^2-10^3
 - ▶ Systematic errors ≤ 0.1 mas
 - Significantly better than existing surveys
- Currently no overlap processing
 - Galactic center/binaries
 - Will be included in future DRs.



Spectroscopy




- Blue, red, and visible bands
 - $ightharpoonup \sigma_G \sim 0.3\text{--}10 \text{ mmag}$
 - $\sigma_{G_{R,B}} \sim 2 200$ mmag

• Can locate stars on H–R diagram for classification:

Radial measurements


- Dedicated v_r spectrometer
- Systematics $\lesssim 0.25$ km/s
- Require longer exposure
 - ► Only ~ 7 million measurements

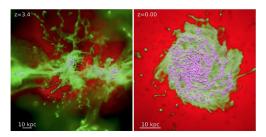
- HQ parallaxes ($\gtrsim 10$ mas) comparable to v_r number
- Converted to radial distanc
 - Augmented with variable star calibration in future

Insights and structures in astrophysics

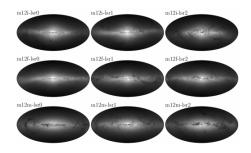
e.g., the Gaia sausage

Motions of 7,000,000 Gaia stars

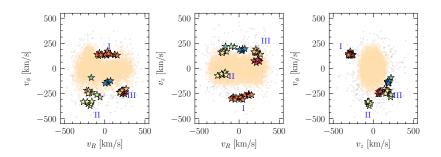
radial motion, km/s


- a.k.a. Gaia-Enceladus
- 3D v measurements reveals a MW-large dwarf merger ~ 10 Gyr ago
- Smeared in position, velocity crucial

[arXiv:1805.00453]


Mock catalogs

- Need MW-like data with known structure for ML/validation
- FIRE project Latte simulation suite
 - ightharpoonup 3-component galactic formation from z = 100 to present
 - DM, star, and gas particles
 - Star formation occurs in gas
 - Feedback from radiation pressure, supernovae blowout, stellar mass loss, photoionization, and photoelectric heating
- Trace stars and DM through galaxy formation via clustering



Mock catalogs

- 3 MW-like simulations
- 3 viewpoints/galaxy
- ullet All R_\odot from center
- Gas extinction and measurement uncertainty effects
- Format like Gaia DRs

DBSCAN locations of known streams

