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Quantum Gravity:  
A Brief Review of the Past, a Selective Picture of 

the Present, a Glimpse of the Future



Quantum Gravity:

very much beyond the Standard 

Model



one thing clearly missing from Standard Model, making it intrinsically incomplete: gravity!

but incorporating gravity in the quantum framework of Standard Model is 
not just like adding a new particle or a new interaction…..

….it means revising drastically our very notions of space and time, 
and the very foundations of our description of the universe



two incompatible conceptual (and mathematical) frameworks for space, time, geometry and matter

so, what are, really, space, time, geometry, and matter? 

spacetime (geometry) is a dynamical entity itself

there are no preferred temporal (or spatial) directions

physical systems are local and locally interacting

everything (incl. spacetime) evolves deterministically

all dynamical fields are continuous entities

every property of physical systems (incl. spacetime) and 
of their interactions can be precisely determined, in 
principle

spacetime is fixed background for fields’ dynamics

evolution is unitary (conserved probabilities) with 
respect to a given (preferred) temporal direction   

nothing can be perfectly localised

everything evolves probabilistically

interaction and matter fields are made of “quanta” 

every property of physical systems and their 
interactions is intrinsically uncertain, in general

GR QFT

Why we need to go beyond GR and QFT



•  breakdown of GR for strong gravitational fields/large energy densities

spacetime singularities - black holes, big bang - quantum effects expected to be important

several open physical issues, at limits of GR and QFT or at interface (where both are expected to be relevant)

•  divergences in QFT - what happens at high energies? how does spacetime react to such high energies?

• what happens to quantum fields close to big bang? what generates cosmological fluctuations, and how? 
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Why we need to go beyond GR and QFT

•  no proper understanding of interaction of geometry with quantum matter, if gravity is not quantized

fermionic fields are added, one must generalize GR to the Einstein–Cartan
theory or to the Poincaré gauge theory, because spin is the source of torsion,
a geometric quantity that is identically zero in GR (see e.g. Gronwald and
Hehl 1996).

As one recognizes from (2), these equations can no longer have exactly the
same form if the quantum nature of the fields in Tµν is taken into account. For
then we have operators in Hilbert space on the right-hand side and classical
functions on the left-hand side. A straightforward generalization would be
to replace Tµν by its quantum expectation value,

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
⟨Ψ|T̂µν |Ψ⟩. (4)

These ‘semiclassical Einstein equations’ lead to problems when viewed as
exact equations at the most fundamental level, cf. Carlip (2008) and the
references therein. They spoil the linearity of quantum theory and even
seem to be in conflict with a performed experiment (Page and Geilker 1981).
They may nevertheless be of some value in an approximate way. Independent
of the problems with (4), one can try to test them in a simple setting such as
the Schrödinger–Newton equation; it seems, however, that such a test is not
realisable in the foreseeable future (Giulini and Grossardt 2011). This poses
the question of the connection between gravity and quantum theory (Kiefer
2012).

Despite its name, quantum theory is not a particular theory for a partic-
ular interaction. It is rather a general framework for physical theories, whose
fundamental concepts have so far exhibited an amazing universality. Despite
the ongoing discussion about its interpretational foundations (which we shall
address in the last section), the concepts of states in Hilbert space, and in
particular the superposition principle, have successfully passed thousands of
experimental tests.

It is, in fact, the superposition principle that points towards the need for
quantizing gravity. In the 1957 Chapel Hill Conference, Richard Feynman
gave the following argument (DeWitt and Rickles 2011, pp. 250–60), see also
Zeh (2011). He considers a Stern–Gerlach type of experiment in which two
spin-1/2 particles are put into a superposition of spin up and spin down and
is guided to two counters. He then imagines a connection of the counters to a
ball of macroscopic dimensions. The superposition of the particles is thereby
transferred to a superposition of the ball being simultaneously at two posi-
tions. But this means that the ball’s gravitational field is in a superposition,
too! In Feynman’s own words (DeWitt and Rickles 2011, p. 251):

Now, how do we analyze this experiment according to quantum
mechanics? We have an amplitude that the ball is up, and an
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not a consistent theory





•    challenges to “localization” in semi-classical GR    

•      spacetime singularities in GR

•      black hole thermodynamics

• Einstein’s equations as equation of state (Jacobson et al)

minimal length scenarios

breakdown of continuum itself?

black holes satisfy thermodynamic relations

if spacetime itself has (Boltzmann) entropy, it has microstructure

if entropy is finite, this implies discreteness

GR dynamics is effective equation of state for any microscopic dofs 
collectively described by a spacetime, a metric and some matter fields

hints of disappearance of spacetime itself, more radical departure from GR and QFT

fundamental discreteness of spacetime?  
is spacetime itself “emergent” from non-spatiotemporal, non-geometric, 

quantum building blocks (“atoms of space”)?

Why we need to go beyond GR and QFT





e.g. : dark matter (galactic dynamics), dark energy (accelerated cosmological expansion) - either 95% of the 
universe is not known, or we do not understand gravity at large scales

e.g. cosmological constant as possible large scale manifestation of microscopic (quantum gravity) physics

if spacetime (with its continuum structures, metric, matter fields, topology) is emergent,

even large scale features of gravitational dynamics can (and maybe should) have their 
origin in more fundamental (“atomic”) theory

cannot trust most notions on which effective quantum field theory is based (locality, separation of scales, etc)

Why we need to go beyond GR and QFT



What has to change (in going from GR to QG)
• quantum fluctuations (superpositions) of spacetime structures

• geometry (areas, distances, volumes, curvature, etc)

• causality (causal relations)

• topology?

• dimensionality?

• breakdown of continuum description of spacetime?

• fundamental discreteness? of space? of time?

• entirely new degrees of freedom - “atoms of space”? 

• but then, how does usual spacetime “emerge”?

• new QG scale: Planck scale

no spacetime or geometry?
how can we even talk of “scales”? 
total failure of effective field theory intuition?



Quantum Gravity:

what happened so far

(years between 1950-2005)



General strategy being followed: 


quantise GR, adapting and employing standard techniques

different research directions are born, corresponding to different quantization techniques:


perturbative quantization, canonical quantization, covariant (path integral) quantization

all get stuck and die of starvation (or are maintained alive in a vegetative state) 

all achieve key insights



Quantum Gravity: (covariant) perturbative quantization
DeWitt (1950), Gupta (1952): general formulation of perturbative quantization

gµ⌫ = ⌘µ⌫ + hµ⌫

flat metric (Minkowski)

metric perturbations

background metric provides notion of space, time and causality

linear diffeomorphisms are gauge symmetry (background breaks full symmetry)

metric perturbations are quantized analogously to other gauge interactions

“gravitons”: massless, spin-2 quanta of perturbative gravitational field 

Feynman, DeWitt,… (1962-1967, …): tree-level scattering amplitudes, 1-loop corrections to. Newton’s law, 
background-field method, unitarity, gauge-fixing, ghosts, ….

’t Hooft,Veltman, …., Goroff, Sagnotti (1971-1986): divergences, non-rinormalizability without and with matter

proposed possible solutions: 
a) add new physical ingredients (new matter, new symmetry), b) modify gravitational dynamics, 
c) quantise non-perturbatively



Quantum Gravity: canonical quantization
Bergmann, Dirac (1950-1959): canonical quantization of (constrained) gauge systems 

Arnowit, Deser, Misner (1961): Hamiltonian formulation of General Relativity, diffeomorphism constraints

Bergmann-Komar, Peres, DeWitt, Wheeler (1962-1967): canonical quantum gravity in ADM variables

�
hij(x),K

kl(x0)
 
/ �ik�jl�(x� x0) Hi(hij ,Kkl) = 0

H(hij ,Kkl) = 0
spatial 3-metric extrinsic curvature

invariance under spatial and temporal diffeomorphisms
(encode whole dynamics)
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Wheeler, DeWitt, Teitelboim, Kuchar, Isham…. (1967-1987,  …): properties of “superspace of 3-geometries”, 
problem of time, scalar product on quantum states, quantum cosmology, lots of semiclassical analyses, …. 
formalism too ill-defined at mathematical level to constitute solid approach to QG (beyond semi-classical or 
“in-principle” analyses)

quantum level:



Quantum Gravity: covariant path integral quantization
Misner, Wheeler,… (1957-): idea of sum-over-histories formulation of QG, non-perturbative transition amplitudes 
(and scalar product) between QG states via sum over spacetime geometries

Hawking, Hartle, Teitelboim, Halliwell,… (1978-1991, …): Euclidean continuation, covariant (no-boundary) 
definition of “wave function of the universe”, relation to canonical theory, implementation of diffeomorphism 
symmetry, covariant quantum cosmology, lots of semi-classical applications, …….. formalism too ill-defined 
at mathematical level to constitute solid approach to QG (beyond semi-classical or “in-principle” analyses)

|hi 2 H H| i = 0 hh1|h2i =

Z

h1,h2

Dg e
i SM(g)

transition amplitude (or scalar product) 
from one 3-geometry to another

sum over spacetime 
4-geometries

probability amplitude for each 
“history” (4-geometry), depending 
on GR action (or modified one) 

Wheeler (1963) suggests to define it via discrete lattice (Regge) regularization —-> quantum Regge calculus 
S

S

M

2

1

g

h

h
2

1

many results also within quantum Regge calculus (Rocek, Sorkin, Williams, Hamber, ….)



main lessons

gµ⌫ = ⌘µ⌫ + hµ⌫
Quantum gravity is perturbatively non-renormalizable, as 
a QFT for the metric field (e.g. around Minkowski space)

can still be used as effective field theory (incorporating quantum (loop) corrections) with fixed cutoffrelativity

Sgrav =
∫

d4x
√
g
[

Λ+
2
κ2

R+ c1R2+ c2RµνRµν + . . .+Lmatter

]

(26)

Here the terms have zero, two and four derivatives respectively.
Following our EFT script, we turn to experiment to determine the parameters of this

Lagrangian. The first term, the cosmological constant, appears to be non-zero but it
is so tiny that it is not relevant on ordinary scales. The EFT treatment does not say
anything novel about the smallness of the cosmological constant - it is treated simply as
an experimental fact. The next term is the Einstein action, with coefficient determined
from Newton’s constant κ2 = 32πG. This is the usual starting place for a treatment
of general relativity. The curvature squared terms yield effects that are tiny on normal
scales if the coefficients c1,2 are of order unity. In fact these are bounded by experiment
[13] to be less than 10+74 - the ridiculous weakness of this constraint illustrates just
how irrelevant these terms are for normal physics. So we see that general coordinate
invariance allows a simple energy expansion.
At times people worry that the presence of curvature squared terms in the action will

lead to instabilities or pathological behavior. Such potential problems have been shown
to only occur at scales beyond the Planck scale [14] where yet higher order terms are
also equally important. This is not a flaw of the effective field theory, which holds only
below the Planck scale. Given the assumption of a well-behaved full theory of gravity,
there is no aspect of the effective theory that needs to display a pathology.

Quantization and renormalization

The quantization of general relativity is rather like that of Yang-Mills theory. There
are subtle features connected with the gauge invariance, so that only physical degrees
of freedom count in loops. Feynman[15], and then DeWitt[16], did this successfully in
the 1960’s, introducing gauge fixing and then ghost fields to cancel off the unphysical
graviton states. The background field method employed by ’tHooft and Veltman[17]
was also a beautiful step forward. It allows the expansion about a background metric
(ḡµν ) and explicitly preserves the symmetries of general relativity. It is then clear that
quantization does not spoil general covariance and that all quantum effects respect this
symmetry. The fluctuation of the metric around the background is the graviton

gµν(x) = ḡµν(x)+κhµν(x) (27)

and the action can be expanded in powers of hµν(x) (with corresponding powers of κ).
The Feynman rules after gauge fixing and the addition of ghosts have been given in
several places[1, 2, 17] and need not be repeated here. They are unremarkable aside
from the complexity of the tensor indices involved.
Renormalization also proceeds straightforwardly. As advertised, the divergences are

local, with the one loop effect being equivalent to[17]

ΔL =
1

16π2
2

4−d

[

1
120

R2+
7
20
RµνRµν

]

(28)

and it is predictive (eg graviton scattering and corrections to Newtonian potential)J. Donoghue, C. Burgess, …..

it has to be somehow reproduced from more fundamental theory, which should also explain its failure

a)

b) we have template (general quantum structure, implementation of symmetries, non-perturbative (phase) 
transitions between geometries, etc) of full non-perturbative theory in the continuum, which should be 
realised  concretely by more fundamental theory, to the extent in which continuum picture holds

we have well-defined list of conceptual issues (concerning time, space, causality, semi-classical limit, 
interpretation of quantum mechanics, etc) that need to be addressed. for understanding and use of full QG

we have several suggestions of QG corrections to classical phenomena (also non-perturbative)

c) we have learned how hard is the Quantum Gravity problem, mathematically, physically, conceptually



Other new things we learned (from semi-classical gravity) that are here to stay (for QG)

Spacetime singularities

Black hole thermodynamics

breakdown of GR for strong gravitational fields/large energy densities - inevitable in classical GR
center of black holes, big bang - quantum effects expected to be important

Hawking, Penrose, Geroch, …..

Bekenstein, Bardeen, Carter, Hawking (1973): a notion of entropy 
can be formally associated to black holes, and laws of black hole 
mechanics recast in the form of black hole thermodynamics

Hawking (1974): black holes emit thermal radiation, 
with temperature proportional to horizon curvature

origin of the black hole (the Bekenstein-Hawking) entropy. For a Schwarzshild
black hole, this is

S =
1

4

c3

h̄G
A (2)

where A is the area of the black hole surface. An influential, clarifying and
at the same time intriguing paper is written two years later by Bill Unruh.
The paper points out the existence of a general relation between accelerated
observers, quantum theory, gravity and thermodynamics [42]. Something deep
about nature should be hidden in this tangle of problems, but we do not yet
know what.

1975

It becomes generally accepted that GR coupled to matter is not renormal-
izable. The research program started with Rosenfeld, Fierz and Pauli is dead.

1976

A first attempt to save the covariant program is made by Steven Wein-
berg, who explore the idea of asymptotic safety [44], developing earlier ideas
from Giorgio Parisi [45], Kenneth Wilson and others, suggesting that non-
renormalizable theories could nevertheless be meaningful.

1976

To resuscitate the covariant theory, even if in modified form, the path has al-
ready been indicated: find a high energy modification of GR. Preserving general
covariance, there is not much one can do to modify GR. An idea that attracts
much enthusiasm is supergravity [46]: it seems that by simply coupling a spin
3/2 particle to GR, namely with the action (in first order form)

S[g, Γ,ψ] =

∫

d4x
√
−g

(

1

2G
R −

i

2
ϵµνρσ ψµγ5γνDρψσ

)

,

one can get a theory finite even at two loops.

1977
Another, independent, idea is to keep the same kinematics and change the

action. The obvious thing to do is to add terms proportional to the divergences.
Stelle proves that an action with terms quadratic in the curvature

S =

∫

d4x
√
−g

(

αR + βR2 + γRµνRµν .
)

,

is renormalizable for appropriate values of the coupling constants [47]. Unfor-
tunately, precisely for these values of the constants the theory is bad. It has
negative energy modes that make it unstable around the Minkowski vacuum
and not unitary in the quantum regime. The problem becomes to find a theory
renormalizable and unitary at the same time, or to circumvent non-unitarity.
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The decade closes with the main lines of the covariant and the canonical
theory clearly defined. It will soon become clear that neither theory works.

6 The Middle Ages: 1970-1983

1970

The decade of the seventies opens with a world of caution. Reviving a point
made by Pauli, a paper by Zumino [35], suggests that the quantization of GR
may be problematic and might make sense only by viewing GR as the low energy
limit of a more general theory.

1971
Using the technology developed by DeWitt and Feynman for gravity, t’Hooft

and Veltman decide to study the renormalizability of GR. Almost as a warm
up exercise, they consider the renormalization of Yang-Mills theory, and find
that the theory is renormalizable – result that has won them this year Nobel
prize [36]. In a sense, one can say that the first physical result of the research
in quantum gravity is the proof that Yang-Mills theory is renormalizable.

1971

David Finkelstein writes his inspiring “spacetime code” series of papers [37]
(which, among others ideas, discuss quantum groups).

1973
Following the program, t’Hooft finds evidence of un-renormalizable diver-

gences in GR with matter fields. Shortly after, t’Hooft and Veltman, as well as
Deser and Van Nieuwenhuizen, confirm the evidence [38].

1974

Hawking announces the derivation of black hole radiation [39]. A (macro-
scopically) Schwarzshild black hole of mass M emits thermal radiation at the
temperature

T =
h̄c3

8πkGM

The result comes as a surprise, anticipated only by the observation by Beken-
stein, a year earlier, that entropy is naturally associated to black holes, and thus
they could be thought, in some obscure sense, as “hot” [40], and by the Bardeen-
Carter-Hawking analysis of the analogy between laws of thermodynamics and
dynamical behavior of black holes. Hawking’s result is not directly connected to
quantum gravity –it is a skillful application of quantum field theory in curved
spacetime– but has a very strong impact on the field. It fosters an intense
activity in quantum field theory in curved spacetime, it opens a new field of
research in “black hole thermodynamics” (for a review of the two, see [43]), and
it opens the quantum-gravitational problems of understanding the statistical
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BHs evaporate away …. to 
become what? what happens 
to information content?

signals violation of some basic principle 
of spacetime physics (unitarity? locality?

due to which microstructure?why finite? why holographic? 
if of Boltzmann type,



Other new things we learned that are here to stay (for QG)

spacetime thermodynamics

BH thermodynamics generalised to cosmological horizons, similar for surfaces in flat space (Unruh effect)


is any (region of) spacetime a thermodynamic. system?

GR from local horizon thermodynamics
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Einstein’s equations as equation of state 
GR dynamics is effective equation of state for any microscopic dofs 

collectively described by a spacetime, a metric and some matter fields

GR from local horizon thermodynamics
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geometric entropy 

functional
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crucial: “holographic” behaviour

T. Jacobson (1995), ….., T. Padmanabhan, 
……

G(g) ∝ T(φ, g)

analogue gravity in condensed matter systems

effective curved metric (from background fluid) and 
quantum matter fields (describing excitations over fluid) 

from non-geometric atomic theory (quantum liquids, 
optical systems, ordinary fluids, …)

C. Barcelo, S. Liberati, M. Visser, ‘05

Unruh, Parentani, Visser, Weinfurtner, Jacobson, … (1981-…)
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crucial: “holographic” behaviour

T. Jacobson (1995), ….., T. Padmanabhan, 
……

G(g) ∝ T(φ, g)

analogue gravity in condensed matter systems

Is gravity an emergent phenomenon? 
Are spacetime and fields just collective emergent entities?

effective curved metric (from background fluid) and 
quantum matter fields (describing excitations over fluid) 

from non-geometric atomic theory (quantum liquids, 
optical systems, ordinary fluids, …)

C. Barcelo, S. Liberati, M. Visser, ‘05

Unruh, Parentani, Visser, Weinfurtner, Jacobson, … (1981-…)



…. new QG approaches are developed, gain traction, achieve results, offer further insights

While straightforward approaches loose momentum, and new insights come 
from other corners of (semi-classical) gravitational physics …..

• some are (or at least start as) continuations of previous attempts in different form


• sometimes the new ingredients/hypothesis have radical, unexpected consequences


• similar mathematical structures end up being shared by several formalisms


• stages of development, languages, but also priors and goals of different approaches vary greatly



…. new QG approaches are developed, gain traction, achieve results, offer further insights

While straightforward approaches loose momentum, and new insights come 
from other corners of (semi-classical) gravitational physics …..

• some are (or at least start as) continuations of previous attempts in different form


• sometimes the new ingredients/hypothesis have radical, unexpected consequences


• similar mathematical structures end up being shared by several formalisms


• stages of development, languages, but also priors and goals of different approaches vary greatly

several sub-communities form, with 
sometimes difficult relationships



String theory (and related)

string excitations: infinite particles of any spin/
mass; incl. graviton 
consistent (around flat space) and finite 
perturbation theory in 10d  
background spacetime satisfies GR equations

starting idea: quantum theory of strings, interacting and propagating on given spacetime background

many different (consistent) versions (different matter content, different 
symmetries) - all require supersymmetry and spacetime dimension > 4

central result: spacetime as seen by strings, as opposed to point 
particles/fields, has very different topology and geometry; e.g. 
distances smaller than minimal string length cannot be probed

many non-perturbative aspects; extended (d>1) configurations 
(branes) as fundamental as strings, and interacting with them 
(Polchinski, …., 1994 - )

(…… , a lot of people, …..)



dualities between various string theories and supergravity: different 
aspects of same underlying fundamental theory (M-theory)?

dualities show that spacetime topology and dimension 
are themselves dynamical

AdS/CFT correspondence: a (gauge) QFT with conformal invariance 
on 4d flat space could fully encode the physics of a gravitational theory 
in 5d (with AdS boundary); viceversa, semiclassical GR (with extra 
conditions) could describe the physics of a peculiar many-body 
quantum system in different dimension 

is the world holographic? are gravity and gauge theories equivalent? 
many results and new directions

large number of mathematical results and 
radical generalisation of quantum field theory

String theory (and related)
(…… , a lot of people, …..)



QG as QFT - Supergravity

one way out of non-renormalizability of perturbative gravity: new symmetry: supersymmetry
motivated also by extensions of Standard Model of particle physics (for any interaction a new matter field)
SUGRA is supersymmetric extension of GR with supersymmetric group replacing the local Lorentz group

“gravitino” is super partner of “graviton”) 

Freedman, Ferrara, van Nieuwenheuzen, Zumino, Julia, Wess, DeWitt, Nicolai, deWit, … (1976 - )

as QFT, SUGRA is better defined, perturbatively, that are gravity ….. recently, more evidence of 
nice cancellation of divergences …. a perturbativela well-defined field theory of QG?

in 11 spacetime dimensions it emerges as low energy limit of string theory



QG as QFT - Lattice Quantum Gravity

Quantum Regge calculus

(Causal) Dynamical Triangulations

Path integral of discrete geometries: 
fixed simplicial lattice, sum over edge length variables
continuum limit via lattice refinement

Path integral of discrete geometries: 
sum over all possible (causal) simplicial lattices 
(fixed topology), fixed edge lengths
continuum limit via sum over finer and finer lattices

Z = lim�!1

Z
dµ({Le}) e�S�

R ({Le})

Z = lima!0

X

�

µ(a,�) e�S�
R ({Le=a})

Basic idea: covariant quantisation of 
gravity as sum over “discrete geometries”

Continuum spacetime manifold replaced 
by simplicial lattice; metric data encoded in 
edge lengths 

Gravitational action is discretised version 
of Einstein-Hilbert action (Regge action)

T. Regge, R. Williams, H. Hamber, B. Dittrich, B. Bahr, ….

J. Ambjorn, J. Jurkiewicz, R. Loll, D. Benedetti, A. Goerlich, T. Budd, …

evidence of nice geometric (deSitter-like) continuum phase



QG as QFT - Asymptotic Safety Scenario
Quantum gravity is perturbatively non-renormalizable as QFT of the metric gµ⌫ = ⌘µ⌫ + hµ⌫

Can it make sense non-perturbatively?
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1.3 The case of gravity

We shall use a derivative expansion of Γk:

Γk(gµν ; g(n)
i ) =

∞
∑

n=0

∑

i

g(n)
i (k)O(n)

i (gµν) , (1.3.1)

where O(n)
i =

∫

ddx
√

gM(n)
i and M(n)

i are polynomials in the curvature
tensor and its derivatives containing 2n derivatives of the metric; i is an
index that labels different operators with the same number of derivatives.
The dimension of g(n)

i is dn = d−2n. The first two polynomials are just
M(0) = 1, M(1) = R. The corresponding couplings are g(1) = −Zg =
− 1

16πG
, g(0) = 2ZgΛ, Λ being the cosmological constant. Newton’s

constant G appears in Zg, which in linearized Einstein theory is the wave
function renormalization of the graviton. Neglecting total derivatives,
one can choose as terms with four derivatives of the metric M(2)

1 = C2

(the square of the Weyl tensor) and M(2)
2 = R2. We also note that the

coupling constants of higher derivative gravity are not the coefficients
g(2)

i but rather their inverses 2λ = (g(2)
1 )−1 and ξ = (g(2)

2 )−1. Thus,

Γ(n≤2)
k =

∫

ddx
√

g

[

2ZgΛ − ZgR +
1

2λ
C2 +

1

ξ
R2

]

. (1.3.2)

As in any other QFT, Zg can be eliminated from the action by a rescaling
of the field. Under constant rescalings of gµν , in d dimensions,

Γk(gµν ; g(n)
i ) = Γbk(b−2gµν ; bd−2ng(n)

i ) . (1.3.3)

This relation is the analog of (1.2.9) for the metric, but also coincides
with (1.2.3), the invariance at the basis of dimensional analysis; fixing it
amounts to a choice of unit of mass. This is where gravity differs from
any other field theory (Percacci & Perini (2004), Percacci (2007)). In
usual QFT’s such as (1.2.8), one can exploit the two invariances (1.2.3)
and (1.2.9) to eliminate simultaneously k and Z from the action. In the
case of pure gravity there is only one such invariance and one has to
make a choice.

If we choose k as unit of mass, we can define the effective action,

Γ̃(g̃µν ; Z̃g, Λ̃, . . .) = Γ1(g̃µν ; Z̃g, Λ̃, . . .) = Γk(gµν ; Zg, Λ, . . .) , (1.3.4)

where g̃µν = k2gµν , Z̃g = Zg

k2 = 1
16πG̃

, Λ̃ = Λ
k2 , etc.. There is then

no freedom left to eliminate Zg. Physically measurable quantities will
depend explicitly on Z̃g, so by the arguments of section 1.2, we have to
impose that ∂tZ̃g = 0, or equivalently ∂tG̃ = 0, at a FP.

Effective action 

(~ covariant path integral)

defined as solution to non-perturbative RG equations (e.g. Wetterich eqn)
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necessarily studied in various truncations (+ matter fields etc)

eg  Einstein-Hilbert truncation

look for non-Gaussian UV fixed points

10 R. Percacci

contradict the notion that the UV limit is defined by k → ∞. The point
is that only statements about dimensionless quantities are physically
meaningful, and the statement “k → ∞” is meaningless until we specify
the units. In a fundamental theory one cannot refer to any external
“absolute” quantity as a unit, and any internal quantity which is chosen
as a unit will be subject to the RG flow. If we start from low energy
(k′ ≪ 1) and we increase k, k′ will initially increase at the same rate,
because in this regime ∂tG ≈ 0; however, when k′ ≈ 1 we reach the FP
regime where G(k) ≈ G̃∗/k2 and therefore k′ stops growing.

The second consequence concerns the graviton anomalous dimension,
which in d dimensions is ηg = ∂t log Zg = ∂t log Z̃g + d − 2. Since we
have argued that ∂tZ̃g = 0 at a gravitational FP, if Z̃g∗ ≠ 0 we must
have ηg∗ = d − 2. The propagator of a field with anomalous dimension
η behaves like p−2−η, so one concludes that at a nontrivial gravitational
FP the graviton propagator behaves like p−d rather than p−2, as would
follow from a naive classical interpretation of the Einstein-Hilbert action.
Similar behaviour is known also in other gauge theories away from the
critical dimension, see e.g. Kazakov (2003).

1.4 The Gravitational Fixed Point

I will now describe some of the evidence that has accumulated in favor of
a nontrivial gravitational FP. Early attempts were made in the context
of the ϵ–expansion around two dimensions (ϵ = d − 2), which yields

βG̃ = ϵG̃ − qG̃2 . (1.4.1)

Thus there is a UV–attractive FP at G̃∗ = ϵ/q. The constant q = 38
3 for

pure gravity (Weinberg (1979), Kawai & Ninomiya (1990), see Aida &
Kitazawa (1997) for two–loop results). Unfortunately, for a while it was
not clear whether one could trust the continuation of this result to four
dimensions (ϵ = 2).

Most of the recent progress in this approach has come from the appli-
cation to gravity of the ERGE. It was shown by Wetterich (1993) that
the effective action Γk defined in (1.2.2) satisfies the equation

∂tΓk =
1

2
STr

(

δ2Γk

δφAδφB
+ RAB

k

)−1

∂tR
BA
k , (1.4.2)

where STr is a trace over momenta as well as over particle species and
any spacetime or internal indices, including a sign -1 for fermionic fields

14 R. Percacci
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Fig. 1.2. The flow in the Einstein–Hilbert truncation, see Eq.(1.4.9-10). The
nontrivial FP at Λ̃ = 0.171, G̃ = 0.701 is UV–attractive with eigenvalues
−1.69±2.49i. The Gaußian FP is attractive along the Λ̃–axis with eigenvalue
−2 and repulsive in the direction (0.04, 1.00) with eigenvalue 2.

let us consider pure gravity in the Einstein–Hilbert truncation, i.e. ne-
glecting terms with n ≥ 2. In a suitable gauge the operator δ2Γk

δgµνδgρσ
is

a function of −∇2 only. Then, rather than taking as ∆ the whole lin-
earized wave operator, as we did before, we use (1.4.4) with ∆ = −∇2.
In this way we retain explicitly the dependence on Λ and R. Using the
optimized cutoff, with gauge parameter 1/α = Z, the ERGE gives

βΛ̃ =
−2(1 − 2Λ̃)2Λ̃ + 36−41Λ̃+42Λ̃2−600Λ̃3

72π G̃ + 467−572Λ̃
288π2 G̃2

(1 − 2Λ̃)2 − 29−9Λ̃
72π

G̃
(1.4.9)

βG̃ =
2(1 − 2Λ̃)2G̃ − 373−654Λ̃+600Λ̃2

72π
G̃2

(1 − 2Λ̃)2 − 29−9Λ̃
72π G̃

(1.4.10)

This flow is shown in Figure 2.
Lauscher & Reuter (2002a), Reuter & Saueressig (2002) have stud-

ied the gauge– and cutoff–dependence of the FP in the Einstein–Hilbert
truncation. The dimensionless quantity Λ′ = ΛG (the cosmological con-
stant in Planck units) and the critical exponents have a reassuringly
weak dependence on these parameters. This has been taken as a sign
that the FP is not an artifact of the truncation. Lauscher & Reuter
(2002b) have also studied the ERGE including a term R2 in the trun-
cation. They find that in the subspace of Q̃ spanned by Λ̃, G̃, 1/ξ, the

S. Weinberg, M. Reuter, C. Wetterich, H. Gies, D. Litim, 
R. Percacci, D. Benedetti, A. Eichhorn, ….

if theory has non-trivial UV fixed point then it is "asymptotically safe” and could be fundamental

accumulating evidence for existence of UV fixed point of R^2 type



Loop Quantum Gravity (and spin foam models)

H2 = lim
�

S
� H�

⇡
= L2

�
Ā
�

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
detail in what sense GFT provides a 2nd quantised formalism for spin networks and how one can
link (a certain version of) canonical LQG and GFT directly, without passing through the spin foam
formulation, but providing in turn a clear link between the latter and canonical LQG. More details
can be found in [16] .

By ‘LQG kinematical Hilbert space’ we intend, here, a Hilbert space constructed out
of states associated to closed graphs and such that, for each graph �, we have H� =

L
2
⇣
G

E
/G

V
, dµ =

QE
e=1 dµ

Haar
e

⌘
(here G = SU(2)), where e are the links of the graph (E is their

total number), with a graph-based scalar product defined the Haar measure on each link µ
Haar
e .

The same Hilbert space can be represented also in the flux basis, via the non-commutative Fourier
transform [21, 22], in terms of functions of Lie algebra elements, that are the natural ‘momen-
tum’ variables for the classical LQG phase space on a given graph: [T ⇤

G]⇥E (before constraints).
The union for all graphs of such Hilbert spaces is, of course, not a Hilbert space. In the LQG
and spin foam literature, one finds di↵erent ways in which these graph-based Hilbert spaces can
be organised to define the Hilbert space of the theory. One is to simply consider the direct sum
over all possible graphs: H1

LQG = ��H� . Another, corresponding to the canonical construction
in the continuum, is to define appropriate equivalence classes for states over di↵erent graphs and
then take the projective limit of infinitely refined graphs: H2

LQG = lim�!1

[�H�

⇡
. Of course, the

two spaces are very di↵erent. The GFT Hilbert space can be understood as a di↵erent proposal
to define a Hilbert space out of a union of the graph-based Hilbert spaces, by ‘decomposing them
into elementary building blocks’.

The basic idea is to consider any wave function in H� , where � is a graph with V nodes, as an

element of HV = L
2
⇣
(G⇥d

/G)⇥V
, dµ =

QV
v=1

Qd
i=1 dµ

v
Haar,i

⌘
, satisfying special restrictions. The

latter space can be understood as the space of V spin network vertices, each possessing d outgoing
open links, and the extra restrictions enforce the gluing of suitable pairs of such open links to form
the links of the graph �. In group space, these extra restrictions are conditions of invariance under
the group action, which can be enforced through projectors. A function  � can be obtained from
a wavefunction �V 2 HV as

 �(G
ab
ij ) =

Y

[(ia),(jb)]

Z

G
d↵

ab
ij �V (. . . , gia ↵

ab
ij , . . . , gjb↵

ab
ij , . . .) =  �(gia(gjb)

�1) , (5)

with the same notation as in 4. This defines an embedding of elements of H� into HV . The same
construction can be phrased in the flux and spin representations. Moreover, the scalar product of
two quantum states in HV associated to the same graph agrees with the one computed in H� (i.e.
the scalar product in HV , once restricted by gluing conditions associated to the graph �, reduces
to the one in H�). This means that H� is embedded faithfully in HV . Obviously HV also contains
states associated to open graphs, that is graphs with some links ending up in 1-valent vertices, i.e.
with links of open spin network vertices not glued to any other.

The physical picture behind HV is that of a ‘many-atom’ Hilbert space, with each ‘quantum
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spin networks can be understood as (generalised) 
piecewise-flat discrete geometries

underlying graphs are dual to (simplicial lattices)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Geometric operators

in terms of spin operators                         at vertices:

Volume,  angle, and length similar.

jj

j
Geometric observables correspond to operators; some of 
them have discrete spectrum: discretization of quantum 
geometry! (Rovelli, Smolin, Ashtekar, Lewandowski, 1995-1997)

Canonical quantization of GR as gauge theory (connection variables):
A. Ashtekar, C. Rovelli, L. Smolin, T. Thiemann, J. Lewandowski, J. Pullin, H. Sahlmann, B. Dittrich, ……
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j �(x, y)quantum states of “space” are graphs labeled by algebraic (group-theoretic) data: spin networks

loop quantum cosmology: singularity resolution

rigorous implementation of spatial diffeomorphism invariance

consistent implementation of Hamiltonian constraint; some 
solutions of it; on-shell anomaly-free algebra

focus on gravity, matter coupled but not central



“histories” (dynamical interaction processes) are also 
purely algebraic and combinatorial: spin foams

2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′

by gluing together the two corresponding 2-complexes at s′. A spin foam model is an assignment
of amplitudes A[F ] which is consistent with this composition rule in the sense that

A[FF ′] = A[F ]A[F ′]. (74)

Transition amplitudes between spin network states are defined by

⟨s, s′⟩phys =
∑

F :s→s′

A[F ], (75)

where the notation anticipates the interpretation of such amplitudes as defining the physical scalar
product. The domain of the previous sum is left unspecified at this stage. We shall discuss this
question further in Section V. This last equation is the spin foam counterpart of equation (73).
This definition remains formal until we specify what the set of allowed spin foams in the sum are
and define the corresponding amplitudes.
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Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
spins are reassigned at vertexes (emphasized on the right). The ‘topological’ structure is provided
by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
its elements with irreducible representations and intertwiners.

The background-independent character of spin foams is manifest. The 2-complex can be
thought of as representing ‘space-time’ while the boundary graphs as representing ‘space’. They do
not carry any geometrical information in contrast with the standard concept of a lattice. Geometry
is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.

In standard quantum mechanics the path integral is used to compute the matrix elements of the
evolution operator U(t). It provides in this way the solution for dynamics since for any kinemat-
ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
constraints. Transition amplitudes represent the matrix elements of the so-called generalized ‘pro-
jection’ operator P (i.e., ⟨s, s′⟩phys = ⟨sP, s′⟩ recall the general discussion of Sections 2.2) such
that PΨ is a physical state for any kinematical state Ψ. As in the case of the vector constraint

30

spin networks/spin foams can be understood as (generalised) 
piecewise-flat discrete geometries

underlying graphs and 2-complexes are dual to (simplicial) lattices

correct discrete semi-classical limit in terms of Regge calculus

Loop Quantum Gravity (and spin foam models)

evolution of spin networks involves 
changes in combinatorial structure 

and in algebraic labels 

h �(j, i) | �0(j0, i0)i =
X

�|�,�0

w(�)
X

{J},{I}|j,j0,i,i0

A� (J, I) ⇡ ”
Z
Dg ei S(g) ”

purely algebraic and combinatorial 
“path integral for quantum gravity”

Lots of results on quantum geometry and 
mathematics of quantum gravitational field; 
inspiring models of quantum black holes 
and quantum cosmology

M. Reisenberger, C. Rovelli, J. Baez, J. Barrett, L. Crane, A. Perez, E. Livine,  DO, S. Speziale, ……



Matrix models (Migdal, Kazakov, David, Duplantier, Ambjorn, Kawai, Di Francesco, Zuber, Brezin, .....)

• discrete 2d GR on each 2d triangulation 

in large-N limit: 


control over topologies and dominance of planar surfaces, 


continuum limit and phase. transition to theory of continuum surfaces 

emergent continuum theory is 
2d Liouville quantum gravity

used to define world sheet theory of strings
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Abstract theories of matrices which give quantum 2d spacetime as (statistical) superposition of discrete surfaces
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Matrix models (Migdal, Kazakov, David, Duplantier, Ambjorn, Kawai, Di Francesco, Zuber, Brezin, .....)

Abstract theories of matrices which give quantum 2d spacetime as (statistical) superposition of discrete surfaces
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Quantum dynamics:

Feynman diagram         = 2d simplicial complex� �
• discrete 2d GR on each 2d triangulation 

in large-N limit: 


control over topologies and dominance of planar surfaces, 


continuum limit and phase. transition to theory of continuum surfaces 

emergent continuum theory is 
2d Liouville quantum gravity

used to define world sheet theory of strings



Tensor models (Ambjorn, Jonsson, Durhuus, Sasakura, Gross, ... )

Abstract theories of tensors to give quantum spacetime as (statistical) superposition of simplicial complexes

e.g. d=3

Feynman diagrams are stranded graphs dual to 3d simplicial complexes

issues: no large-N limit, thus no control over topologies or continuum limit

relation to discrete gravity on equilateral triangulations
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Abstract theories of tensors to give quantum spacetime as (statistical) superposition of simplicial complexes

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

GOING UP IN DIMENSION: TENSOR MODELS

generalize in (combinatorial) dimension from 1d objects (edges) to 2d objects

(triangles) - from 2d simplicial complexes as FD to 3d ones
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pseudo-manifolds, any topology)?
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Construction can be generalized to d spacetime dimension (d-tensors....)
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Group field theories

' : G⇥d ! CQuantum field theories over group G, enriching tensor models with group-theory data

for gravity models, G = local gauge group of gravity (e.g. Lorentz group)

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ……)

generic quantum state: arbitrary collection of 
spin network vertices (including glued ones) 

or tetrahedra (including glued ones)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]

j1

j2 j3

j4

j5

j6
j7

j8

j9

j10

j11

j12
j13

j14

j15

j16

j17

j18

j19

j20

j21

j22

j23

Kristina Giesel Dynamics of LQG

single field “quantum”: spin network vertex 
or tetrahedron

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
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Feynman perturbative expansion around trivial vacuum
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Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =


= stranded diagrams dual to cellular complexes of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices)
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Group field theories

Feynman amplitudes (model-dependent):


equivalently:

• spin foam models (sum-over-histories of 

spin networks ~ covariant LQG)


• lattice path integrals         

(with group+Lie algebra variables)

Reisenberger,Rovelli, ’00

A. Baratin, DO, ‘11
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GFT as lattice quantum gravity:

dynamical triangulations + quantum Regge calculus



....and more……

non-commutative geometry

causal set theory

there are quite a few other quantum gravity approaches, with different goals 
and different levels of development

not going to discuss them here…..

algebras of functions (incl. coordinate functions) on spacetime are 
central object; they are turned into non-commutative algebras, 
thus “non-commutative spacetime and geometry”; 2 subdirections: 
Connes’ spectral triple (based on Dirac operator; possible route to 
unification) and “quantum spacetimes” (based on Hopf algebra 
symmetries, basis of much phenomenology); difficult to turn on 
dynamics of geometry and spacetime itself  

intrinsically discrete sub-structure for spacetime, given by 
fundamental causal relations between finite set of 
“events”, giving a “partially ordered, locally finite set”. 
quantum dynamics defined ideally by “sum-over-causets” 
weighted by quantum amplitude; continuum spacetime 
should emerge from this sum, as approximation

quantum graphity, twistor theory, ….



other thing that happened: 


birth and development of Quantum Gravity phenomenology

in general sense of: clarification of physical contexts and regimes in which quantum 
gravity effects could be relevant and preliminary characterisation of such effects 

this includes:


• purpose-built phenomenological models/scenarios trying to incorporate QG ideas


• modelling of extreme physical systems within or (more often) inspired by specific QG approaches


• altogether new QG ideas implemented in toy models, waiting for realization in full QG formalisms
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in general sense of: clarification of physical contexts and regimes in which quantum 
gravity effects could be relevant and preliminary characterisation of such effects 

this includes:


• purpose-built phenomenological models/scenarios trying to incorporate QG ideas


• modelling of extreme physical systems within or (more often) inspired by specific QG approaches
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QG phenomenology

QG modification of effective field theory

•  modified dispersion relations

• modified scattering thresholds

• non-local terms (violation of locality)

•  minimal length

• deformed uncertainty relations

• violation/deformation of spacetime symmetries 
(e.g. Lorentz symmetry)

many (simplified) scenarios are already testable

G. Amelino-Camelia, ’08


S. Hossenfelder, ’12


T. Jacobson, S. Liberati, D. Mattingly, ‘07



QG effects in black hole physics

•  Hawking radiation and BH evaporation

• reviation from thermal radiation?

• end result: compact remnant? nothing? 

• black hole information paradox (is 
unitarity violated? renounce locality?)

•  BH formation, horizon and singularity

• regular black hole-like objects in QG 
(with “horizon”, but no singularity)

• inner quantum region

• black hole -> white hole transition 
(radio bursts)

• exotic compact objects 

• horizonless - imperfect absorption 
(modified GW signal)

• outer “membrane” - GW echo

A. Ashtekar, M. Bojowald, …. 

H. Haggard, C. Rovelli, F. Vidotto, …

V. Cardoso, P. Pani …. 

J. Abedi, H. Dykaar, N. Afshordi, ‘16

many, many possibilities, among which:



QG in cosmological scenarios for the early universe

Inflation

Emergent 
universe

why a close to homogeneous and isotropic universe?
why an approximately scale invariant power spectrum?

• density perturbations as vacuum 
quantum fluctuations 

• period of accelerated expansion 
(driven by “inflaton” field?)

• naturally scale invariant spectrum

• what produces inflation? 

• physics of trans-Planckian modes (for long inflation)?

• inflation too close to Planck regime?

• inflationary spacetime still contains singularity

Inflation needs 
Quantum Gravity

Bouncing 
cosmology

R. Brandenberger, ’10, ’11, ’14 

what is the fine. structure of the CMB spectrum?



QG in Cosmological scenarios for the early universe

    main open problems
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!I think this is a promising theory, 

but there is still very much to do

(i) More solid arguments that the classical limit is GR

(ii) Compute quantum corrections to Effective QFT scattering

(iii) IR renormalization?    Scaling   [Orsay group, Smerlak Bonzom]

(iv) Lorentzian structure?

(v) Open points in the definition (Edge splitting invariance?) [Bojowald Perez, Warsaw school]

(vi) Difficulties of low energy computation

(vii) Questions on the vertex expansion

(viii) Observable consequences?  Cosmology?  [Barrau, Mielczarek, Grain, Cailleteau, Ashtekar, Sloan]

Inflation

Bouncing 
cosmology

Emergent 
universe

why a close to homogeneous and isotropic universe?
why an approximately scale invariant power spectrum?

• classical contracting phase 
“before” the big bang, bouncing to 
current expanding phase 

• various realizations (e.g. LQC)

• can produce scale invariant 
spectrum

• new physics needed to describe/justify cosmological bounce

Bouncing cosmology 
needs Quantum Gravity

R. Brandenberger, ’10, ’11, ’14 

what is the fine. structure of the CMB spectrum?



QG in cosmological scenarios for the early universe

Inflation

Bouncing 
cosmology

Emergent 
universe

why a close to homogeneous and isotropic universe?
why an approximately scale invariant power spectrum?

& problems; Brandenberger, Alternatives to cosmological inflation;
Brandenberger 2010a, 2010b for details). This simplest way of
obtaining a cosmological bounce is plagued by an instability of the
vacuum (Cline, Jeon, & Moore, 2004). More sophisticated models
which avoid this instability have recently been developed, e.g. the
ghost condensate scenario (Buchbinder, Khoury, & Ovrut, 2007;
Creminelli & Senatore, 2007; Lin, Brandenberger, & Levasseur, 2011)
or the Galileon bounce (Easson, Sawicki, & Vikman, 2011; Qiu, Evslin,
Cai, Li, & Zhang, 2011). However, these models do not (yet) come
from a theory of matter and gravity which is complete at high
energies.

Possibly a more promising approach to obtaining bouncing
cosmologies is by modifying the gravitational sector of the theory.
There is excellent motivation to consider modifications of gravity
at high energy densities: General Relativity is not a renormalizable
quantum theory of gravity. In all known approaches to quantum
gravity, the Einstein action of General Relativity is only a low
energy effective action. At high energy densities where the bounce
is expected to occur deviations from General Relativity will be
important. Two examples of modifications of General Relativity at
high densities which lead to bouncing cosmologies are the “non-
singular universe” construction of Brandenberger, Mukhanov, and
Sornborger (1993) and the ghost-free higher derivative action of
Biswas, Mazumdar, and Siegel (2006). It was also realized
(Brandenberger, R., 2009; Brandenberger, R. H., 2009) that the
Hořava–Lifshitz proposal for a power-counting renormalizable
theory of quantum gravity (Horava, 2009) leads to a bouncing
homogeneous and isotropic cosmology, provided that the spatial
curvature is non-vanishing.

Bouncing cosmologies also are predicted in more ambitious
approaches to quantizing gravity such as string theory (see e.g.
Kounnas et al., 2012; Kounnas et al.) and loop quantum cosmology
(see e.g. Ashtekar & Singh, 2011; Bojowald, 2011 for recent
reviews).

4.2. Emergent universe

The “emergent universe” scenario (Ellis & Maartens, 2004; Ellis,
Murugan, & Tsagas, 2004) is another non-singular cosmological
scenario in which time runs from !1 to þ1. The universe is
assumed to emerge in a quasi-static high density phase which at
some time (which is conventionally called t¼0 undergoes a phase
transition to the expanding phase of Standard Big Bang cosmology.
The time evolution of the scale factor is sketched in Fig. 5. For the
purposes of establishing a theory of cosmological structure for-
mation, the quasi-static phase is not required to be infinite. All that
is required is that the phase is much longer than the length which
in the expanding phase grows to become the current Hubble
radius. The quasi-static phase could thus be the bounce phase of a
bouncing cosmology, as in the model of Biswas, Brandenberger,

Mazumdar, & Siegel (2007) (which is based on the higher
derivative gravitational Lagrangian of Biswas et al., 2006).

The time evolution of the cosmological scale factor in an
emergent universe is sketched in Fig. 5. The vertical axis is the
cosmological scale factor, the horizontal axis is time. The universe
is initially static and makes a smooth transition to the radiation
phase of Standard Big Bang cosmology.

The emergent scenario is similar to inflationary cosmology in
that the universe is assumed to begin hot and small. But it is
similar to a bouncing cosmology in that time runs from !1 to
þ1, and in that the evolution is non-singular.

In Fig. 6 we sketch the space–time diagram in an emergent
cosmology. Since the early emergent phase is quasi-static, the
Hubble radius is infinite. For the same reason, the physical
wavelength of fluctuations remains constant in this phase. At the
end of the emergent phase, the Hubble radius decreases to a
microscopic value and makes a transition to its evolution in
Standard Cosmology.

As in inflationary cosmology and in a bouncing cosmology we
see that fluctuations originate on sub-Hubble scales. In emergent
cosmology, it is the existence of a quasi-static phase which leads to
this result. What sources fluctuations depends on the realization of
the emergent scenario. String Gas Cosmology is the example
which I will consider later on. In this case, the source of perturba-
tions is thermal: string thermodynamical fluctuations in a com-
pact space with stable winding modes, and this in fact leads to a
scale-invariant spectrum (Nayeri, Brandenberger, & Vafa, 2006).

How does emergent cosmology address the problems of
Standard Cosmology? As in the case of a bouncing cosmology,
the horizon is infinite and hence there is no horizon problem.
Since there is likely thermal equilibrium in the emergent phase, a
mechanism to homogenize the universe exists. As discussed in the
previous paragraph, there is no causality obstacle against produ-
cing cosmological fluctuations. The scenario is non-singular, but
this cannot in general be weighted as a success unless the
emergent phase can be shown to arise from some well controlled
ultraviolet physics.

a

t
t Rp = 0 p = rho / 3

~ t 1/2

Fig. 5. The dynamics of emergent universe cosmology. The vertical axis represents
the scale factor of the universe, the horizontal axis is time.

H-1

k 2k 1

tR

tf(k 2 )

tf(k 1 )

ti(k 1 )
ti(k 2 )

x p

t

Fig. 6. Space–time diagram (sketch) showing the evolution of fixed co-moving
scales in emergent cosmology. The vertical axis is time, the horizontal axis is
physical distance. The solid curve represents the Hubble radius H!1 which shrinks
abruptly to a micro-physical scale at tR and then increases linearly in time for t4tR .
Fixed co-moving scales (the dotted lines labeled by k1 and k2) which are currently
probed in cosmological observations have wavelengths which were smaller than
the Hubble radius long before tR. They exit the Hubble radius at times ti(k) just prior
to tR, and propagate with a wavelength larger than the Hubble radius until they
re-enter the Hubble radius at times tf(k).

R. Brandenberger / Studies in History and Philosophy of Modern Physics 46 (2014) 109–121114

• phase transition between static and 
expanding universe

• various realizations (e.g. string gas 
cosmology)

• density perturbations as thermal 
fluctuations

• can give scale invariant power spectrum

• trans-Planckian modes not needed

• static phase and phase transition require new physics 

Emergent universe needs 
Quantum Gravity

R. Brandenberger, ’10, ’11, ’14 

what is the fine. structure of the CMB spectrum?



Quantum Gravity:

the picture now

(“now” ~ last 10 years)



Quantum Gravity: many approaches

String Theory

Non-commutative geometry

Causal Dynamical Triangulations

Tensor Models

SupergravityLoop Quantum Gravity

Group Field Theory

Asymptotic SafetyCausal Sets

Simplicial Quantum Gravity

Spin Foam models

several links between them; solid foundations, many achievements, big outstanding open issues in each



The Theory Formerly Known As String Theory (and not yet become M-Theory)

• vast array of mathematical results and constructions (a framework or a theory?)


• landscape of possible theories


• generalised geometries and dualities suggest fundamental theory (if any) not 
based on spacetime


• incredibly rich and providing suggestions and new insights into both QFT and 
gravitational physics


• AdS/CFT offering testing ground for many QG ideas (and quantum BH physics)

• fundamental degrees of freedom and dynamics still elusive


• no non-perturbative quantum formulation (of strings and/or branes)


• new connections to quantum information 


• inspiration for model building in particle physics and cosmology


• still no strong prediction that could test it



Asymptotic Safety scenario

• evidence for UV non-Gaussian fixed point keeps accumulating


• formalism applied also to QG extensions of Standard Model, offering glimpses of 
possible QG solutions to various puzzles (hierarchy, matter content, …)


• extension to Lorentzian setting


• details on implementation of diffeomorphism symmetry


• applications to  quantum black holes and cosmology
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Fig. 1.2. The flow in the Einstein–Hilbert truncation, see Eq.(1.4.9-10). The
nontrivial FP at Λ̃ = 0.171, G̃ = 0.701 is UV–attractive with eigenvalues
−1.69±2.49i. The Gaußian FP is attractive along the Λ̃–axis with eigenvalue
−2 and repulsive in the direction (0.04, 1.00) with eigenvalue 2.

let us consider pure gravity in the Einstein–Hilbert truncation, i.e. ne-
glecting terms with n ≥ 2. In a suitable gauge the operator δ2Γk

δgµνδgρσ
is

a function of −∇2 only. Then, rather than taking as ∆ the whole lin-
earized wave operator, as we did before, we use (1.4.4) with ∆ = −∇2.
In this way we retain explicitly the dependence on Λ and R. Using the
optimized cutoff, with gauge parameter 1/α = Z, the ERGE gives

βΛ̃ =
−2(1 − 2Λ̃)2Λ̃ + 36−41Λ̃+42Λ̃2−600Λ̃3

72π G̃ + 467−572Λ̃
288π2 G̃2

(1 − 2Λ̃)2 − 29−9Λ̃
72π

G̃
(1.4.9)

βG̃ =
2(1 − 2Λ̃)2G̃ − 373−654Λ̃+600Λ̃2

72π
G̃2

(1 − 2Λ̃)2 − 29−9Λ̃
72π G̃

(1.4.10)

This flow is shown in Figure 2.
Lauscher & Reuter (2002a), Reuter & Saueressig (2002) have stud-

ied the gauge– and cutoff–dependence of the FP in the Einstein–Hilbert
truncation. The dimensionless quantity Λ′ = ΛG (the cosmological con-
stant in Planck units) and the critical exponents have a reassuringly
weak dependence on these parameters. This has been taken as a sign
that the FP is not an artifact of the truncation. Lauscher & Reuter
(2002b) have also studied the ERGE including a term R2 in the trun-
cation. They find that in the subspace of Q̃ spanned by Λ̃, G̃, 1/ξ, the



Causal Dynamical Triangulations

• increasing experience with (numerical) estimate of various geometric observables


• solid evidence of continuum phase structure, with at least one geometric (De Sitter) phase


• evidence of dimensional flow


• continuum limit seems to give Horava gravity


• results on relaxing global causality restrictions in favour of local ones



Loop Quantum Gravity and Spin Foam models

• solid kinematical structure (canonical quantization may work, after all)


• stronger link with discrete (lattice) quantum gravity 


• new kinematical phases; studies of entanglement and other QI for spin 
networks (connections to tensor networks)


• nice and rich quantum geometry, beautiful mathematics, connections 
to quantum groups


• still no satisfactory continuum quantum dynamics (under control with 
clear relation with GR)


• intriguing models of cosmology, black holes, possible phenomenology; 
but yet to be derived from (or grounded within) fundamental theory


• lots of recent work on coarse graining and renormalization (mostly in 
spin foam context)


• yet to show that it has good continuum limit, giving rise to effective 
QFT (incl. gravitons) as approximation



Tensorial group field theories

• increased understanding of link with LQG and. discrete QG


• connections to non-commutative geometry and to tensor networks


• large N limit: control over topologies, dominance of melonic 
diagrams, critical behaviour in tensor models


• many renormalization studies: renormalizability of various models, 
asymptotic freedom/safety


• glimpses of continuum phase diagram, via functional RG methods 


• applications to SYK models and AdS/CFT


• emergent cosmological dynamics from GFT condensates 
(consistent continuum limit, quantum bounce)


• modelling of quantum black holes and area law within full theory


• still no proof that effective continuum theory is (approximately) QFT 
of gravitons or full GR

    main open problems
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!I think this is a promising theory, 

but there is still very much to do

(i) More solid arguments that the classical limit is GR

(ii) Compute quantum corrections to Effective QFT scattering

(iii) IR renormalization?    Scaling   [Orsay group, Smerlak Bonzom]

(iv) Lorentzian structure?

(v) Open points in the definition (Edge splitting invariance?) [Bojowald Perez, Warsaw school]

(vi) Difficulties of low energy computation

(vii) Questions on the vertex expansion

(viii) Observable consequences?  Cosmology?  [Barrau, Mielczarek, Grain, Cailleteau, Ashtekar, Sloan]



new trends and suggestions

new suggestions for fundamental QG physics, possibly common to several QG approaches, 
have emerged and have been taken into account in various QG formalisms

all of them indicate a universe which is, at the fundamental level, even stranger than we thought; 
they also indicate that the scope of Quantum Gravity may go well beyond what we had imagined



• Einstein’s equations as equation of state
GR dynamics is effective equation of state for any microscopic dofs 

collectively described by a spacetime, a metric and some matter fields

fundamental discreteness of spacetime? breakdown of locality? 
is spacetime itself “emergent” from non-spatiotemporal,                             

non-geometric, quantum building blocks (“atoms of space”)?

Beyond spacetime? hints from various corners

• entanglement ~ geometry
geometric quantities defined by quantum (information) notions 
(examples from AdS/CFT, and various quantum many-body systems)

•     black hole information paradox some fundamental principle has to go: locality?

•    challenges to “localization” in semi-classical GR    

•      spacetime singularities in GR

•      black hole thermodynamics

minimal length scenarios

breakdown of continuum itself?

space itself is a thermodynamic system





quantum space as a (background-independent) quantum many-body system
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Spacetime is emergent 

and made out of non-spatiotemporal 
quantum building blocks 

(“atoms of space”)

supporting (indirect) evidence/arguments:


• QG approaches (e.g. LQG/GFT spin networks)


• string theory dualities (incl. AdS/CFT)


• BH entropy (finite) and thermodynamics


• GR singularities (breakdown of continuum?)

Spacetime and its atomic constituents



Quantum Gravity: new perspective
many current approaches suggest a change of perspective on the quantum gravity problem

traditional perspective: 
quantise gravity (i.e. spacetime geometry)

new perspective: 
identify quantum structures/building blocks of non-spatiotemporal 
nature from which spacetime and geometry “emerge” dynamically

problem becomes similar to the typical one in condensed matter theory (from atoms to macroscopic physics)



entanglement/geometry correspondence
If spacetime is emergent, which quantum features of the 
fundamental entities are responsible for its geometric properties? 
Many recent results put in direct correspondence geometric 
quantities (distances, areas, etc) with quantum entanglement 
between the constituents of non-gravitational systems.
Is the world “made out of entanglement”? Is geometry just quantum 
information at its root?

many results in the context of AdS/CFT 
correspondence but suggestion is 
more radical than that• spacetime bulk reconstruction from CFT quantum correlations 

between boundary regions

e.g. (mutual information) entanglement ~ 
spacetime connectivity

• holographic entanglement entropy - CFT entanglement entropy as bulk geometry

e.g. Ryu-Takayanagi entropy formula

Ryu-Takanayagi, ’06, ’12; 
Miyaji-Takayanagi ’15 

suggests generalization of BH entropy to other (arbitrary?) surfaces



Geometry from Quantum
examples from QG camp

• entanglement is encoded in connectivity 
structure of LQG/GFT spin networks

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG

graph structure from entanglement

2– spin network states can be regarded as linear combinations of disconnected

open spin network states with additional conditions enforcing the gluing =>
encoding the connectivity of the graph.

ip =
1�

2j + 1

2j+1�

p=1

|epi�ep|

we obtain a closed and connected graph     by tensoring the links together via SU(2) 
invariant intertwiner and then gluing the individual intertwiner states among each other 
by attaching the links via bivalent intertwiners 

�

�

|Ii =
�

{a,b,c}

ia,b,c|j, ai � |j, bi � |j, ci

Topological information: connectivity

iv

=> more general, purely algebraic and combinatorial picture

Group Field Theories

�(g1, ..., gd) : G
⇥d ! C

random function (field)

d⌫(�)/Z
probability measure

Group Field Theories (GFTs) are combinatorially non-local quantum field theories 
defined on a group manifold

provide a 2n quantisation scheme for LQG: 

no embedding in a continuum manifold and no cylindrical consistency imposed on our 
quantum geometry wave-functionals 

e.g. d=3

g1 g2
with gauge invariance 
at the vertex 

v �(gi) = �(gi�)

Fock construction through 
decomposition of spin network states in 
terms of elementary building blocks 
corresponding to tensor maps 
associated to nodes of the spin network 
graphs (quantum many body system)

-

-

g3

Donnelly, ’12; Livine, Terno, ’08; 
Chirco, Mele, DO, Vitale, ‘17

• area law for entanglement entropy as signal of good semi-classical behaviour in LQG states

Bianchi et al. ’16, Chirco et al ’14, ’15, Hamma et al. ’15, Bianchi, Myers 2012, Chirco, Anzà ’16, Han et al. ‘16

• entanglement in black hole modelling and entropy calculations 
Perez, Pranzetti, Ghosh, Bianchi, Livine, Terno, Sindoni, DO, …….

• coarse graining schemes for spin networks and spin foams based on entanglement 
(also via tensor networks) Dittrich, Martin-Benito, Steinhaus, Charles, Livine, ….

• Ryu-Takanayagi formula in group field theory and holographic tensor networks Chirco, Zhang, DO, ’17, ‘18



QG phenomenology

Verlinde’s emergent gravity
gravity as eqn of state

+ 

modified entropy formula (new volume-
dependent term, akin to dark energy)

modified gravity to 
explain dark matter  

(new acceleration 
scale ~ MOND)

proposals for cosmological constant/dark energy

non-local gravity (continuum only approximate; also from other perspectives)

suggestions from analogue gravity models (e.g. cosmological constant from 
depletion factor if spacetime is Bose condensate)

vanishing vacuum energy from global equilibrium of spacetime fluid

new dissipative effects in dispersion relations

if spacetime is like fluid or superfluid medium, should expect dissipation

2

where  1 is a linear perturbation of  . This equation
may be found, e.g., in [8] and is explicitly derived in [7].

In order to find the corresponding dispersion relation
one can adopt as usual the so-called Eikonal approxima-
tion in the form  1 = a(x) exp(�i[!t�~k · ~x] ), with a(x)
a slowly-varying function of position. Then the viscous
wave equation in the Eikonal approximation reduces to
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yielding the following dispersion relation for sound waves
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The first term specifically introduces dispersion due to
viscosity, while the second term is specifically dissipative.
The previous equation can be further simplified to
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up to higher orders of (⌫k/c). This is a concrete example
of how modified dispersion relations due to the underly-
ing microscopic structure of an emergent space-time can
be endowed with dissipative terms. In this case the lowest
order dissipative term, which is ruled by the same micro-
scopic scale provided by the viscosity, would appear at
lower energies than the dispersive, quartic term.

Such dissipative dispersion relations clearly violate uni-
tarity. However in this toy model dissipation is due to
energy exchange with extra degrees of freedom which,
being not observed, are traced away [3]. In this sense,
(apparent) dissipation can be a signal of extra-degrees of
freedom in putative fundamental theories being neglected
in the e↵ective theory.

Generalized dissipative hydrodynamics.— If we now
come back to the problem of the phenomenology asso-
ciated to an emergent spacetime from some, unspecified,
QG model, we are faced with a set of pressing questions,
which basically deal with our ignorance of the models and
the viable mechanisms leading to a classical spacetime.

In this sense one quite general approach might consist
in assuming that at su�ciently low scales any QG the-
ory will allow to describe the propagation of matter (or
gravitons) on the emergent spacetime along the equations
one could derive from hydrodynamics. Implicitly we are
assuming that a description of matter as collective exci-
tations above the spacetime medium is possible at scales
much longer than the typical scales of the fundamental
constituents interactions. This is tantamount to assume
that some EFT description is viable given that hydro-
dynamics, even dissipative one, can be described within
this formalism [9].

When adopting hydrodynamics as a large scale model
of an emergent spacetime, it is quite interesting to keep

in mind that the above discussed dissipation appears in
a gradient expansion as a first order correction to the
perfect fluid equations. In general, higher order terms
can be considered as well, and such operators will show a
similar structure to the last term on the right hand side
of Eq. (1), i.e. they will be generically of the form @trn.
Hence, dissipative terms will always appear in the disper-
sion relation with odd powers of the three momentum k

once at high energy one takes E ⇡ k.
The generalised Navier-Stokes equation will then read

@
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 1 , (5)

leading to the following dispersion relation
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with Ai = 4/3⌫ic, B
j
i = 8/27⌫i/c+4/3⌫jc, Lj

i = 4/3⌫ic�
8/9⌫2j and Mk

i,j = 4/3⌫ic+ 8/27⌫3j /c� 8/9⌫2k .
The structure of the modified dispersion relation is

such that it is not possible to proceed simply order-by-
order to account for all the possible terms. Actually, one
should not attempt to identify the index of the expansion
j with the power index of the derivative term rn in (5).
The contribution of each term of order n in the derivative
expansion is instead to be searched for in all those terms
which at some order j will contain the parameter ⌫n.
As expected, Eq. (5) shows alternating dissipative and

dispersive terms with odd and even powers of k respec-
tively. Assuming that the origin of these deviations from
the perfect fluid limit is related to the behavior of the
“spacetime fluid” close to the Planck scale, it is natural
to rescale the coe�cients of Eq. (5) by suitable powers of
the Planck energy so to make the coe�cient dimension-
less and make explicit the suppression of higher powers
terms (assuming, as a matter of naturalness, that the re-
maining dimensionless coe�cients are a priori roughly of
the same magnitude).
Let us start truncating the above dispersion relation to

the lowest order, n = 2, so regaining (4), with a suitably
rescaled coe�cient as described above. We get

!
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2 � i�2c

2 k
3
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where �2 = (4⌫2MPl)/3c is the dimensionless coe�cient
controlling the magnitude of the Lorentz violation (LV)
and MPl = 1.22⇥ 1019 GeV.

manifest in dispersion relations

S. Liberati, L. Maccione, ‘13

E. Verlinde, ‘16, S. Hossenfelder, ‘17

S. Finazzi, S. Liberati, L. Sindoni, ‘12

G. Volovik, ’01, ’05, ‘11

C. Wetterich, ’97;…; M. Maggiore, ‘17

new avenues toward testing QG effects

Main theoretical problem:  

most testable effects obtained within simplified models and phenomenological frameworks

very weak link with fundamental theory pressing issue: 

connect simplified models with fundamental formalisms



Quantum Gravity:

looking ahead

optimistic and very biased forecast


not to be taken too seriously as forecast, maybe


to be taken seriously as wishful thinking



Beyond spacetime
we will eventually learn to think without spacetime, and 
focus on their nature and origin, rather than taking them 
for granted


we will get used to the view of the universe as a 
quantum many-body system, with GR (and Standard 
Model) as its emergent hydrodynamic-like description


quantum information tools will become routinely used 
in QG research


we will routinely discuss with our philosophers friends, 
because we will be thinking at similar open issues



Convergence of approaches
even more solid links between different QG approaches will be discovered


similarities if not equivalence between candidate fundamental structures will be emphasised


some formulations of one approach will be seen as effective descriptions of another


different formalisms will be different available tools for QG physicists, selected according to problem at hand


QG practitioners will focus on common problems, rather than differences in approach,  

and learn from each other

String Theory

Non-commutative geometry

Causal Dynamical Triangulations

Tensor Models

Supergravity
Loop Quantum Gravity

Group Field Theory

Asymptotic SafetyCausal Sets

Simplicial Quantum Gravity

Spin Foam models
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Toward physics, seriously
string theorists will focus on identifying fundamental theory


“discrete QG” theorists will focus on extracting effective continuum dynamics


all will focus on QG physics, extracting predictions from full formalisms


we will not look anymore with embarrassment at our experimentalists friends


we will finally know (or at least have solid, full QG proposals) what the universe is made of, 
how the universe began, what happens to black holes after they evaporate, …..



Toward physics, seriously
string theorists will focus on identifying fundamental theory


“discrete QG” theorists will focus on extracting effective continuum dynamics


all will focus on QG physics, extracting predictions from full formalisms


we will not look anymore with embarrassment at our experimentalists friends


we will finally know (or at least have solid, full QG proposals) what the universe is made of, 
how the universe began, what happens to black holes after they evaporate, …..



Toward physics, seriously
string theorists will focus on identifying fundamental theory


“discrete QG” theorists will focus on extracting effective continuum dynamics


all will focus on QG physics, extracting predictions from full formalisms


we will not look anymore with embarrassment at our experimentalists friends


we will finally know (or at least have solid, full QG proposals) what the universe is made of, 
how the universe began, what happens to black holes after they evaporate, …..



Toward physics, seriously
string theorists will focus on identifying fundamental theory


“discrete QG” theorists will focus on extracting effective continuum dynamics


all will focus on QG physics, extracting predictions from full formalisms


we will not look anymore with embarrassment at our experimentalists friends


we will finally know (or at least have solid, full QG proposals) what the universe is made of, 
how the universe began, what happens to black holes after they evaporate, …..



Thank you for your attention!


