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Navier-Stokes hydrodynamics

complete energy-momentum tensor
T = T8 + 7 + NA*Y = TL + 2not” — COAH
again four equations for four unknowns
9, T"" =0

THIS SCHEME DOES NOT WORK IN PRACTICE!
ACAUSAL BEHAVIOR + INSTABILITIES!

NEVERTHELESS, THE GRADIENT FORM (14) IS A GOOD APPROXIMATION
FOR SYSTEMS APPROACHING LOCAL EQUILIBRIUM




Gradient expansion

complete energy-momentum tensor

T = T& + o + NAM = Tl + 2no™” — (OA"”

v

first order terms in gradients

T =T& + 2no™” — COA™ + e, + ...

v

first order terms in gradients ~ Second order terms in gradients

HYDRODYNAMIC EXPANSION OF THE ENERGY-MOMENTUM TENSOR,
ASYMPTOTIC SERIES

M.P. Heller, R. Janik, R. Witaszczyk, PRL 110 (2013) 211602




Non-equilibrium entropy current (Israel-Stewart formalism, still close to local equilibrium)

St = PBF — ENF 4 BT + QF.

— A
d(Pﬂ”) — Nquf - Teq“d/B/\a

nT
+ P

T9,S" = ——q"0s (ﬁ) + MO ups — 110 + T8,QM.

T



Israel-Stewart: new ansatz for the entropy current
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with the following divergence:
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Dynamic equations for dissipative quantities — they are upgraded to new hydrodynamic variables!

With alphas=0
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For conformal systems:
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Israel-Stewart equations

Israel-Stewart equations — I, 7/ promoted to dynamic variables —
non-hydrodynamic modes are introduced with the appropriate relaxation times m, 7

W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals of Physics 118 (1979) 341
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1) HYDRODYNAMIC EQUATIONS DESCRIBE BOTH HYDRODYNAMIC AND NON-HYDRODYNAMIC MODES

2) HYDRODYNAMIC MODES CORRESPOND TO GENUINE HYDRODYNAMIC BEHAVIOR

3) NON-HYDRODYNAMIC MODES (TERMS) SHOULD BE TREATED AS REGULATORS OF THE THEORY

4) NON-HYDRODYNAMIC MODES GENERATE ENTROPY



dispersion relations factorize into branches depending on the polarization of the
perturbations, with k along the x axis

@ Sound channel: non-vanishing éu*, 6 T
@ Shear channel: non-vanishing su, 6 T
@ Tensor channel: non-vanishing § T"*
For example, in the sound channel one has
w3+iw2—k—(1+4”/8)w_i:o (26)

T 3

For small k one finds a pair of hydrodynamic modes (whose frequency tends to zero
with k)

K 21 n

(£) _ _ g2
Wy _i\/§ 3T8k + ... (27)
and a nonhydrodynamic mode
(,u/\//-/——I(T7T —3T§k>—|—... (28)
v= 1 J1aa S T > 2n/S. (29)



BRSSS equations

Baier, Romatschke, Son, Starinets, Stephanov (BRSSS)
symmetry arguments due to Lorentz and conformal symmetry, ...

R. Baier, P. Romatschke, D.T. Son, A. O. Starinets, M. A. Stephanov,
Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP 0804 (2008) 100
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(+ terms including vorticity and curvature)




Thus, our final expression for the dissipative part of the stress-energy tensor, up to
second order in derivatives, is

1" = —po”

+nm | Do) + J“V(V-u)] + K [R““’) — (d— 2)uaRa<“”>’6u5] (3.11)
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The five new constants are 7q, K, A1 23. Note that using lowest order relations II*” =
—not”, eqs. (3.5) and Dn = —nV-u, eq. (3.11) may be rewritten in the form

" = —not” — m [<DH’“’> + d%dlﬂ’“’(v-u)]
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This equation is, in form, similar to an equation of the Israel-Stewart theory (see section 6).
In the linear regime it actually coincides with the Israel-Stewart theory (6.1). We empha-
size, however, that one cannot claim that eq. (3.12) captures all orders in the momentum
expansion (see section 6).



DNMR equations

Denicol, Niemi, Molnar, Rischke (DNMR)
simultaneous expansion in the Knudsen number and inverse Reynolds humber

approach based on the kinetic theory
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the version of equations shown is for RTA version of the Boltzmann kinetic equation, with neglected vorticity, for standard form of
the collision term additional terms (with new kinetic coefficients) appear

shear-bulk coupling n — ¢



A series of papers by Amaresh Jaiswal

Relativistic dissipative hydrodynamics from kinetic theory with relaxation time approximation
Amaresh Jaiswal (Tata Inst.). Feb 25, 2013. 5 pp.

Published in Phys.Rev. C87 (2013) no.5, 051901




Relaxation-time
approximation

u - p
pro,f = — (f — fo), fi=fo— —2 phoufo. fr=fo— -2 phaufi, ...,
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Anisotropic hydrodynamics




Thermodynamic formulation Kinetic-theory formulation

R. Ryblewski, WF M. Martinez, M. Strickland
PRC 83, 034907 (2011), JPG 38 (2011) 015104 NPA 848, 183 (2010), NPA 856, 68 (2011)
1. energy-momentum conservation 1. first moment of the Boltzmann equation =
OuTH” =0 energy-momentum conservation
2. ansatz for the entropy source, e.g., 2. zeroth moment of the Boltzmann equation =
A(aUM) oc (A1 — N)P/(ALN)) specific form of the entropy source

3. Generalized form of the equation of state based on the Romatschke-Strickland (RS) form

generalization of equilibrium/isotropic distributions, frequently used in the studies of anisotropic quark-gluon
plasma (here as a modified Boltzmann distribution in the local rest frame)

fas = exp <_ i2_2L+§_|22|> :exp(—ﬁ,/pi +xpﬁ> :exp(—%\/pi+(1+£) Pﬁ)

>

2
anisotropy parameter x = 1 + £ = (/\—ﬁ> and transverse-momentum scale A = A



4. Energy-momentum tensor (with single anisotropy parameter)

THY = (€—|-P_L)U'uUV — P_L gl“/ — (P_L — P“)ZMZU

(o, x) — energy density, P, (o, x) — transv. pressure, P| (o, x) — long. pressure
alternatively one may use: (A, §), P1 (A, &), P (A, §)

U — flow four-vector, Z — beam four-vector, U> = 1,2° = -1, U-Z =0
this form of T#" follows from the covariant version of RS

frs = exp (—%\/(p- U@ +¢ (p- Z)2) , U=(t/r,0,0,z/7), Z=1(z/7,0,0,t/7)

5. Several applications have been made to describe the heavy-ion data within this framework



Two expansion methods

Kinetic-theory formulation

Perturbative approach

Bazov, Heinz, Strickland
PRC 90, 044908 (2014)

f=f/:,vs+5f

@ the leading order is still described by the
Romatschke-Strickland form (accounting for the
difference between the longitudinal and
transverse pressures)

@ advanced methods of traditional viscous
hydrodynamics are used to restrict the form of
the correction 6f and to derive aHydro equations
— non-trivial dynamics included in the
transverse plane and, more generally, in (3+1)D

Non-perturbative approach
Nopoush, Ryblewski, Strickland, Tinti, WF

f= faniso + ...

all effects due to anisotropy included in the
leading order, in the generalised RS form

. (1+1)D conformal case, two anisotropy

parameters

. (1+1)D non-conformal case, two anisotropy

parameters + one bulk parameter

. full (3+1)D case. five anisotroov parameters +



Non-perturbative approach

Boost-invariant and cylindrically symmetric expansion, (1+1)D non-perturbative approach
as much as possible, the momentum anisotropy is included in the leading order

K=, pPY
f(xap):faniso = liso <\/p poP )

A

. Conformal case, two anisotropy parameters
L. Tinti, WF, Phys.Rev. C89 (2014) 034907
=Y — UHF UV + guv
u " =0 55 =0
e"” = diag(0, &) € = (&x, &y, &2) (inthe local rest frame)

. Non-conformal case, two anisotropy parameters + one bulk parameter
M. Nopoush, R. Ryblewski, M. Strickland, Phys. Rev. C 90 (2014) 014908



equations of motion for &4, &, ®, A, T, u” for (1+1)d case are obtained by taking moments of the
Boltzmann equation in the relaxation time approximation

prof=pt e S

Te q

Oth moment (1 eq.)
1st moment (2 eq.)

Landau matching condition for the energy
(1eq.)

2nd moment (2 eq.)

1
Oy /de"1 LpEH =y, /de“1 L pH T — (Y —

u
OuN" = (N, = )

Uu

u,90, T"" (T4 —TH°Y)

Qv . nv
upTey, = upT

iy Apv i yi UX Apv Apv
Xuxl/a}‘e "= X“XV Teq (@eéf — o™ )
two linear combinations of these equations with
i=0,1,2,3
X, Y defined in addition to U and Z
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3A.

3B.

(3+1) dimensional framework for leading order anisotropic hydrodynamics
L. Tinti, Phys. Rev. C92 (2015) 014908

Testing different formulations of leading order anisotropic hydrodynamics
L. Tinti, R. Ryblewski, W. Florkowski, M. Strickland, Nucl. Phys. A946 (2016) 29

=Y = Ut U 4 €M — AP D
u " =0 ¢ =0 (5parametersin ")

Anisotropic matching principle for the hydrodynamic expansion, L. Tinti, arXiv:1506.07164

VP = p? )

THY = / dP p* P faniso (X, P) = / de“‘p”fiso< 3

Instead of looking at the moments we can derive first the equations for the pressure corrections,
following DNMR (Denicol, Niemi, Molnar, Rischke) strategy used for viscous hydrodynamics

This is the latest development for the leading order, that may be supplemented by NLO terms
following the approach by Heinz et al.



