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Introduction and Motivation



Double Scaling Limits

• ’t Hooft realized that SU(N) gauge theory simplifies in the

limit g → 0, N →∞, with g2N a constant.

• This is the prototypical example of a double scaling limit.

• Another class of examples comes from considering a QFT

with some coupling g and studying the operators with large

charge n under a global symmetry. [Hellerman et al. -2015;

Arias-Tamargo et al - 2019]

• N = 2 superconformal theories with gauge group SU(N) are

an attractive setup. We will study correlation functions of

Coulomb branch operators with large U(1)R-charge.

• The goal is to exhibit the simplicity that emerges in the

double scaling limit.

• As we will see this limit enables us to probe some massive

BPS states in the theory.
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Two Point Functions in Conformal Field Theories

• For isolated conformal field theories, two point functions of

primary operators are trivial: they are fixed by conformal

symmetry up to normalization.

• For conformal field theories that allow exactly marginal

deformations, the normalization is not global: the two point

functions have non a non-trivial dependence on exactly

marginally couplings.

• The complexified gauge coupling τ is always exactly marginal

for a superconformal N = 2, SU(N) theory.

• For a superconformal primary O, the two point function is:

〈
O(x), Ō(y)

〉
=

GOŌ(τ, τ̄)

(x − y)2∆(O)
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Coulomb Branch Operators and Localization

• The Coulomb branch operators of an N = 2, SU(N) theory

are generated by tr φk with 1 < k < N.

• Their VEVs parameterize the Coulomb branch of vacua.

• Using supersymmetric localization the partition function of

any superconformal N = 2 theory on 4-sphere can be reduced

to finite dimensional integral over the Coulomb branch.

[Pestun - 2007].

• For an SU(N) gauge theory, this is a one matrix model i.e an

integral over a matrix M that depends only on traces of M.

ZS4 =

∫
[da] exp

(
−4π Im τ tr a2

)
Z1-loop(tr a2, tr a3, · · · )

With [da] =
∏N
µ=1 daµ

∏
ν<µ(aµ − aν)2δ

(∑
µ aµ

)
.
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Correlation functions from Localization [Gerchkovitz et al. 2017]

• We will consider the simplest infinite sequence of Coulomb

branch operators with increasing R-charge On = (trφ2)n.

• On S4, the correlation function can be evaluated using

localization. 〈
On(N)Ōm(S)

〉
S4 = ∂nτ ∂

m
τ̄ ZS4

• This is not diagonal! Metric on sphere and flat space are

conformally equivalent but due to conformal anomaly the map

between flat space operators and those on S4 is not trivial.

• To get flat space operator : On : we need to perform

Gram-Schmidt orthogonalization on 1,O1,O2, · · · ,On.

[Bourget et al - 2018]
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A Double Scaling Limit ?

• Let’s consider the double scaling limit:

F (κ) = lim
n→∞

〈
On(x), Ōn(y)

〉N=2〈
On(x), Ōn(y)

〉N=4

With κ the finite coupling 2πn
Im τ

• Does this limit even exist? Maybe it is trivial?

• Localization seems to provide a path to answer this question

but it is complicated by conformal anomaly.

• Progress can be made by exploiting the integrable structures

in N = 2 theories. For SQCD see:[Bourget et al - 2018,

Beccaria - 2018]

• Grassi, Komargodski and Tizzano realized that for SU(2) the

Gram-Schmidt process is hiding another “dual” matrix model.

• This observation in fact generalizes to higher rank case.
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Large n Correlators and Positive

Matrices



Correlators from Determinants

• Define the the n × n matrix M(n) by M
(n)
kl = ∂kτ ∂

l
τ̄ZS4 .

• Then the flat space correlator can be written as a ratio of

determinants.

G2n =
detM(n+1)

detM(n)

• Using the localization result M(n) is a matrix with each

element a finite dimensional integral. We can exchange

detM(n) for an integral over determinants.

detM(n) =
1

n!

∫ n−1∏
i=0

[dai ] e
−4π Im τ tr a2

i Z1-loop(ai )
∏
j<i

(tr a2
i − tr a2

j )2

• We have an integral over a matrix W whose eigenvalues are

tr a2
i !
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The Dual Matrix Model

• The result is that we are dealing with a matrix integral

detM(n) =
1

n!

∫
[dW ] exp(−V (W ))

• Eigenvalues of W are tr a2
i : W is a positive matrix.

• The large n-limit of potential V can be determined from the

interacting action of the N = 2 theory.

• It turns out that if rank of gauge group is greater than 1, V

contains higher traces of all orders!

• The higher trace operators are suppressed just right to

contribute at the same order as single trace operators.

• So the large n limit exists but it is not planar.
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Planarity and Diagrams

• This non-planarity has a very interesting

analog in the super-diagram analysis.

• In the ’t Hooft limit only the planar diagrams

contribute to leading order in N.

• In contrast the large n limit is dominated by

diagrams that maximize genus at a given

order in gauge coupling.

• Concretely the relevant diagrams are all

possible completions of the skeleton.

• The 1-loop correction is planar but the

2-loop correction has genus 1 due to an

insertion of the box diagram.

Basic Skeleton

The box diagram

ai

aj

bi

bj
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Perturbative results

• In summary, we have an efficient algorithm for perturbative

calculations able to quickly produce long series expansion to

very high order. For example for N = 2 Superconformal QCD

we obtain:

log F (κ) = −9 ζ(3)

2
κ2 +

25(2N2 − 1) ζ(5)

N(N2 + 3)
κ3 − 1225(8N6 + 4N4 − 3N2 + 3) ζ(7)

16N2(N2 + 1)(N2 + 3)(N2 + 5)
κ4 + · · ·

• The algorithm is completely generic and doesn’t require any

assumptions beyond a simple gauge group and the input of

partition function on S4 as an integral over Coulomb branch.

• But non-planarity makes it hard to resum the perturbative

results in a way amenable to probing the large κ regime, in

contrast to SU(2) where it is possible [Beccaria 2019, Grassi

et al. 2019].
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One Point Functions in the

Presence of Wilson Loop
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Figure credits: M. Billo, F. Galvagno, P. Gregori and A. Lerda



Wilson Loops

• For a more striking simplification we turn to one point

functions of chiral operators in the presence of Wilson loops.

• These can also be computed using localization,

〈: On :W〉 ∝
∫

[da] : On : tr exp(2πa) exp
(
−4π Im τ tr a2

)
Z1-loop(a)

• It turns out that the large n limit is the same as that of two

point functions, 〈: On :W〉 →
〈
: (tr a2)n : tr a2n

〉
.

• The large n limit of this two point function is captured by an

“SU(2)” like matrix model!

Zeff =

∫
dr rN

2−2 exp
(
−4π Im τ r2

)
Z1-loop(ra0).

• a0 =

(
1√

N (N−1)
, 1√

N (N−1)
, · · · , 1√

N (N−1)
,−
√

N−1
N

)
is the

point on SN−1 that maximizes tr a2n.
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A Simple Final Result

• As a result the large n-limit is planar. This allows us to

conjecture all order resummations that reveals a strikingly

simple structure.

lim
n→∞

log
〈: On : W 〉N=2

〈: On : W 〉N=4
=

∫ ∞
0

dt et

t(et − 1)2
J (t)

• The “SU(2) like” Zeff is an integral over the line ra0 in

Coulomb branch. On this line, the VEVs of φ break

SU(N)→ U(N − 1).

• The supermultiplets split as representations of this U(N − 1).

The VEVs of φ also give mass to some of resulting fields.

• Each such massive representation r of U(N − 1) contributes a

term to to J (t) which is ±2 dim r [J0(
√

2mrt)− 1].

• mr is the mass of r at the point κa0 of the moduli space.
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An Example: N = 2 SQCD

• 2N hypermultiplets in the fundamental of U(N).
• Each fundamental hypermultiplet splits into a fundamental

and a singlet of U(N − 1). At κa0,
• U(N − 1) fundamental has mass

√
κ

N(N−1) .

• U(N − 1) singlet has mass
√

κ(N−1)
N .

• The vector multiplet splits as
• Adjoint of U(N − 1) which is massless as expected from

unbroken U(N − 1) gauge symmetry.

• 2 massive W -bosons in the fundamental of U(N − 1) with

mass
√

κN
N−1 .

The large n limit we are after is

4
∫∞

0
dt et

t (et−1)2

[
N J̃0

(
t
√

2 (N−1)κ
N

)
+ N (N − 1) J̃0

(
t
√

2κ
N (N−1)

)
− (N − 1) J̃0

(
t
√

2N κ
N−1

)]
This contains both perturbative and exponentially suppressed

non-perturbative terms.
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Conclusions and Outlook

• Leveraging localization and random matrix theory we can learn

about the large R-charge limit of N = 2, SU(N) theories.

• This requires choosing the observables (or rather the sequence

of observables) carefully.

• Is there a similar story for generic sequence of operators with

increasing R-charge?

• The large n limit of one point functions of chiral operators in

the presence of Wilson loop remains planar for SU(N) gauge

group.

• It also admits a simple and interesting interpretation in terms

of the mass spectrum at the relevant point in moduli space.

• Maybe it contains a hint of an EFT description generalizing

the SU(2) case?
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