Exact results with defects

based on: 1805.04111, 1910.06332, 1911.05082, 2004.07849 with M. Lemos, M. Meineri; M. Billó, F. Galvagno, A. Lerda; G. Bliard, V. Forini, L. Griguolo, D. Seminara

Lorenzo Bianchi

イロン イヨン イヨン イヨン

May 28th, 2020. Cortona Young

- There are several physically relevant examples
 - Wilson and 't Hooft lines
 - Boundaries and interfaces
 - 8 Rényi entropy
 - Surface defects

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- There are several physically relevant examples
 - Wilson and 't Hooft lines
 - 2 Boundaries and interfaces
 - 8 Rényi entropy
 - Surface defects
- Interplay of various techniques
 - AdS/CFT correspondence
 - Supersymmetric localization
 - Integrability
 - Conformal bootstrap

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- There are several physically relevant examples
 - Wilson and 't Hooft lines
 - Boundaries and interfaces
 - 8 Rényi entropy
 - Surface defects
- Interplay of various techniques
 - AdS/CFT correspondence
 - Supersymmetric localization
 - Integrability
 - Conformal bootstrap

DEFECT

비로 시로에 시로에 시험에 시험에

• They probe aspects of the theory that are not accessible to correlation functions of local operators, e.g. global structure of the gauge group.

• There are several physically relevant examples

- Wilson and 't Hooft lines
- Boundaries and interfaces
- 8 Rényi entropy
- Surface defects
- Interplay of various techniques
 - AdS/CFT correspondence
 - Supersymmetric localization
 - Integrability
 - Conformal bootstrap

비교 시민에 시민에 시민에 시민에

- They probe aspects of the theory that are not accessible to correlation functions of local operators, e.g. global structure of the gauge group.
- They preserve part of the original (super)symmetry, leading to constraints on physical observables.

CFT

• Set of conformal primary operators $\mathcal{O}_{\Delta,\ell}(\mathsf{x})$ plus descendants $\partial_{\mu_1} \dots \partial_{\mu_n} \mathcal{O}_{\Delta,\ell}$.

• Operator product expansion (OPE)

$$\mathcal{O}_i(x)\mathcal{O}_j(0) = \sum_{k \in \text{prim.}} c_{ijk} |x|^{\Delta_k - \Delta_i - \Delta_j} \left(\mathcal{O}_k(0) \underbrace{+ x^{\mu} \partial_{\mu} \mathcal{O}_k(0) + \dots}_{\text{all fixed}} \right)$$

• The set of data $\{\Delta_i, c_{ijk}\}$ fully specifies the CFT, up to extended probes.

CFT

Set of conformal primary operators O_{Δ,ℓ}(x) plus descendants ∂_{µ1}...∂_{µn}O_{Δ,ℓ}.

• Operator product expansion (OPE)

$$\mathcal{O}_{i}(x)\mathcal{O}_{j}(0) = \sum_{k \in \text{prim.}} c_{ijk} |x|^{\Delta_{k} - \Delta_{i} - \Delta_{j}} \left(\mathcal{O}_{k}(0) \underbrace{+ x^{\mu} \partial_{\mu} \mathcal{O}_{k}(0) + \dots}_{\text{all fixed}} \right)$$

- The set of data $\{\Delta_i, c_{ijk}\}$ fully specifies the CFT, up to extended probes.
- Two- and three-point functions

$$\langle \mathcal{O}_{\Delta}(x)\mathcal{O}_{\Delta}(0)
angle o \Delta \qquad \langle \mathcal{O}_i(x_1)\mathcal{O}_j(x_2)\mathcal{O}_k(x_3)
angle o c_{ijk}$$

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

CFT

Set of conformal primary operators O_{Δ,ℓ}(x) plus descendants ∂_{μ1}...∂_{μn}O_{Δ,ℓ}.

• Operator product expansion (OPE)

$$\mathcal{O}_{i}(x)\mathcal{O}_{j}(0) = \sum_{k \in \text{prim.}} c_{ijk} |x|^{\Delta_{k} - \Delta_{i} - \Delta_{j}} \left(\mathcal{O}_{k}(0) \underbrace{+ x^{\mu} \partial_{\mu} \mathcal{O}_{k}(0) + \dots}_{\text{all fixed}} \right)$$

- The set of data $\{\Delta_i, c_{ijk}\}$ fully specifies the CFT, up to extended probes.
- Two- and three-point functions

$$\langle \mathcal{O}_{\Delta}(x) \mathcal{O}_{\Delta}(0)
angle o \Delta \qquad \langle \mathcal{O}_i(x_1) \mathcal{O}_j(x_2) \mathcal{O}_k(x_3)
angle o c_{ijk}$$

• Defect operators $\hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$ with parallel $(\hat{\ell})$ and orthogonal spin (s) and descendants $\partial_{a_1} \dots \partial_{a_n} \hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

• Defect operators $\hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$ with parallel $(\hat{\ell})$ and orthogonal spin (s) and descendants $\partial_{a_1} \dots \partial_{a_n} \hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$.

$$\left< \mathcal{O}(x) \right>_W \equiv \frac{\left< \mathcal{O}(x) W \right>}{\left< W \right>} = \frac{a_{\mathcal{O}}}{r^{\Delta}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Defect operators $\hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$ with parallel $(\hat{\ell})$ and orthogonal spin (s) and descendants $\partial_{a_1} \dots \partial_{a_n} \hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$.

One-point functions

$$\left< \mathcal{O}(x) \right>_W \equiv \frac{\left< \mathcal{O}(x) W \right>}{\left< W \right>} = \frac{\mathbf{a}_{\mathcal{O}}}{r^{\Delta}}$$

Bulk to defect coupling

$$\langle \mathcal{O}(x)\hat{\mathcal{O}}(y)\rangle_W = rac{b_{\mathcal{O}\hat{\mathcal{O}}}}{r^{\Delta-\hat{\Delta}}(r^2+y^2)^{\hat{\Delta}}}$$

비교 시민에 시민에 시민에 시민에

• Defect operators $\hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$ with parallel $(\hat{\ell})$ and orthogonal spin (s) and descendants $\partial_{a_1} \dots \partial_{a_n} \hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$.

- $\langle \mathcal{O}(x) \rangle_W \equiv \frac{\langle \mathcal{O}(x)W \rangle}{\langle W \rangle} = \frac{a_{\mathcal{O}}}{r^{\Delta}}$
- · Bulk to defect coupling

$$\langle \mathcal{O}(x)\hat{\mathcal{O}}(y)\rangle_W = rac{b_{\mathcal{O}\hat{\mathcal{O}}}}{r^{\Delta-\hat{\Delta}}(r^2+y^2)^{\hat{\Delta}}}$$

Defect OPE

$$\mathcal{O}(x) = \sum_{\text{def. prim.}} \frac{b_{\mathcal{O}\hat{\mathcal{O}}}}{|x_{\perp}|^{\hat{\Delta} - \Delta}} \left(\hat{\mathcal{O}}(0) \underbrace{+\text{def. desc.}}_{\text{all fixed}} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶ ◆□▶

• Defect operators $\hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$ with parallel $(\hat{\ell})$ and orthogonal spin (s) and descendants $\partial_{a_1} \dots \partial_{a_n} \hat{\mathcal{O}}_{\hat{\Delta},\hat{\ell},s}$.

- $\langle \mathcal{O}(x) \rangle_W \equiv \frac{\langle \mathcal{O}(x)W \rangle}{\langle W \rangle} = \frac{a_{\mathcal{O}}}{r^{\Delta}}$
- · Bulk to defect coupling

$$\langle \mathcal{O}(x)\hat{\mathcal{O}}(y)\rangle_W = \frac{b_{\mathcal{O}\hat{\mathcal{O}}}}{r^{\Delta-\hat{\Delta}}(r^2+y^2)^{\hat{\Delta}}}$$

Defect OPE

$$\mathcal{O}(x) = \sum_{\text{def. prim.}} b_{\mathcal{O}\hat{\mathcal{O}}} |x_{\perp}|^{\hat{\Delta} - \Delta} \left(\hat{\mathcal{O}}(0) \underbrace{+\text{def. desc.}}_{\text{all fixed}} \right)$$

• The naive set of defect CFT data is $\{a_{\mathcal{O}}, b_{\mathcal{O}\hat{\mathcal{O}}}, \hat{\Delta}_{\hat{\mathcal{O}}}, \hat{c}_{\hat{\mathcal{O}}_1\hat{\mathcal{O}}_2\hat{\mathcal{O}}_3}\}$.

DCFT

• Defect crossing

• Defect crossing

- Subset of defect CFT data:
 - Physically (or geometrically) relevant
 - Universal (present in any defect CFT)

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Defect crossing

- Subset of defect CFT data:
 - Physically (or geometrically) relevant
 Universal (present in any defect CFT)
- Stress-tensor one-point function

$$\langle T^{ab}
angle_W = -h rac{(q-1)\delta^{ab}}{|x_\perp|^d} \ \langle T^{ij}
angle_W = h rac{(p+1)\delta^{ij} - d n^i n^j}{|x_\perp|^d}$$

Displacement operator

• A defect breaks translation invariance

$$\partial_{\mu} T^{\mu i}(x_{\perp}, x_{\parallel}) = \delta^{q}(x_{\perp}) \mathbb{D}^{i}(x_{\parallel})$$

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Displacement operator

• A defect breaks translation invariance

$$\partial_{\mu} T^{\mu i}(x_{\perp}, x_{\parallel}) = \delta^{q}(x_{\perp}) \mathbb{D}^{i}(x_{\parallel})$$

• It implements small modifications of the defect

$$\left\langle \delta \left\langle X \right\rangle_{W} = -\int d^{p}x_{\parallel} \, \delta x_{i}(x_{\parallel}) \left\langle \mathbb{D}^{i}(x_{\parallel})X \right\rangle_{W}$$

• Its two-point function is fixed by conformal symmetry

$$\langle \mathbb{D}^{i}(\mathbf{x}_{\parallel}) \mathbb{D}^{j}(\mathbf{0}) \rangle_{W} = C_{D} \frac{\delta^{ij}}{|\mathbf{x}_{\parallel}|^{2(p+1)}}$$

イロン イ団と イヨン イヨン

Normalization fixed by Ward identity, C_D is physical. Like $\langle T_{\mu\nu}T_{\rho\sigma}\rangle \sim c$.

Relation between C_D and h

For superconformal defects [LB, Lemos, 2019]

$$C_{D} = \frac{2^{p+1}(q+p-1)(p+2)}{q-1} \frac{\Gamma(\frac{p+1}{2})}{\pi^{\frac{p+1}{2}}} \frac{\pi^{\frac{q}{2}}}{\Gamma(\frac{q}{2})} h.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Relation between C_D and h

For superconformal defects [LB, Lemos, 2019]

$$C_{D} = \frac{2^{p+1}(q+p-1)(p+2)}{q-1} \frac{\Gamma(\frac{p+1}{2})}{\pi^{\frac{p+1}{2}}} \frac{\pi^{\frac{q}{2}}}{\Gamma(\frac{q}{2})} h.$$

 The relation is theory independent, but C_D and h are non-trivial functions of the parameters (e.g. λ, N).

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Relation between C_D and h

For superconformal defects [LB, Lemos, 2019]

$$C_{D} = \frac{2^{p+1}(q+p-1)(p+2)}{q-1} \frac{\Gamma(\frac{p+1}{2})}{\pi^{\frac{p+1}{2}}} \frac{\pi^{\frac{q}{2}}}{\Gamma(\frac{q}{2})} h.$$

- The relation is theory independent, but C_D and h are non-trivial functions of the parameters (e.g. λ , N).
- Conjectured for Wilson lines in $\mathcal{N} = 4$ SYM and ABJM theory [Lewkowycz, Maldacena, 2014].
- Proven for d = 4 and any q > 1 (any SUSY) [LB, Lemos, Meineri, 2018; LB, Lemos, 2019].
- Proof is general, no conceptual difficulty in its generalization.

Examples

$$p = 1, q = 3 \qquad C_D = 36 h$$

$$p = 1, q = 2 \qquad C_D = 24 h$$

$$p = 2, q = 2 \qquad C_D = 48 h$$

비교 시민에 시민에 시민에 시민에

$$\mathcal{W} = \mathsf{Tr}\mathcal{P}e^{\mathrm{i}\oint A_{\mu}dx^{\mu}}$$

• In any conformal gauge theory, the Wilson line is a conformal defect.

$$\mathcal{W} = \mathsf{Tr}\mathcal{P}e^{\mathrm{i}\oint A_{\mu}dx^{\mu}}$$

- In any conformal gauge theory, the Wilson line is a conformal defect.
- However it breaks all the supersymmetry.

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

$$\mathcal{W} = \mathsf{Tr}\mathcal{P}e^{\mathrm{i}\oint A_{\mu}dx^{\mu}}$$

- In any conformal gauge theory, the Wilson line is a conformal defect.
- However it breaks all the supersymmetry.

Supersymmetric Wilson line for $\mathcal{N} \geq 2$ SYM

$$\mathcal{W} = \mathsf{Tr}\mathcal{P}e^{\mathrm{i}\oint A_{\mu}dx^{\mu} + \oint |dx|\phi}$$

• The presence of the scalar coupling makes the straight Wilson line $\frac{1}{2}$ BPS.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\mathcal{W} = \mathsf{Tr}\mathcal{P}e^{\mathrm{i}\oint A_{\mu}dx^{\mu}}$$

- In any conformal gauge theory, the Wilson line is a conformal defect.
- However it breaks all the supersymmetry.

Supersymmetric Wilson line for $\mathcal{N} \geq 2$ SYM

$$\mathcal{W} = \mathsf{Tr}\mathcal{P}e^{\mathrm{i}\oint A_{\mu}dx^{\mu} + \oint |dx|\phi}$$

- The presence of the scalar coupling makes the straight Wilson line $\frac{1}{2}$ BPS.
- There is a defect RG flow from the Wilson loop (UV) to the $\frac{1}{2}$ BPS loop (IR) [Polchinski, Sully, 2011; Beccaria, Giombi, Tseytlin, 2017].

비교 시민에 시민에 시민에 시민에

$$\mathcal{W} = \mathsf{Tr}\mathcal{P}e^{\mathrm{i}\oint A_{\mu}dx^{\mu}}$$

- In any conformal gauge theory, the Wilson line is a conformal defect.
- However it breaks all the supersymmetry.

Supersymmetric Wilson line for $\mathcal{N} \ge 2$ SYM

$$\mathcal{W} = \mathsf{Tr}\mathcal{P}e^{\mathrm{i}\oint A_{\mu}dx^{\mu} + \oint |dx|\phi}$$

- The presence of the scalar coupling makes the straight Wilson line $\frac{1}{2}$ BPS.
- There is a defect RG flow from the Wilson loop (UV) to the $\frac{1}{2}$ BPS loop (IR) [Polchinski, Sully, 2011; Beccaria, Giombi, Tseytlin, 2017].

Displacement operator

$$\mathbb{D}^{i} = F^{ti} + \mathrm{i}D^{i}\phi$$

Correlators

$$\langle \mathbb{D}^{i}(t_{1})\mathbb{D}^{j}(t_{2})\rangle_{\mathcal{W}} = \langle \mathsf{Tr}(\mathcal{W}_{-\infty,t_{1}}\mathbb{D}^{i}(t_{1})\mathcal{W}_{t_{1},t_{2}}\mathbb{D}^{j}(t_{2})\mathcal{W}_{t_{2},\infty})\rangle_{\mathcal{W}}$$

• The displacement two-point function is related to the energy emitted by an accelerated heavy probe, the Bremsstrahlung function.

イロト イヨト イヨト イヨト

• The displacement two-point function is related to the energy emitted by an accelerated heavy probe, the Bremsstrahlung function.

Exact Bremsstrahlung function in $\mathcal{N}=4$ SYM [Correa, Henn, Maldacena, Sever, 2012]

$$B=rac{1}{2\pi^2}\lambda\partial_\lambda\log{\langle W_{ ext{circle}}
angle}$$

• $\langle W_{circle} \rangle$ is known exactly [Erickson, Semenoff, Zarembo, 2000; Drukker, Gross, 2000; Pestun, 2007].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへの

Two-point function in $\mathcal{N}=2~\text{SCFTs}$

Exact Bremsstrahlung function in $\mathcal{N} = 2$ SCFTs

$$B_{\mathcal{N}=2} = 3h = rac{1}{4\pi} \partial_b \log \langle W_b
angle |_{b=1}$$

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Two-point function in $\mathcal{N}=2~\text{SCFTs}$

Exact Bremsstrahlung function in $\mathcal{N} = 2$ SCFTs

$$B_{\mathcal{N}=2} = 3h = rac{1}{4\pi} \partial_b \log \langle W_b
angle |_{b=1}$$

- It was initially conjectured [Fiol, Gerchkowitz, Komargodski, 2015] based on consistent perturbative evidence [Fiol, Gerchkowitz, Komargodski, 2015; Gomez, Mauri, Penati, 2018].
- The first equality is equivalent to $C_D = 36h$ [LB,Lemos, Meineri, 2018].
- The second equality was proven using defect CFT techniques [LB, Billò, Galvagno, Lerda, 2019].

$$\partial_{b} \ln \langle W_{b} \rangle \Big|_{b=1} = \int_{S^{4}} \frac{1}{2} \langle T_{\mu\nu} \rangle_{W} \partial_{b} g^{\mu\nu} \Big|_{b=1} + \langle O_{2} \rangle_{W} \partial_{b} M \Big|_{b=1} + \dots$$

• Four-point functions in 1d CFT are functions of a single cross ratio

$$\langle \phi(t_1)\phi(t_2)\phi(t_3)\phi(t_4) \rangle_{\mathcal{W}} = \frac{1}{t_{13}^{2\Delta}t_{24}^{2\Delta}}g(\chi) \qquad \qquad \chi = \frac{t_{12}t_{34}}{t_{13}t_{24}}$$

• Four-point functions in 1d CFT are functions of a single cross ratio

$$\langle \phi(t_1)\phi(t_2)\phi(t_3)\phi(t_4)
angle_{\mathcal{W}} = rac{1}{t_{13}^{2\Delta}t_{24}^{2\Delta}}g(\chi) \qquad \qquad \chi = rac{t_{12}t_{34}}{t_{13}t_{24}}$$

 In N = 4 SYM and in ABJM theory (a 3d relative of N = 4 SYM) the Wilson line is dual to the fundamental string in AdS₅ × S⁵ and AdS₄ × CP³ respectively.

イロン イヨン イヨン イヨン

• Four-point functions in 1d CFT are functions of a single cross ratio

$$\langle \phi(t_1)\phi(t_2)\phi(t_3)\phi(t_4) \rangle_{\mathcal{W}} = rac{1}{t_{13}^{2\Delta}t_{24}^{2\Delta}}g(\chi) \qquad \qquad \chi = rac{t_{12}t_{34}}{t_{13}t_{24}}$$

- In $\mathcal{N} = 4$ SYM and in ABJM theory (a 3d relative of $\mathcal{N} = 4$ SYM) the Wilson line is dual to the fundamental string in $AdS_5 \times S^5$ and $AdS_4 \times \mathbb{CP}^3$ respectively.
- Defect operators in the displacement multiplet are in one-to-one correspondence with worldsheet fluctuations.

イロト イ団ト イヨト イヨト

• Four-point functions in 1d CFT are functions of a single cross ratio

$$\langle \phi(t_1)\phi(t_2)\phi(t_3)\phi(t_4)
angle_{\mathcal{W}} = rac{1}{t_{13}^{2\Delta}t_{24}^{2\Delta}}g(\chi) \qquad \qquad \chi = rac{t_{12}t_{34}}{t_{13}t_{24}}$$

- In $\mathcal{N} = 4$ SYM and in ABJM theory (a 3d relative of $\mathcal{N} = 4$ SYM) the Wilson line is dual to the fundamental string in $AdS_5 \times S^5$ and $AdS_4 \times \mathbb{CP}^3$ respectively.
- Defect operators in the displacement multiplet are in one-to-one correspondence with worldsheet fluctuations.

Witten diagrams [Giombi, Roiban, Tseytlin, 2017; LB, Bliard, Forini, Griguolo, Seminara, 2020]

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Surface operators in superconformal theories are realized [Gukov, Witten, 2006; Alday, Gaiotto, Gukov, Tachikawa, Verlinde, 2010] by prescribing a singular behaviour to ambient 4d fields at the 2d submanifold or by coupling 2d and 4d matter [Gomis, Le Floch, 2016]

イロン イヨン イヨン イヨン

- Surface operators in superconformal theories are realized [Gukov, Witten, 2006; Alday, Gaiotto, Gukov, Tachikawa, Verlinde, 2010] by prescribing a singular behaviour to ambient 4d fields at the 2d submanifold or by coupling 2d and 4d matter [Gomis, Le Floch, 2016]
- Many exact results for the sphere partition function and superconformal index, few results for defect correlators [Drukker, Gomis, Matsuura, 2008; Chalabi, O'Bannon, Robinson, Sisti, 2020]

イロト 不得 トイヨト イヨト ヨ

- Surface operators in superconformal theories are realized [Gukov, Witten, 2006; Alday, Gaiotto, Gukov, Tachikawa, Verlinde, 2010] by prescribing a singular behaviour to ambient 4d fields at the 2d submanifold or by coupling 2d and 4d matter [Gomis, Le Floch, 2016]
- Many exact results for the sphere partition function and superconformal index, few results for defect correlators [Drukker, Gomis, Matsuura, 2008; Chalabi, O'Bannon, Robinson, Sisti, 2020]
- A subsector of local operators in $\mathcal{N} = 2$ theories, when restricted to a plane and properly twisted, form a chiral algebra [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees, 2015].

- Surface operators in superconformal theories are realized [Gukov, Witten, 2006; Alday, Gaiotto, Gukov, Tachikawa, Verlinde, 2010] by prescribing a singular behaviour to ambient 4d fields at the 2d submanifold or by coupling 2d and 4d matter [Gomis, Le Floch, 2016]
- Many exact results for the sphere partition function and superconformal index, few results for defect correlators [Drukker, Gomis, Matsuura, 2008; Chalabi, O'Bannon, Robinson, Sisti, 2020]
- A subsector of local operators in $\mathcal{N} = 2$ theories, when restricted to a plane and properly twisted, form a chiral algebra [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees, 2015].

- The defect identity introduces in chiral algebra a non-vacuum module $|\sigma\rangle$ [Gaiotto, Cordova, Shao, 2017]
- We worked out several non-trivial properties of this module, in particular [LB, Lemos, 2019]

$$\langle \sigma | T(z) | \sigma \rangle = -3\pi^2 \frac{h}{z^2}$$

- Identifying the module associated to the defect identity provides a way of computing *h*.
- The construction gives access to an infinite number of defect CFT data upon the identification of 4d and 2d operators.

Conclusions and open questions

- Defect correlators in CFTs are related to physically interesting observables.
- The development of exact techniques for these quantities allows us to explore the non-perturbative regime of CFTs.

Conclusions and open questions

- Defect correlators in CFTs are related to physically interesting observables.
- The development of exact techniques for these quantities allows us to explore the non-perturbative regime of CFTs.
- There are many specific questions that remain to be answered, but more generally one could ask
 - What is the landscape of conformal defects in a given bulk CFT?
 - ② Does the bulk theory determine completely the spectrum of allowed defects?
 - What are the non-trivial conformal defects one can insert in the 3d Ising model?

(日) (同) (三) (三) (三) (○) (○)

Conclusions and open questions

- Defect correlators in CFTs are related to physically interesting observables.
- The development of exact techniques for these quantities allows us to explore the non-perturbative regime of CFTs.
- There are many specific questions that remain to be answered, but more generally one could ask
 - What is the landscape of conformal defects in a given bulk CFT?
 - ② Does the bulk theory determine completely the spectrum of allowed defects?
 - What are the non-trivial conformal defects one can insert in the 3d Ising model?

THANK YOU

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

 $\mathcal{N}=$ 6 Chern-Simons theory with matter. SCFT in 3d

 $\begin{array}{l} \mbox{Type IIA superstring} \\ \mbox{in } AdS_4 \times \mathbb{CP}^3 \end{array}$

$$\lambda = \frac{N}{k}$$

 $\mathcal{N}=$ 6 Chern-Simons theory with matter. SCFT in 3d

Type IIA superstring in $AdS_4 \times \mathbb{CP}^3$

$$\lambda = \tfrac{N}{k}$$

• Gauge group $U(N)_k \times U(M)_{-k}$, but here M = N.

• Gauge group $U(N)_k \times U(M)_{-k}$, but here M = N.

イロト イヨト イヨト イヨト

• Gauge group $U(N)_k \times U(M)_{-k}$, but here M = N.

• Integrability results depend on a coupling h, in principle non-trivially related to λ .

$$\mathcal{N} = 4 \text{ SYM} \rightarrow \lambda = (4\pi h)^2 \qquad \text{COMPUTED}$$

$$ABJM \rightarrow \lambda = \frac{\sinh^2 2\pi h}{2\pi} {}_3F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, \frac{3}{2}; -\sinh^2 2\pi h\right) \qquad \text{CONJECTURE}$$

• There are checks of the conjecture [Gromov, Sizov, 2014] at weak [Leoni, Mauri, Minahan, Ohlsson Sax, Santambrogio, Sieg, 2010] and strong [LB, M.S.Bianchi, Bres, Forini, Vescovi,2014] Coupling

Lorenzo Bianchi (INFN)

Wilson loops in ABJM theory

• The landscape of conformal Wilson loops in ABJM is richer than $\mathcal{N} = 4$ SYM.

Scalar coupling [Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Yamaguchi, 2008]

$$W = \operatorname{Tr} \mathcal{P} e^{-i \oint A \cdot x + \oint |dx| \mathcal{M}_J^I C_I \overline{C}^J} \qquad I, J = 1, ..., 4$$

With the maximally supersymmetric coupling $\mathcal{M}_{I}^{J} = \text{diag}(-1, -1, 1, 1)$, W is $\frac{1}{6}$ BPS.

イロト イポト イヨト イヨト

Wilson loops in ABJM theory

• The landscape of conformal Wilson loops in ABJM is richer than $\mathcal{N} = 4$ SYM.

Scalar coupling [Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Yamaguchi, 2008]

$$W = \mathsf{Tr}\mathcal{P}e^{-i\oint A \cdot x + \oint |dx|\mathcal{M}_J{}^I C_I \overline{C}^J} \qquad I, J = 1, ..., 4$$

With the maximally supersymmetric coupling $\mathcal{M}_I^J = \text{diag}(-1, -1, 1, 1)$, W is $\frac{1}{6}$ BPS.

• The $\frac{1}{2}$ BPS Wilson loop is more complicated [Drukker, Trancanelli, 2010]

$$W = \frac{1}{2N} \operatorname{Tr} \left[P \exp \left(-i \int dt \mathcal{L}(t) \right) \right]$$

• In this case $\mathcal{L}(t)$ is a U(N|N) supermatrix

$$\mathcal{L} = \begin{pmatrix} A_{\mu} \dot{x}^{\mu} - i\mathcal{M}_{J}{}^{I}\mathcal{C}_{I}\bar{\mathcal{C}}^{J} & -i\eta_{I}\bar{\psi}^{I} \\ -i\psi_{I}\bar{\eta}^{I} & \hat{A}_{\mu}\dot{x}^{\mu} - i\mathcal{M}_{J}{}^{I}\bar{\mathcal{C}}^{J}\mathcal{C}_{I} \end{pmatrix}$$

There is a one-parameter family of ¹/₆BPS intermediate cases → defect conformal manifold [Cooke, Drukker, Trancanelli, 2015; Correa, Giraldo-Rivera, Silva, 2019]

Lorenzo Bianchi (INFN)

	ABJM	$\frac{1}{2}$ BPS WL
Supergroup	<i>OSP</i> (6 4)	<i>SU</i> (1,1 3)
Bosonic subgroup	$SO(1,4) imes SU(4)_R$	$SO(1,2) imes U(1) imes SU(3)_R$

	ABJM	$\frac{1}{2}$ BPS WL
Supergroup	<i>OSP</i> (6 4)	SU(1,1 3)
Bosonic subgroup	$SO(1,4) imes SU(4)_R$	$SO(1,2) imes U(1) imes SU(3)_R$

Broken R-symmetry

 $\begin{array}{ll} \text{Breaking} & SU(4)_R \to SU(3)_R \\ \text{Defect operators} & \mathbb{O}^a(t), \bar{\mathbb{O}}_a(t) & {}^{a=1,2,3} \end{array}$

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	ABJM	$\frac{1}{2}$ BPS WL
Supergroup	<i>OSP</i> (6 4)	<i>SU</i> (1,1 3)
Bosonic subgroup	$SO(1,4) imes SU(4)_R$	$SO(1,2) imes U(1) imes SU(3)_R$

Broken R-symmetry

Breaking

 $SU(4)_R \rightarrow SU(3)_R$ Defect operators $\mathbb{O}^{a}(t), \overline{\mathbb{O}}_{a}(t) = 1,2,3$

Broken supersymmetry

Breaking $OSP(6|4) \rightarrow SU(1,1|3)$ Defect operator $\mathbb{A}_{a}(t), \overline{\mathbb{A}}^{a}(t) = 1,2,3$

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

		ABJM	$\frac{1}{2}$ BPS WL
	Supergroup	OSP(6 4)	SU(1,1 3)
	Bosonic subgroup	$SO(1,4) \times SU(4)$	$R SO(1,2) \times U(1) \times SU(3)_R$
•	Broken R-symmetry		
	В	reaking S	$U(4)_R ightarrow SU(3)_R$
	D	efect operators \mathbb{O}	$(t), \bar{\mathbb{O}}_{a}(t)$ a=1,2,3
٩	Broken supersymmetry		
	Bre	eaking OSF	P(6 4) ightarrow SU(1,1 3)
	De	fect operator $\mathbb{A}_a(t)$	$(z), ar{\mathbb{A}}^{a}(t)$ $_{a=1,2,3}$
٩	Multiplets		
		$\left(\mathbb{F}(t) \right)$	$\overline{\mathbb{F}}(t)$
		Q ^a	Q _a
		*	
		$\mathbb{O}^{n}(t)$	$\mathbb{O}_{a}(t)$
	SU(1,1 3) chiral mult	. < ↓	\downarrow $>$ $SU(1, 1 3)$ antichiral mult
		$\mathbb{A}_{a}(t)$	$\bar{\mathbb{A}}^{\mathfrak{s}}(t)$
		* •	5()
		(U(t)	$\mathbb{D}(t)$

String in $AdS_4 \times \mathbb{C}P^3$

- The $\frac{1}{2}$ BPS Wilson line in ABJM is dual to the fundamental string solution ending on the defect at the boundary.
- Introduce static gauge [Drukker, Gross, Tseytlin, 2000]

$$ds_{AdS_4}^2 = \frac{dx^{\mu}dx_{\mu} + dz^2}{z^2} \qquad x^0 = \tau \qquad z = \sigma$$

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

String in $AdS_4 \times \mathbb{C}P^3$

- The $\frac{1}{2}$ BPS Wilson line in ABJM is dual to the fundamental string solution ending on the defect at the boundary.
- Introduce static gauge [Drukker, Gross, Tseytlin, 2000]

$$ds^2_{AdS_4} = \frac{dx^{\mu}dx_{\mu} + dz^2}{z^2} \qquad x^0 = \tau \qquad z = \sigma$$

• Induced AdS₂ worldsheet metric

$$ds^2 = \frac{d\tau^2 + d\sigma^2}{\sigma^2}$$

- Fluctuation modes of the worldsheet are naturally associated to contour deformations.
- AdS dual of the displacement multiplet

Grading	Operator	Δ	m^2
Fermion	$\mathbb{F}(t)$	$\frac{1}{2}$	0
Boson	$\mathbb{O}^{a}(t)$	ī	0
Fermion	$\mathbb{A}_{a}(t)$	$\frac{3}{2}$	1
Boson	$\mathbb{D}(t)$	2	2

イロン 不良と 不良と 油

• Chiral superfield $(y = t + \theta^a \overline{\theta}_a)$

$$\Phi(y,\theta) = \mathbb{F}(y) + \theta_{a}\mathbb{O}^{a}(y) - \frac{1}{2}\theta_{a}\theta_{b}\epsilon^{abc}\mathbb{A}_{c}(y) + \frac{1}{3}\theta_{a}\theta_{b}\theta_{c}\epsilon^{abc}\mathbb{D}(y)$$

• Two-point function

$$\langle \Phi(y_1, \theta_1) \bar{\Phi}(y_2, \bar{\theta}_2) \rangle = \frac{C_{\Phi}}{\langle 1\bar{2} \rangle} \qquad \langle 1\bar{2} \rangle = y_1 - y_2 - 2\theta_{a1} \bar{\theta}^{a_2}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

• Chiral superfield $(y = t + \theta^a \bar{\theta}_a)$

$$\Phi(y,\theta) = \mathbb{F}(y) + \theta_{\mathfrak{s}} \mathbb{O}^{\mathfrak{s}}(y) - \frac{1}{2} \theta_{\mathfrak{s}} \theta_{\mathfrak{b}} \, \epsilon^{\mathfrak{s}\mathfrak{b}\mathfrak{c}} \, \mathbb{A}_{\mathfrak{c}}(y) + \frac{1}{3} \theta_{\mathfrak{s}} \theta_{\mathfrak{b}} \theta_{\mathfrak{c}} \, \epsilon^{\mathfrak{s}\mathfrak{b}\mathfrak{c}} \mathbb{D}(y)$$

Two-point function

$$\langle \Phi(y_1, \theta_1) \bar{\Phi}(y_2, \bar{\theta}_2) \rangle = \frac{C_{\Phi}}{\langle 1\bar{2} \rangle} \qquad \langle 1\bar{2} \rangle = y_1 - y_2 - 2\theta_{a_1} \bar{\theta}_{a_2}$$

 Co, a.k.a. the Bremsstrahlung function is known exactly in a closed form [LB, Preti, Vescovi, 2018] after a long effort [Lewkowycz, Maldacena, 2013; M.S.Bianchi, Griguolo, Leoni, Penati, Seminara, 2014; Aguilera-Damia, Correa, Silva, 2014; LB, Griguolo, Preti, Seminara, 2017; M.S.Bianchi, Griguolo, Mauri, Penati, Seminara, 2018]

$$\frac{1}{2}C_{\Phi} = B_{1/2} = \frac{\kappa}{64\pi} {}_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}; 2; -\frac{\kappa^{2}}{16}\right) \qquad \lambda = \frac{\kappa}{8\pi} {}_{3}F_{2}\left(\frac{1}{2}, \frac{1}{2}; \frac{1}{2}; 1, \frac{3}{2}; -\frac{\kappa^{2}}{16}\right)$$

• Chiral superfield $(y = t + \theta^a \bar{\theta}_a)$

$$\Phi(y,\theta) = \mathbb{F}(y) + \theta_{\mathfrak{s}} \mathbb{O}^{\mathfrak{s}}(y) - \frac{1}{2} \theta_{\mathfrak{s}} \theta_{\mathfrak{b}} \epsilon^{\mathfrak{s} \mathfrak{b} \mathfrak{c}} \mathbb{A}_{\mathfrak{c}}(y) + \frac{1}{3} \theta_{\mathfrak{s}} \theta_{\mathfrak{b}} \theta_{\mathfrak{c}} \epsilon^{\mathfrak{s} \mathfrak{b} \mathfrak{c}} \mathbb{D}(y)$$

Two-point function

$$\langle \Phi(y_1, \theta_1) \bar{\Phi}(y_2, \bar{\theta}_2) \rangle = \frac{\mathcal{L}_{\Phi}}{\langle 1\bar{2} \rangle} \qquad \langle 1\bar{2} \rangle = y_1 - y_2 - 2\theta_{a_1} \bar{\theta}_{a_2}$$

 Co, a.k.a. the Bremsstrahlung function is known exactly in a closed form [LB, Preti, Vescovi, 2018] after a long effort [Lewkowycz, Maldacena, 2013; M.S.Bianchi, Griguolo, Leoni, Penati, Seminara, 2014; Aguilera-Damia, Correa, Silva, 2014; LB, Griguolo, Preti, Seminara, 2017; M.S.Bianchi, Griguolo, Mauri, Penati, Seminara, 2018]

$$\frac{1}{2}C_{\Phi} = B_{1/2} = \frac{\kappa}{64\pi} {}_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}; 2; -\frac{\kappa^{2}}{16}\right) \qquad \lambda = \frac{\kappa}{8\pi} {}_{3}F_{2}\left(\frac{1}{2}, \frac{1}{2}; \frac{1}{2}; 1, \frac{3}{2}; -\frac{\kappa^{2}}{16}\right)$$

• The effective coupling κ is simply related to the conjectured expression for $h(\lambda)$

$$\kappa = 4 \sinh 2\pi h$$

- We expect a relatively simple result in terms of the integrability coupling *h*.
- Unfortunately, an integrability result is still lacking.

Lorenzo Bianchi (INFN)

• Single superconformal invariant compatible with chirality (no nilpotent invariants)

$$\langle \Phi(y_1, \theta_1) \bar{\Phi}(y_2, \bar{\theta}_2) \Phi(y_3, \theta_3) \bar{\Phi}(y_4, \bar{\theta}_4)
angle = rac{C_{\Phi}^2}{\langle 1\bar{2}
angle \langle 3\bar{4}
angle} f(\mathcal{Z}) \qquad \mathcal{Z} = rac{\langle 1\bar{2}
angle \langle 3\bar{4}
angle}{\langle 1\bar{4}
angle \langle 3\bar{2}
angle}$$

- Single superconformal invariant compatible with chirality (no nilpotent invariants) $\langle \Phi(y_1, \theta_1) \bar{\Phi}(y_2, \bar{\theta}_2) \Phi(y_3, \theta_3) \bar{\Phi}(y_4, \bar{\theta}_4) \rangle = \frac{C_{\Phi}^2}{\langle 1\bar{2} \rangle \langle 3\bar{4} \rangle} f(\mathcal{Z}) \qquad \mathcal{Z} = \frac{\langle 1\bar{2} \rangle \langle 3\bar{4} \rangle}{\langle 1\bar{4} \rangle \langle 3\bar{2} \rangle}$
- The superprimary correlator contains all the information

$$\langle \mathbb{F}(t_1)\overline{\mathbb{F}}(t_2)\mathbb{F}(t_3)\overline{\mathbb{F}}(t_4)\rangle = \frac{C_{\Phi}^2}{t_{12}t_{34}}f(z) \qquad z = \frac{t_{12}t_{34}}{t_{13}t_{24}}$$

• Crossing and unitarity put strong constraints on the structure of f(z).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへの

• Single superconformal invariant compatible with chirality (no nilpotent invariants)

$$\langle \Phi(y_1, heta_1)ar{\Phi}(y_2,ar{ heta}_2)\Phi(y_3, heta_3)ar{\Phi}(y_4,ar{ heta}_4)
angle = rac{C_{\Phi}^2}{\langle 1ar{2}
angle\,\langle 3ar{4}
angle}\,f(\mathcal{Z}) \qquad \mathcal{Z} = rac{\langle 12
angle\,\langle 34
angle}{\langle 1ar{4}
angle\,\langle 3ar{2}
angle}$$

• The superprimary correlator contains all the information

$$\langle \mathbb{F}(t_1)\overline{\mathbb{F}}(t_2)\mathbb{F}(t_3)\overline{\mathbb{F}}(t_4) \rangle = \frac{C_{\Phi}^2}{t_{12}t_{34}}f(z) \qquad z = \frac{t_{12}t_{34}}{t_{13}t_{24}}$$

- Crossing and unitarity put strong constraints on the structure of f(z).
- Generalized free field theory is clearly a consistent solution

$$f^{(0)}(z) = 1 - z$$

(日) (周) (王) (王) (王)

• Single superconformal invariant compatible with chirality (no nilpotent invariants)

$$\langle \Phi(y_1, heta_1)ar{\Phi}(y_2,ar{ heta}_2)\Phi(y_3, heta_3)ar{\Phi}(y_4,ar{ heta}_4)
angle = rac{C_{\Phi}^2}{\langle 1ar{2}
angle\,\langle 3ar{4}
angle}\,f(\mathcal{Z}) \qquad \mathcal{Z} = rac{\langle 1ar{2}
angle\,\langle 3ar{4}
angle}{\langle 1ar{4}
angle\,\langle 3ar{2}
angle}$$

• The superprimary correlator contains all the information

$$\langle \mathbb{F}(t_1)\overline{\mathbb{F}}(t_2)\mathbb{F}(t_3)\overline{\mathbb{F}}(t_4) \rangle = \frac{C_{\Phi}^2}{t_{12}t_{34}}f(z) \qquad z = \frac{t_{12}t_{34}}{t_{13}t_{24}}$$

- Crossing and unitarity put strong constraints on the structure of f(z).
- Generalized free field theory is clearly a consistent solution

$$f^{(0)}(z) = 1 - z$$

• We consider the perturbation

$$f(z) = f^{(0)}(z) + \epsilon f^{(1)}(z)$$

- The first order analytic bootstrap analysis gives infinitely many solution.
- We selected the "minimal" one according to a criterium on the asymptotic behaviour of anomalous dimensions established in [Liendo, Meneghelli, Mitev, 2018]

$$f^{(1)}(z) = -\frac{(1-z)^3}{z}\log(1-z) + z(3-z)\log(-z) + z - 1$$

Lorenzo Bianchi (INFN)

Witten diagrams [LB, Bliard, Forini, Griguolo, Seminara, 2020]

• The result can be confirmed by the computation of Witten diagrams in AdS₂

$$\begin{split} S_{B} &\equiv T \int d^{2}\sigma \sqrt{g} \ L_{B} \,, \qquad L_{B} = \ L_{2} + L_{4X} + L_{2X,2w} + L_{4w} + \dots \\ L_{2} &= g^{\alpha\beta} \partial_{\alpha} X \partial_{\beta} \bar{X} + 2|X|^{2} + g^{\alpha\beta} \partial_{\alpha} w^{a} \partial_{\beta} \bar{w}_{a} \\ L_{4w} &= \ -\frac{1}{2} (w^{a} \bar{w}_{a}) (g^{\alpha\beta} \partial_{\alpha} w^{b} \partial_{\beta} \bar{w}_{b}) - \frac{1}{2} (w^{a} \bar{w}_{b}) (g^{\alpha\beta} \partial_{\alpha} w^{b} \partial_{\beta} \bar{w}_{a}) + \frac{1}{2} (g^{\alpha\beta} \partial_{\alpha} w^{a} \partial_{\beta} \bar{w}_{a})^{2} \\ &- \frac{1}{2} (g^{\alpha\beta} \partial_{\alpha} w^{a} \partial_{\beta} \bar{w}_{b}) (g^{\gamma\delta} \partial_{\gamma} \bar{w}_{a} \partial_{\delta} w^{b}) - \frac{1}{2} (g^{\alpha\beta} \partial_{\alpha} w^{a} \partial_{\beta} w^{b}) (g^{\gamma\delta} \partial_{\gamma} \bar{w}_{a} \partial_{\delta} \bar{w}_{b}) \\ & w^{a} \xrightarrow{bdy} \mathbb{O}^{a} \qquad X \xrightarrow{bdy} \mathbb{D} \end{split}$$

Witten diagrams [LB, Bliard, Forini, Griguolo, Seminara, 2020]

• The result can be confirmed by the computation of Witten diagrams in AdS₂

$$\begin{split} S_{B} &\equiv \mathcal{T} \int d^{2}\sigma \sqrt{g} \ L_{B} \,, \qquad L_{B} = \ L_{2} + L_{4X} + L_{2X,2w} + L_{4w} + \dots \\ L_{2} &= g^{\alpha\beta} \partial_{\alpha} X \partial_{\beta} \bar{X} + 2|X|^{2} + g^{\alpha\beta} \partial_{\alpha} w^{a} \partial_{\beta} \bar{w}_{a} \\ L_{4w} &= \ -\frac{1}{2} (w^{a} \bar{w}_{a}) (g^{\alpha\beta} \partial_{\alpha} w^{b} \partial_{\beta} \bar{w}_{b}) - \frac{1}{2} (w^{a} \bar{w}_{b}) (g^{\alpha\beta} \partial_{\alpha} w^{b} \partial_{\beta} \bar{w}_{a}) + \frac{1}{2} (g^{\alpha\beta} \partial_{\alpha} w^{a} \partial_{\beta} \bar{w}_{a})^{2} \\ &- \frac{1}{2} (g^{\alpha\beta} \partial_{\alpha} w^{a} \partial_{\beta} \bar{w}_{b}) (g^{\gamma\delta} \partial_{\gamma} \bar{w}_{a} \partial_{\delta} w^{b}) - \frac{1}{2} (g^{\alpha\beta} \partial_{\alpha} w^{a} \partial_{\beta} w^{b}) (g^{\gamma\delta} \partial_{\gamma} \bar{w}_{a} \partial_{\delta} \bar{w}_{b}) \\ & w^{a} \xrightarrow{bdy} \mathbb{D} \end{split}$$

• Leading order

Witten diagrams [LB, Bliard, Forini, Griguolo, Seminara, 2020]

• The result can be confirmed by the computation of Witten diagrams in AdS_2

• Next-to-leading order: perfect agreement with the bootstrap for $\epsilon = \frac{1}{4\pi T}$

A detour: Weyl anomaly

• For homogeneous 4d CFT in curved space

$$\langle T_{\mu}{}^{\mu} \rangle = a E_4 + c I_4$$

$$E_4 = R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma} - 4R^{\mu\nu} R_{\mu\nu} + R^2 \qquad I_4 = C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma}$$

A detour: Weyl anomaly

• For homogeneous 4d CFT in curved space

$$\langle T_{\mu}{}^{\mu} \rangle = a E_4 + c I_4$$
$$E_4 = R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma} - 4R^{\mu\nu} R_{\mu\nu} + R^2 \qquad I_4 = C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma}$$

• The coefficients can be related to stress tensor correlators

 $\langle T^{\mu
u} T^{
ho\sigma}
angle \sim c$ $\langle T^{\mu
u} T^{
ho\sigma} T^{\lambda\kappa}
angle \sim c, a$

Lorenzo Bianchi (INFN)

<ロ> <四> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

A detour: Weyl anomaly

• For homogeneous 4d CFT in curved space

$$\langle T_{\mu}{}^{\mu} \rangle = a E_4 + c I_4$$

$$E_4 = R^{\mu\nu\rho\sigma} R_{\mu\nu\rho\sigma} - 4R^{\mu\nu} R_{\mu\nu} + R^2 \qquad I_4 = C^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma}$$

• The coefficients can be related to stress tensor correlators

$$\langle T^{\mu
u} T^{
ho\sigma}
angle \sim c$$

 $\langle T^{\mu
u} T^{
ho\sigma} T^{\lambda\kappa}
angle \sim c, a$

For $\mathcal{N} \geq 3$ supersymmetry

a = c

Lorenzo	Bianchi ((INFN)	

A detour: defect Weyl anomaly

• For a 2d defect in a 4d CFT [Graham, Witten, 1999; Schwimmer, Theisen, 2008]

$$\langle T_{\mu}{}^{\mu}
angle_{\Sigma} = -rac{\delta^2(\mathbf{x}_{\perp})}{2\pi} \left(b R_{\Sigma} + d_1 \tilde{K}^i_{ab} \tilde{K}^{ab}_i - d_2 \gamma^{ab} \gamma^{cd} W_{acbd}
ight) ,$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

A detour: defect Weyl anomaly

• For a 2d defect in a 4d CFT [Graham, Witten, 1999; Schwimmer, Theisen, 2008]

$$\langle T_{\mu}{}^{\mu} \rangle_{\Sigma} = -\frac{\delta^2(x_{\perp})}{2\pi} \left(bR_{\Sigma} + d_1 \tilde{K}^i_{ab} \tilde{K}^{ab}_i - d_2 \gamma^{ab} \gamma^{cd} W_{acbd} \right) \,,$$

- The type A anomaly coefficient *b* is monotonically decreasing under defect RG flows [Jensen, O'Bannon, 2015] and can depend on bulk marginal couplings [Herzog, Shamir, 2019; LB, 2019]
- The type B coefficients d_1 and d_2 are related to defect correlators [Lewkowycz, Perlmutter, 2014;LB, Meineri, Myers, Smolkin, 2015]

$$d_1 = \frac{\pi^2}{16} C_D$$
 $d_2 = 3\pi^2 h$

비교 시민에 시민에 시민에 시민에

A detour: defect Weyl anomaly

• For a 2d defect in a 4d CFT [Graham, Witten, 1999; Schwimmer, Theisen, 2008]

$$\langle T_{\mu}{}^{\mu} \rangle_{\Sigma} = -\frac{\delta^2(\mathbf{x}_{\perp})}{2\pi} \left(\mathbf{b} R_{\Sigma} + \mathbf{d}_1 \tilde{K}^i_{ab} \tilde{K}^{ab}_i - \mathbf{d}_2 \gamma^{ab} \gamma^{cd} W_{acbd} \right) \,,$$

- The type A anomaly coefficient *b* is monotonically decreasing under defect RG flows [Jensen, O'Bannon, 2015] and can depend on bulk marginal couplings [Herzog, Shamir, 2019; LB, 2019]
- The type B coefficients d_1 and d_2 are related to defect correlators [Lewkowycz, Perlmutter, 2014;LB, Meineri, Myers, Smolkin, 2015]

$$d_1 = \frac{\pi^2}{16} C_D$$
 $d_2 = 3\pi^2 h$

With our relation [LB, Lemos, 2019]

$$C_D = 48h \Rightarrow d_1 = d_2$$

$$\mathcal{N}=(2,2)$$
 surfaces in 4d $\mathcal{N}=2$

	$\mathcal{N}=2$	$\mathcal{N} = (2,2)$ surface
Supergroup	<i>SU</i> (2,2 2)	$SU(1,1 1)_L imes SU(1,1 1)_R imes U(1)_{\mathcal{C}}$
Bosonic subgroup	$SO(1,5) imes SU(2)_R imes U(1)_r$	$SO(1,3) imes U(1)_{\perp} imes U(1)_r imes U(1)_R$

Displacement multiplets [Gaiotto, Gukov, Seiberg, 2013]

(antichiral, chiral)

(chiral, antichiral)

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □