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Why (super)conformal defects?

There are several physically relevant examples
1 Wilson and ’t Hooft lines
2 Boundaries and interfaces
3 Rényi entropy
4 Surface defects

Interplay of various techniques
1 AdS/CFT correspondence
2 Supersymmetric localization
3 Integrability
4 Conformal bootstrap

They probe aspects of the theory that are not accessible to correlation functions of
local operators, e.g. global structure of the gauge group.

They preserve part of the original (super)symmetry, leading to constraints on
physical observables.

Lorenzo Bianchi (INFN) Exact results with defects 28/05/2020 2 / 13



Why (super)conformal defects?

There are several physically relevant examples
1 Wilson and ’t Hooft lines
2 Boundaries and interfaces
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3 Rényi entropy
4 Surface defects

Interplay of various techniques
1 AdS/CFT correspondence
2 Supersymmetric localization
3 Integrability
4 Conformal bootstrap

They probe aspects of the theory that are not accessible to correlation functions of
local operators, e.g. global structure of the gauge group.

They preserve part of the original (super)symmetry, leading to constraints on
physical observables.

Lorenzo Bianchi (INFN) Exact results with defects 28/05/2020 2 / 13



CFT

Set of conformal primary operators O∆,`(x) plus descendants ∂µ1 . . . ∂µnO∆,`.

Operator product expansion (OPE)

Oi (x)Oj(0) =
∑

k∈prim.

cijk |x |∆k−∆i−∆j

Ok(0) +xµ∂µOk(0) + . . .︸ ︷︷ ︸
all fixed


The set of data {∆i , cijk} fully specifies the CFT, up to extended probes.

Two- and three-point functions

〈O∆(x)O∆(0)〉 → ∆ 〈Oi (x1)Oj(x2)Ok(x3)〉 → cijk

Crossing

∑
∆,`

O2(x2)

O1(x1)

O3(x3)

O4(x4)

O∆,`
=

∑
∆,`

O2(x2)

O1(x1) O4(x4)

O3(x3)

O∆,`
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DCFT [Billò, Goncalves, Lauria, Meineri, 2016]

Defect operators Ô∆̂, ˆ̀,s with parallel (ˆ̀) and orthogonal spin (s) and descendants

∂a1 . . . ∂anÔ∆̂, ˆ̀,s .
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Defect operators Ô∆̂, ˆ̀,s with parallel (ˆ̀) and orthogonal spin (s) and descendants

∂a1 . . . ∂anÔ∆̂, ˆ̀,s .
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Ô(0) +def. desc.︸ ︷︷ ︸
all fixed



Lorenzo Bianchi (INFN) Exact results with defects 28/05/2020 4 / 13
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O(x) =
∑

def. prim.

bOÔ|x⊥|
∆̂−∆

Ô(0) +def. desc.︸ ︷︷ ︸
all fixed


The naive set of defect CFT data is {aO, bOÔ, ∆̂Ô, ĉÔ1Ô2Ô3

}.
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DCFT

Defect crossing

∑
∆,`

O2(x2)

O1(x1)

O∆,`
=

∑
∆̂,ˆ̀,s

O2(x2)

O1(x1)

Ô∆̂, ˆ̀,s

Subset of defect CFT data:
1 Physically (or geometrically) relevant
2 Universal (present in any defect CFT)

Stress-tensor one-point function

〈T ab〉W = −h (q − 1)δab

|x⊥|d

〈T ij〉W = h
(p + 1)δij − d ninj

|x⊥|d
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Displacement operator

A defect breaks translation invariance

∂µT
µi (x⊥, x‖) = δq(x⊥) Di (x‖)

Di (x‖) is the displacement operator

It implements small modifications of the defect

δ 〈X 〉W = −
∫

dpx‖ δxi (x‖) 〈Di (x‖)X 〉W

Its two-point function is fixed by conformal symmetry

〈Di (x‖)D
j(0)〉

W
= CD

δij

|x‖|2(p+1)
.

Normalization fixed by Ward identity, CD is physical. Like 〈TµνTρσ〉 ∼ c.

Lorenzo Bianchi (INFN) Exact results with defects 28/05/2020 6 / 13



Displacement operator

A defect breaks translation invariance

∂µT
µi (x⊥, x‖) = δq(x⊥) Di (x‖)

Di (x‖) is the displacement operator

It implements small modifications of the defect

δ 〈X 〉W = −
∫

dpx‖ δxi (x‖) 〈Di (x‖)X 〉W

Its two-point function is fixed by conformal symmetry

〈Di (x‖)D
j(0)〉

W
= CD

δij

|x‖|2(p+1)
.

Normalization fixed by Ward identity, CD is physical. Like 〈TµνTρσ〉 ∼ c.

Lorenzo Bianchi (INFN) Exact results with defects 28/05/2020 6 / 13



Relation between CD and h

For superconformal defects [LB, Lemos, 2019]

CD =
2p+1(q + p − 1)(p + 2)

q − 1

Γ( p+1
2

)

π
p+1

2

π
q
2

Γ( q
2

)
h .

The relation is theory independent, but CD and h are non-trivial functions of the
parameters (e.g. λ, N).

Conjectured for Wilson lines in N = 4 SYM and ABJM theory [Lewkowycz, Maldacena, 2014].

Proven for d = 4 and any q > 1 (any SUSY) [LB, Lemos, Meineri, 2018; LB, Lemos, 2019].

Proof is general, no conceptual difficulty in its generalization.

Examples

p = 1, q = 3 CD = 36 h

p = 1, q = 2 CD = 24 h

p = 2, q = 2 CD = 48 h
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Wilson lines

W = TrPei
∮
Aµdx

µ

In any conformal gauge theory, the Wilson line is a conformal defect.

However it breaks all the supersymmetry.

Supersymmetric Wilson line for N ≥ 2 SYM

W = TrPei
∮
Aµdx

µ+
∮
|dx|φ

The presence of the scalar coupling makes the straight Wilson line 1
2

BPS.

There is a defect RG flow from the Wilson loop (UV) to the 1
2
BPS loop (IR) [Polchinski,

Sully, 2011; Beccaria, Giombi, Tseytlin, 2017].

Displacement operator

Di = F ti + iD iφ

Correlators

〈Di (t1)Dj(t2)〉W = 〈Tr(W−∞,t1D
i (t1)Wt1,t2D

j(t2)Wt2,∞)〉W
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Two-point function

The displacement two-point function is related to the energy emitted by an
accelerated heavy probe, the Bremsstrahlung function.

Γcusp(φ) ∼ −B φ2 ∆E ∼ 2π B

∫
dtv̇ 2 〈Di (τ)Dj(0)〉W =

12B δij

|τ |4

Exact Bremsstrahlung function in N = 4 SYM [Correa, Henn, Maldacena, Sever, 2012]

B =
1

2π2
λ∂λ log 〈Wcircle〉

〈Wcircle〉 is known exactly [Erickson,Semenoff,Zarembo,2000; Drukker,Gross,2000; Pestun,2007].
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Two-point function in N = 2 SCFTs

Exact Bremsstrahlung function in N = 2 SCFTs

BN=2 = 3h =
1

4π
∂b log 〈Wb〉|b=1

∼ ∼

It was initially conjectured [Fiol, Gerchkowitz, Komargodski, 2015] based on consistent perturbative
evidence [Fiol, Gerchkowitz, Komargodski, 2015; Gomez, Mauri, Penati, 2018].

The first equality is equivalent to CD = 36h [LB,Lemos, Meineri, 2018].

The second equality was proven using defect CFT techniques [LB, Billò, Galvagno, Lerda, 2019].

∂b ln
〈
Wb

〉∣∣∣
b=1

=

∫
S4

1

2

〈
Tµν

〉
W
∂bg

µν
∣∣
b=1

+
〈
O2

〉
W
∂bM

∣∣
b=1

+ . . .
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Four-point function

Four-point functions in 1d CFT are functions of a single cross ratio

〈φ(t1)φ(t2)φ(t3)φ(t4)〉W =
1

t2∆
13 t2∆

24

g(χ) χ =
t12t34

t13t24

In N = 4 SYM and in ABJM theory (a 3d relative of N = 4 SYM) the Wilson line
is dual to the fundamental string in AdS5 × S5 and AdS4 × CP3 respectively.

Defect operators in the displacement multiplet are in one-to-one correspondence
with worldsheet fluctuations.
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is dual to the fundamental string in AdS5 × S5 and AdS4 × CP3 respectively.

Defect operators in the displacement multiplet are in one-to-one correspondence
with worldsheet fluctuations.

Witten diagrams [Giombi, Roiban, Tseytlin,

2017; LB, Bliard, Forini, Griguolo, Seminara, 2020]

φ(t1) φ(t2)

φ(t3)φ(t4)

Lint

Analytic bootstrap [Liendo, Meneghelli, Mitev, 2018; LB, Bliard, Forini,

Griguolo, Seminara, 2020]

φ(t1) φ(t2)

φ(t3)φ(t4)

=

g(χ) =

φ(t3) φ(t2)

φ(t1)φ(t4)

g(1− χ)
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Surface defects and chiral algebras [LB, Lemos, 2019]

Surface operators in superconformal theories are realized [Gukov, Witten, 2006; Alday, Gaiotto, Gukov,

Tachikawa, Verlinde, 2010] by prescribing a singular behaviour to ambient 4d fields at the 2d
submanifold or by coupling 2d and 4d matter [Gomis, Le Floch, 2016]

Many exact results for the sphere partition function and superconformal index, few
results for defect correlators [Drukker, Gomis, Matsuura, 2008; Chalabi, O’Bannon, Robinson, Sisti, 2020]

A subsector of local operators in N = 2 theories, when restricted to a plane and
properly twisted, form a chiral algebra [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees, 2015].

The defect identity introduces in chiral algebra a
non-vacuum module |σ〉 [Gaiotto, Cordova, Shao, 2017]

We worked out several non-trivial properties of this
module, in particular [LB, Lemos, 2019]

〈σ|T (z)|σ〉 = −3π2h/z2

Identifying the module associated to the defect identity
provides a way of computing h.

The construction gives access to an infinite number of
defect CFT data upon the identification of 4d and 2d
operators.
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Conclusions and open questions

Defect correlators in CFTs are related to physically interesting observables.

The development of exact techniques for these quantities allows us to explore the
non-perturbative regime of CFTs.

There are many specific questions that remain to be answered, but more generally
one could ask

1 What is the landscape of conformal defects in a given bulk CFT?
2 Does the bulk theory determine completely the spectrum of allowed defects?
3 What are the non-trivial conformal defects one can insert in the 3d Ising model?

THANK YOU
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ABJM theory [Aharony, Bergman, Jafferis, Maldacena, 2008]

N = 6 Chern-Simons
theory with matter.

SCFT in 3d

Type IIA superstring
in AdS4 × CP3

λ = N
k

INTEGRABILITY
(N →∞)

-

Gauge group U(N)k × U(M)−k , but here M = N.

Integrability results depend on a coupling h, in principle non-trivially related to λ.

N = 4 SYM → λ = (4πh)2
COMPUTED

ABJM → λ =
sinh2 2πh

2π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;− sinh2 2πh

)
CONJECTURE

There are checks of the conjecture [Gromov, Sizov, 2014] at weak [Leoni, Mauri, Minahan, Ohlsson Sax,

Santambrogio, Sieg, 2010] and strong [LB, M.S.Bianchi, Bres, Forini, Vescovi,2014] coupling
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Wilson loops in ABJM theory

The landscape of conformal Wilson loops in ABJM is richer than N = 4 SYM.

Scalar coupling [Drukker, Plefka, Young; Chen, Wu; Rey, Suyama, Yamaguchi, 2008]

W = TrPe−i
∮
A·x+

∮
|dx|MJ

ICI C̄
J

I , J = 1, ..., 4

With the maximally supersymmetric coupling MI
J = diag(−1,−1, 1, 1), W is 1

6
BPS.

The 1
2
BPS Wilson loop is more complicated [Drukker, Trancanelli, 2010]

W =
1

2N
Tr

[
P exp

(
−i
∫

dtL(t)

)]
In this case L(t) is a U(N|N) supermatrix

L =

(
Aµẋ

µ − iMJ
ICI C̄

J −iηI ψ̄I

−iψI η̄
I Âµẋ

µ − iMJ
I C̄ JCI

)
There is a one-parameter family of 1

6
BPS intermediate cases → defect conformal

manifold [Cooke, Drukker, Trancanelli, 2015; Correa, Giraldo-Rivera, Silva, 2019]
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I Âµẋ
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Displacement multiplet [LB, Griguolo, Preti, Seminara 2017; LB, Bliard, Forini, Griguolo, Seminara, 2020]

ABJM 1
2

BPS WL
Supergroup OSP(6|4) SU(1, 1|3)
Bosonic subgroup SO(1, 4)× SU(4)R SO(1, 2)× U(1)× SU(3)R

Broken R-symmetry
Breaking SU(4)R → SU(3)R
Defect operators Oa(t), Ōa(t) a=1,2,3

Broken supersymmetry
Breaking OSP(6|4)→ SU(1, 1|3)
Defect operator �a(t), �̄a(t) a=1,2,3

Multiplets

D(t)

�a(t)

Oa(t)

F(t)
Qa

SU(1, 1|3) chiral mult.

D̄(t)

�̄a(t)

Ōa(t)

F̄(t)
Q̄a

SU(1, 1|3) antichiral mult.
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Ōa(t)

F̄(t)
Q̄a

SU(1, 1|3) antichiral mult.

Lorenzo Bianchi (INFN) Exact results with defects 28/05/2020 3 / 10



Displacement multiplet [LB, Griguolo, Preti, Seminara 2017; LB, Bliard, Forini, Griguolo, Seminara, 2020]

ABJM 1
2

BPS WL
Supergroup OSP(6|4) SU(1, 1|3)
Bosonic subgroup SO(1, 4)× SU(4)R SO(1, 2)× U(1)× SU(3)R

Broken R-symmetry
Breaking SU(4)R → SU(3)R
Defect operators Oa(t), Ōa(t) a=1,2,3
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String in AdS4 × CP3

The 1
2

BPS Wilson line in ABJM is dual to the fundamental string solution ending
on the defect at the boundary.

Introduce static gauge [Drukker, Gross, Tseytlin, 2000]

ds2
AdS4

=
dxµdxµ + dz2

z2
x0 = τ z = σ

Induced AdS2 worldsheet metric

ds2 =
dτ 2 + dσ2

σ2

Fluctuation modes of the worldsheet are
naturally associated to contour deformations.

AdS dual of the displacement multiplet

Grading Operator ∆ m2

Fermion F(t) 1
2

0
Boson Oa(t) 1 0
Fermion �a(t) 3

2
1

Boson D(t) 2 2
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Two-point function

Chiral superfield (y = t + θaθ̄a)

Φ(y , θ) = F(y) + θaO
a(y)− 1

2
θaθb ε

abc �c(y) +
1

3
θaθbθc ε

abcD(y)

Two-point function

〈Φ(y1, θ1)Φ̄(y2, θ̄2)〉 =
CΦ

〈12̄〉
〈12̄〉 = y1 − y2 − 2θa1θ̄a2

CΦ, a.k.a. the Bremsstrahlung function is known exactly in a closed form [LB, Preti,

Vescovi, 2018] after a long effort [Lewkowycz, Maldacena, 2013; M.S.Bianchi, Griguolo, Leoni, Penati, Seminara, 2014;

Aguilera-Damia, Correa, Silva, 2014; LB, Griguolo, Preti, Seminara, 2017; M.S.Bianchi, Griguolo, Mauri, Penati, Seminara, 2018]

1

2
CΦ = B1/2 =

κ

64π
2F1

(
1

2
,

1

2
; 2;−κ

2

16

)
λ =

κ

8π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2
;−κ

2

16

)
The effective coupling κ is simply related to the conjectured expression for h(λ)

κ = 4 sinh 2πh

We expect a relatively simple result in terms of the integrability coupling h.

Unfortunately, an integrability result is still lacking.
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Four-point function [LB, Bliard, Forini, Griguolo, Seminara, 2020]

Single superconformal invariant compatible with chirality (no nilpotent invariants)

〈Φ(y1, θ1)Φ̄(y2, θ̄2)Φ(y3, θ3)Φ̄(y4, θ̄4)〉 =
C 2

Φ

〈12̄〉 〈34̄〉
f (Z) Z =

〈12̄〉 〈34̄〉
〈14̄〉 〈32̄〉

The superprimary correlator contains all the information

〈F(t1)F̄(t2)F(t3)F̄(t4)〉 =
C 2

Φ

t12t34
f (z) z =

t12t34

t13t24

Crossing and unitarity put strong constraints on the structure of f (z).
Generalized free field theory is clearly a consistent solution

f (0)(z) = 1− z

We consider the perturbation

f (z) = f (0)(z) + ε f (1)(z)

The first order analytic bootstrap analysis gives infinitely many solution.
We selected the “minimal” one according to a criterium on the asymptotic
behaviour of anomalous dimensions established in [Liendo, Meneghelli, Mitev, 2018]

f (1)(z) = − (1− z)3

z
log(1− z) + z(3− z) log(−z) + z − 1
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The superprimary correlator contains all the information
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C 2

Φ

t12t34
f (z) z =

t12t34

t13t24

Crossing and unitarity put strong constraints on the structure of f (z).
Generalized free field theory is clearly a consistent solution

f (0)(z) = 1− z

We consider the perturbation

f (z) = f (0)(z) + ε f (1)(z)

The first order analytic bootstrap analysis gives infinitely many solution.
We selected the “minimal” one according to a criterium on the asymptotic
behaviour of anomalous dimensions established in [Liendo, Meneghelli, Mitev, 2018]
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z
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Witten diagrams [LB, Bliard, Forini, Griguolo, Seminara, 2020]

The result can be confirmed by the computation of Witten diagrams in AdS2

SB ≡ T

∫
d2σ
√
g LB , LB = L2 + L4X + L2X ,2w + L4w + ...

L2 = gαβ∂αX∂βX̄ + 2|X |2 + gαβ∂αw
a∂βw̄a

L4w = −1

2
(w aw̄a)(gαβ∂αw

b∂βw̄b)− 1

2
(w aw̄b)(gαβ∂αw

b∂βw̄a) +
1

2
(gαβ∂αw

a∂βw̄a)2

− 1

2
(gαβ∂αw

a∂βw̄b) (gγδ∂γw̄a∂δw
b)− 1

2
(gαβ∂αw

a∂βw
b) (gγδ∂γw̄a∂δw̄b)

w a −−→
bdy

Oa X −−→
bdy

D
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D

Leading order

O(t1) Ō(t2)

O(t3)Ō(t4)

O(t1) Ō(t2)

O(t3)Ō(t4)
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Next-to-leading order: perfect agreement with the bootstrap for ε = 1
4πT

O(t1) Ō(t2)

O(t3)Ō(t4)

L4w
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A detour: Weyl anomaly

For homogeneous 4d CFT in curved space

〈Tµµ〉 = a E4 + c I4

E4 = RµνρσRµνρσ − 4RµνRµν + R2 I4 = CµνρσCµνρσ

The coefficients can be related to stress tensor correlators

〈TµνT ρσ〉 ∼ c

〈TµνT ρσTλκ〉 ∼ c, a

For N ≥ 3 supersymmetry

a = c
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A detour: defect Weyl anomaly

For a 2d defect in a 4d CFT [Graham, Witten, 1999; Schwimmer, Theisen, 2008]

〈Tµµ〉Σ = −δ
2(x⊥)

2π

(
bRΣ + d1K̃

i
abK̃

ab
i − d2γ

abγcdWacbd

)
,

The type A anomaly coefficient b is monotonically decreasing under defect RG flows
[Jensen, O’Bannon, 2015] and can depend on bulk marginal couplings [Herzog, Shamir, 2019; LB, 2019]

The type B coefficients d1 and d2 are related to defect correlators [Lewkowycz, Perlmutter,

2014;LB, Meineri, Myers, Smolkin, 2015]

d1 =
π2

16
CD d2 = 3π2h

With our relation [LB, Lemos, 2019]

CD = 48h⇒ d1 = d2
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N = (2, 2) surfaces in 4d N = 2

N = 2 N = (2, 2) surface
Supergroup SU(2, 2|2) SU(1, 1|1)L × SU(1, 1|1)R × U(1)C
Bosonic subgroup SO(1, 5)× SU(2)R × U(1)r SO(1, 3)× U(1)⊥ × U(1)r × U(1)R

Displacement multiplets [Gaiotto, Gukov, Seiberg, 2013]

(antichiral,chiral)

�−↑

D↑

�+
↑

O↑
G+
−1/2

Ḡ−
−1/2

(chiral,antichiral)

�−↓

D↓

�+
↓

O↓
Ḡ+
−1/2

G−
−1/2
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