ABCDEFG of Gauge and Painlevé

Fran Globlek

Supervisors: Giulio Bonelli Alessandro Tanzini

Avogadro 2020

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

GAUGE

- ▶ more precisely: 4d $N = 2^*$ G-SYM on self-dual Ω-background
- we will pass to pure SYM limit and decouple the hyper
- after a twist, PI localizes on instantons
- zero modes \rightarrow integration over moduli space of instantons
- solution is schematically

$$Z(\vec{a},\epsilon;\Lambda) = Z_{\mathsf{classical}}(\vec{a},\epsilon;\Lambda) Z_{1 \mathsf{ loop}}(\vec{a},\epsilon) \left(\sum_{n \ge 0} \Lambda^{2kh^{\vee}} Z_k(\vec{a},\epsilon) \right)$$

$$Z_k(\vec{a},\epsilon) = \int_{\overline{\mathcal{M}}_{G,k}} 1$$

► $\epsilon \to 0$ asymptotics give the SW prepotential F_{SW} , $Z \sim \exp(-\frac{1}{\epsilon^2}F_{SW} + ...)$

INTEGRABILITY...

- old story: the SW solution of the IR theory is a complex integrable system (DW), base is C.B., fibers are Jac(SW curve)
- the SW curve = the spectral curve of the classical integrable system (something to do with Lax pairs)
- ▶ for 1 adjoint hyper: elliptic Calogero-Moser on ^LG
- big concept: the tau function au

$$\frac{\partial}{\partial t_i}\log \tau = H_i$$

note how all the Hamiltonians have to Poisson commute in gauge theory π is Θ on Jacobian

 \blacktriangleright in gauge theory, au is Θ on Jacobian

... AND BEYOND: PAINLEVÉ

- some integrable systems can be <u>lifted</u>: think about turning on RG flow
- simplest example leads to PIII(D₈)

$$y'' = \frac{(y')^2}{y} - \frac{y}{z} + \frac{1}{z}(\alpha y^2 + \beta), \alpha \cdot \beta \neq 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- what is the Painlevé property?
- question: why is it good to not have movable branch cuts?
- ubiquitous functions describing many universal properties
- transcendent: solutions in terms of known functions generically impossible

Gauge/Painlevé

- what happens to gauge/integrable system correspondence? promotion!
- most concisely, for G = SU(2)

$$\tau_{PIII}(\eta, \mathsf{a}/\epsilon; t) = Z^{N.O.}(\eta, \mathsf{a}, \epsilon; t) = \sum_{\mathsf{n} \in 2\mathbb{Z}} e^{2\pi i \mathsf{n} \cdot \eta} Z(\mathsf{a}/\epsilon + \mathsf{n}, t)$$

where $t = \left(\frac{\Lambda}{\epsilon}\right)^4$

this means we have to solve an ODE with a prescribed Ansatz to get the full partition function, fixing only the asymptotics

EXTENDING OF THE CORRESPONDENCE

- and for G any simple Lie group? yes!
- systems of equations which generalize Painlevé to higher rank
- we obtain more \(\tau\) functions, labelled by the center Z(G), related to each other by shifts
- 1-loop determinants? from functional equations solved by Barnes' G functions
- instantons Z_k? from recursion relations (not blowup same Ω-background)
- for cognoscenti: no residues needed + a new way to obtain exceptional instantons

• for example, $C_3 = Sp(3)$

$$\begin{aligned} &-2t^{13/4}y_1^2y_1'y_1''+2t^{17/4}y_1\left(y_1'\right){}^2y_1''-3t^{21/4}y_1y_1'\left(y_1''\right){}^2\\ &-2t^{25/4}y_1y_1{}^{(3)}y_1'y_1''-4t^{17/4}y_1^2y_1{}^{(3)}y_1'+4t^{21/4}y_1y_1{}^{(3)}\left(y_1'\right){}^2\\ &-t^{21/4}y_1^2y_1{}^{(4)}y_1'+t^{25/4}y_1y_1{}^{(4)}\left(y_1'\right){}^2+2t^{17/4}y_1^2\left(y_1''\right){}^2\\ &+t^{25/4}y_1\left(y_1''\right){}^3-t^{25/4}y_1^2y_1{}^{(4)}y_1''+t^{25/4}y_1^2\left(y_1{}^{(3)}\right){}^2\\ &-t^2y_1^2\left(y_2'\right){}^2+t^2y_1^2y_2y_2''+ty_1^2y_2y_2'=0\end{aligned}$$

and then

$$y_1 = Z_{C_3}^{N.O.}(\vec{\eta}, \vec{a}/\epsilon; t^{1/2})$$

$$y_2 = Z_{C_3}^{N.O.}(\vec{\eta}, \vec{a}/\epsilon + (1/2, 1/2, 1/2); t^{1/2})$$

note: it's not actually this scary, I made it worse to intimidate you

FURTHER TOPICS

- rigid surface operators and higher-form symmetries
- connection of its 5d lift to "ABJM" matrix models via TS/ST correspondence
- product groups i.e. linear quivers
- connection to other backgrounds via blowup equations (c = -2)

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●