$T\overline{T}$ -deformation of *q*-Yang-Mills theory

Joint work with Richard J. Szabo and Miguel Tierz:

JHEP (2019) [1810.05404], JHEP (2020) [2009.00657](today)

Leonardo Santilli XVI Avogadro Meeting, GGI _{via Zoom} 21-22/12/2020

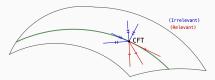
Grupo de Física Matemática & Departamento de Matemática Faculdade de Ciências, Universidade de Lisboa

L. Santilli (U. Lisboa)

 $T\overline{T}$ -deformation of q-Yang-Mills

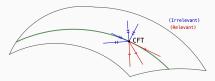
- Introduction: perturbing a QFT with the operator $T\overline{T}$.
- Lightening review: The family of two-dimensional Yang-Mills theories.
- $T\overline{T}$ -deformed *q*-Yang-Mills.
- Outlook.

Understanding all possible deformations of a CFT allows to explore its neighbourhood in the space of theories.



Eventually, we want to chart the space of all consistent QFTs.

Understanding all possible deformations of a CFT allows to explore its neighbourhood in the space of theories.



Eventually, we want to chart the space of all consistent QFTs. *Vaste* programme!

More instructive approach: characterize deformations that preserve a distinguished property, e.g. integrability.

Irrelevant deformations of two-dimensional QFTs by the composite operator $T\overline{T}$ [*Cavaglià-Negro-Szécsényi-Tateo, Smirnov-Zamolodchikov*] have attracted considerable attention in recent years.

$$T = -2\pi T_{zz}, \ \overline{T} = -2\pi T_{\overline{z}\overline{z}}, \ \Theta = 2\pi T_{z\overline{z}}$$
$$T\overline{T} = \lim_{(z',\overline{z}')\to(z,\overline{z})} \left(T(z,\overline{z})\overline{T}(z',\overline{z}') - \Theta(z,\overline{z})\Theta(z',\overline{z}') \right) + (\text{total deriv.})$$

The deformation is solvable: allows to reconstruct the irrelevant flow. (Regardless of the original QFT being integrable, T, \overline{T}, Θ are conserved).

Broad variety of applications in 2d QFT, including

- integrability,
- holography (both $AdS_3/CFT_2^{T\overline{T}}$ and $AdS_2^{T\overline{T}}/CFT_1$),
- SCFTs,
- perturbation by generalized irrelevant operators, etc.

Broad variety of applications in 2d QFT, including

- integrability,
- holography (both $AdS_3/CFT_2^{T\overline{T}}$ and $AdS_2^{T\overline{T}}/CFT_1$),
- SCFTs,
- perturbation by generalized irrelevant operators, etc.

Powerful insight [Dubovsky-Gorbenko, Mirbabayi, Hernández Chifflet]:

 $T\overline{T}$ -def. QFT₂ \cong QFT₂ + JT gravity

Broad variety of applications in 2d QFT, including

- integrability,
- holography (both $AdS_3/CFT_2^{T\overline{T}}$ and $AdS_2^{T\overline{T}}/CFT_1$),
- SCFTs,
- perturbation by generalized irrelevant operators, etc.

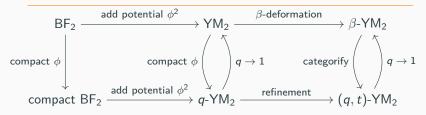
Powerful insight [Dubovsky-Gorbenko, Mirbabayi, Hernández Chifflet]:

$$T\overline{T}$$
-def. QFT₂ \cong QFT₂ + JT gravity

We use Euclidean formulation [Coleman-AguileraDamia-Freedman-Sony].

$$S_{\rm YM} = \frac{1}{2g_{\rm YM}^2} \int_{\Sigma} \operatorname{Tr} F^A * F^A = \int_{\Sigma} \operatorname{Tr} \left(\mathrm{i} \, \phi \, F^A + \frac{g_{\rm YM}^2}{2} \, \phi^2 \, \omega \right) \,,$$

 YM_2 (or deformations) \cong topological BF_2 (or deformations) + $V(\phi)$.



Abelianization [Blau-Thompson] \Rightarrow path integral reduces to finite-dimensional expression:

$$\mathcal{Z}_{q\text{-}\mathrm{YM}}[\Sigma] = \sum_{R} (\dim_{q} R)^{\chi(\Sigma)} q^{\frac{p}{2}C_{2}(R)}.$$

L. Santilli (U. Lisboa)

 $T\overline{T}$ -deformation of q-Yang-Mills

 $T\overline{T}$ -deform YM₂ (and its relatives):

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

 $T\overline{T}$ -deform YM₂ (and its relatives):

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

• turn on $V(\phi)$ (and q-deformation) on each component;

 $T\overline{T}$ -deform YM₂ (and its relatives):

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

- turn on $V(\phi)$ (and q-deformation) on each component;
- couple each flat component to JT gravity;

 $T\overline{T}$ -deform YM₂ (and its relatives):

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

- turn on $V(\phi)$ (and q-deformation) on each component;
- couple each flat component to JT gravity;
- topological part is unaffected.

 $T\overline{T}$ -deform YM₂ (and its relatives):

- start with BF_2 and use TFT axioms to cut Σ in elementary pieces;

- turn on $V(\phi)$ (and *q*-deformation) on each component;
- couple each flat component to JT gravity;
- topological part is unaffected.

We have shown that

- solving the gravitational path integral gives $V(\phi) \mapsto \frac{V(\phi)}{1 \frac{\tau}{\tau^2} V(\phi)}$,
- Abelianization persists, and
- we can glue back the pieces, obtaining the $T\overline{T}$ -def. theory on Σ .

L. Santilli (U. Lisboa)

 $T\overline{T}$ -deformation of q-Yang-Mills

For closed Σ ,

$$\mathcal{Z}_{q_{\text{-YM}}}^{T\overline{T}}[\Sigma] = \sum_{R} (\dim_{q}(R))^{\chi(\Sigma)} q^{\frac{p}{2} C_{2}^{T\overline{T}}(R,\tau)}$$

with $C_2^{T\overline{T}}(R,\tau) = \frac{C_2(R)}{1-\frac{\tau}{N^3}C_2(R)}$. Similar expressions can be obtained for: boundaries, punctures, Wilson loops, symmetry defects.

For closed Σ ,

$$\mathcal{Z}_{q_{\text{-YM}}}^{T\overline{T}}[\Sigma] = \sum_{R} (\dim_{q}(R))^{\chi(\Sigma)} q^{\frac{p}{2} C_{2}^{T\overline{T}}(R,\tau)}$$

with $C_2^{T\overline{T}}(R,\tau) = \frac{C_2(R)}{1-\frac{\tau}{N^3}C_2(R)}$. Similar expressions can be obtained for: boundaries, punctures, Wilson loops, symmetry defects.

Motto: $T\overline{T}$ -deformation preserves Abelianization.*

For closed Σ ,

$$\mathcal{Z}_{q_{\text{-YM}}}^{T\overline{T}}[\Sigma] = \sum_{R} (\dim_{q}(R))^{\chi(\Sigma)} q^{\frac{p}{2} C_{2}^{T\overline{T}}(R,\tau)}$$

with $C_2^{T\overline{T}}(R,\tau) = \frac{C_2(R)}{1-\frac{\tau}{N^3}C_2(R)}$. Similar expressions can be obtained for: boundaries, punctures, Wilson loops, symmetry defects.

Motto: $T\overline{T}$ -deformation preserves Abelianization.*

However, perturbing with $T\overline{T}$ spoils

 Factorization of the partition function [Aganagic, Caporaso, Cirafici, Griguolo, Ooguri, Pasquetti, Saulina, Seminara, Szabo, Tanzini, Vafa...]. In the free fermion formalism [Douglas] TT introduces non-local interactions.

For closed Σ ,

$$\mathcal{Z}_{q_{\text{-YM}}}^{T\overline{T}}[\Sigma] = \sum_{R} (\dim_{q}(R))^{\chi(\Sigma)} q^{\frac{p}{2} C_{2}^{T\overline{T}}(R,\tau)}$$

with $C_2^{T\overline{T}}(R,\tau) = \frac{C_2(R)}{1-\frac{\tau}{N^3}C_2(R)}$. Similar expressions can be obtained for: boundaries, punctures, Wilson loops, symmetry defects.

Motto: $T\overline{T}$ -deformation preserves Abelianization.*

However, perturbing with $T\overline{T}$ spoils

- Factorization of the partition function [Aganagic, Caporaso, Cirafici, Griguolo, Ooguri, Pasquetti, Saulina, Seminara, Szabo, Tanzini, Vafa...]. In the free fermion formalism [Douglas] TT introduces non-local interactions.
- Truncation of sum to integrable R at $q \rightarrow 1$ and connection with Chern-Simons theory.

U(N) YM₂ on $\Sigma = S^2$ undergoes a 3rd order phase transition [Douglas-Kazakov] induced by instantons [Gross-Matytsin].

U(N) YM₂ on $\Sigma = S^2$ undergoes a 3rd order phase transition [Douglas-Kazakov] induced by instantons [Gross-Matytsin].

The same is true for q- and (q, t)-YM₂ and p > 2

[*Caporaso-Cirafici-Griguolo-Pasquetti-Seminara-Szabo,Arsiwalla-Boels-Mariño-Sinkovics,Jafferis-Marsano,Kokenyesi-Sinkovics-Szabo*]. The *q*-deformation enhances the volume of the weak coupling phase in parameter space.

U(N) YM₂^{$T\overline{T}$} undergoes a 3rd order transition induced by instantons [*LS-Tierz*]. $T\overline{T}$ -deformation reduces the volume of the weak coupling phase in parameter space. Instantons are less suppressed.

U(N) YM₂^{$T\overline{T}$} undergoes a 3rd order transition induced by instantons [*LS-Tierz*]. $T\overline{T}$ -deformation reduces the volume of the weak coupling phase in parameter space. Instantons are less suppressed.

q- and (q, t)-YM₂^{$T\overline{T}$} experience again a instanton-induced 3rd order phase transition. Volume of weak coupling phase is

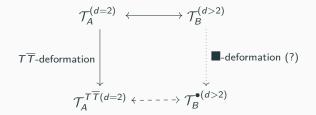
- reduced, compared to q-YM₂
- enhanced, compared to $YM_2^{T\overline{T}}$

Transition extends below p = 2 [LS-Szabo-Tierz] all the way down to p = 1 [Gorsky-Pavshinkin-Tyutyakina].

But why do we care?

But why do we care?

Eventually, we would like to gain analytic control on flows by irrelevant operators in higher dimensions.



 YM_2 is tightly related to four-dimensional SUSY theories:

- q-YM₂ descends from N = 4 SYM₄ in the total space of a line bundle over Σ [Aganagic-Ooguri-Saulina-Vafa];
- Class S [Gaiotto, Gadde-Rastelli-Razamat-Yan];
- The 0-instanton sector of YM_2 on \mathbb{S}^2 appears from localization of $\mathcal{N} = 2$ with defects [Pestun, Giombi, Wang, Komatsu].

 YM_2 is tightly related to four-dimensional SUSY theories:

- q-YM₂ descends from N = 4 SYM₄ in the total space of a line bundle over Σ [Aganagic-Ooguri-Saulina-Vafa];
- Class S [Gaiotto, Gadde-Rastelli-Razamat-Yan];
- The 0-instanton sector of YM_2 on S^2 appears from localization of $\mathcal{N} = 2$ with defects [Pestun, Giombi, Wang, Komatsu].

What happens if we couple the 2d sector to JT gravity? Can we pull the $T\overline{T}$ -deformation back to 4d?

This is the end of the presentation.

Thank you for your attention.