

Pietro Ferrero University of Oxford

M2- and D3-branes wrapped on spindles

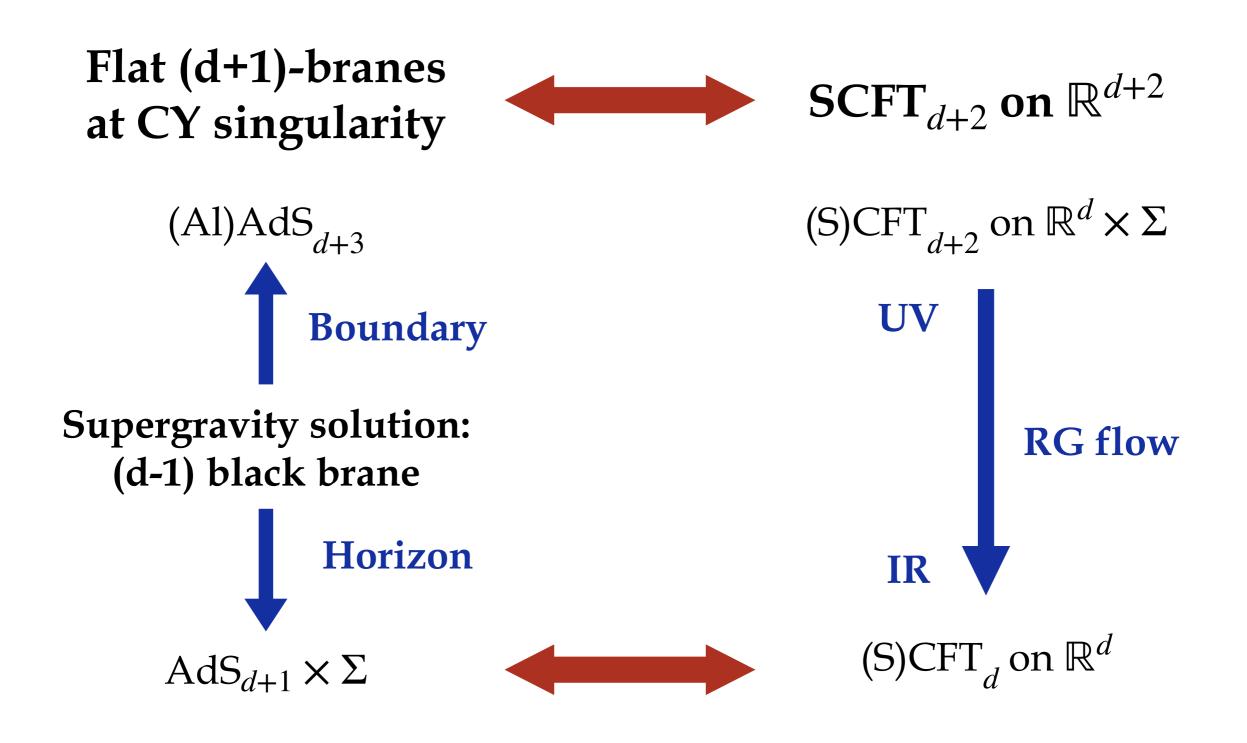
Based on work with

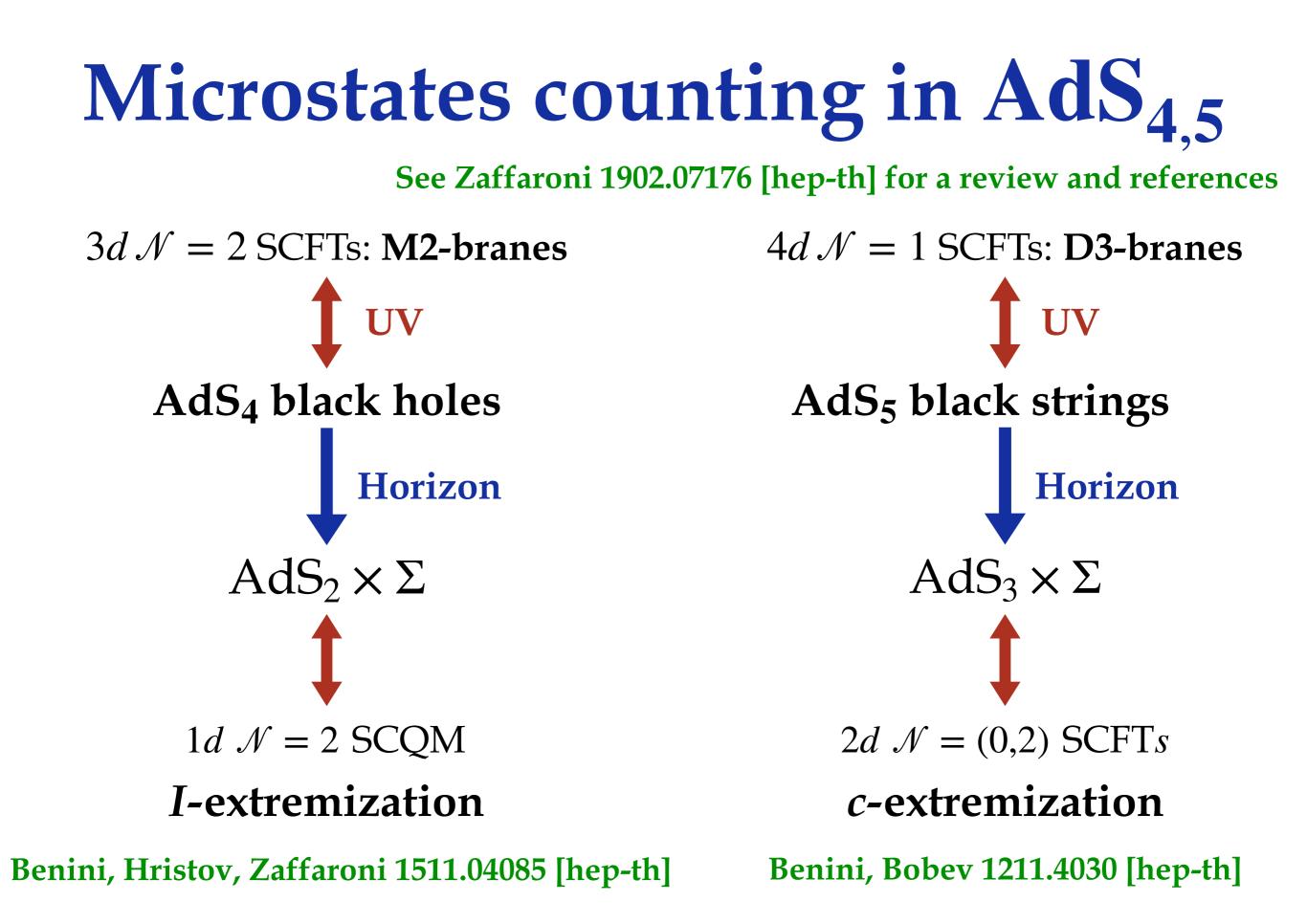
JP Gauntlett, JM Perez Ipina, D Martelli, JF Sparks arXiv: 2011.10579 [hep-th] arXiv: 2012.08530 [hep-th]

Review: black branes and RG flows in AdS/CFT

Black branes as RG flows

Maldacena, Nunez 0007018 [hep-th]





Plebanski-Demianski black holes in AdS₄

Plebanski-Demianski black holes

Most general solution to 4d Einstein-Maxwell* theory (no NUT charge)

$$ds_4^2 = \frac{1}{\Omega^2} \left\{ -\frac{Q}{\Sigma} \left[dt - a\sin^2\theta d\phi \right]^2 + \frac{\Sigma}{Q} dr^2 + \frac{\Sigma}{P} d\theta^2 + \frac{P}{\Sigma} \sin^2\theta \left[adt - (r^2 + a^2) d\phi \right]^2 \right\}$$
$$A = -\frac{er}{\Sigma} \left(dt - a\sin^2\theta d\phi \right) + \frac{e^{\cos\theta}}{\Sigma} \left(adt - (r^2 + a^2) d\phi \right)$$

$$\Omega = 1 - \alpha r \cos \theta$$

$$\Sigma = r^{2} + a^{2} \cos^{2} \theta$$

$$P = 1 - 2 \alpha m \cos \theta + (\alpha^{2} (a^{2} + e^{2} + g^{2}) - a^{2}) \cos^{2} \theta$$

$$Q = (r^{2} - 2 m r + a^{2} + e^{2} + g^{2}) (1 - \alpha^{2} r^{2}) + (a^{2} + r^{2}) r^{2}$$

$$\alpha \leftrightarrow \text{acceleration} \qquad a \leftrightarrow \text{rotation} \qquad m \leftrightarrow \text{mass}$$

$$e \leftrightarrow \text{electric charge} \qquad g \leftrightarrow \text{magnetic charge}$$

*bosonic sector of 4d $\mathcal{N} = 2$ minimal gauged supergravity

Accelerating black holes have conical singularities at $\theta = 0, \pi$! Should we throw them away?

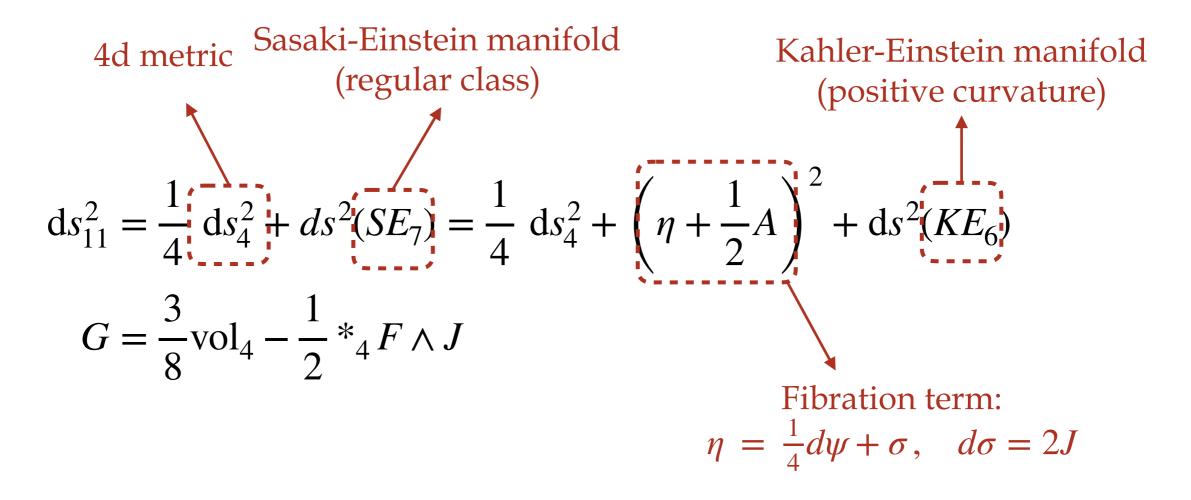
No: uplift to 11d, constrain the parameters and regularize!

For alternative approaches: Ernst '75, Achúcarro, Gregory, Kuijken '95, Eardley, Horowitz, Kastor, Taschen '95, Dowker, Gauntlett, Gibbons, Horowitz '95,

. . .

The uplift to 11d

Gauntlett, Varela 0707.2315 [hep-th]



This solves the eom of 11d supergravity and preserves SUSY

Regularize in 11d: the spindle

Near the poles $\theta_{-} = 0$, $\theta_{+} = \pi$, we find:

$$ds_{\theta,\phi}^2 \approx \left[\frac{\Sigma}{P\Omega^2}\right]_{\theta=\theta_{\pm}} \left[d\theta^2 + P_{\pm}^2 \left(\theta - \theta_{\pm}\right)^2 d\phi^2\right]$$

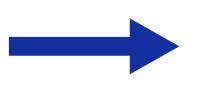
Due to the acceleration, $P_{-} \neq P_{+}$ we cannot make it regular! Then quantize the **conical deficits**: make it into a **spindle** $WCP_{[n_{-}, n_{+}]}^{1}$

$$\frac{P_{+}}{P_{-}} = \frac{n_{-}}{n_{+}} \Rightarrow \Delta \phi = \frac{2\pi}{n_{+}P_{+}} = \frac{2\pi}{n_{-}P_{-}}$$

Regularize in 11d: the Lens space

Now look at space in the θ , ϕ , ψ directions: we can make it into a **Lens space** S^3/\mathbb{Z}_q , seen as a Hopf-like fibration over $\mathbb{WCP}^1_{[n_-, n_+]}$. This requires

$$m = \frac{g}{\alpha}$$
 Compatible with susy



At fixed *t*, *r* we have a Riemannian manifold Y_9 : completely **smooth** S^3/\mathbb{Z}_q **fibration** over KE_6 !

Near-horizon limit of BPS & extremal BHs

The BPS & extremal horizon

 $ds^{2} = \frac{1}{4} \left(y^{2} + j^{2} \right) \left(-\rho^{2} d\tau^{2} + \frac{d\rho^{2}}{\rho^{2}} \right) + \frac{y^{2} + j^{2}}{q(y)} dy^{2} + \frac{q(y)}{4 \left(y^{2} + j^{2} \right)} (dz + j \rho d\tau)^{2}$

Two parameters:

• $j \in (0, 1/\sqrt{2})$ is continuous \rightarrow **rotation**

 AdS_2

 $a = \frac{(1 - 2j^2)(n_-^2 - n_+^2)}{n_+^2 + n_-^2}$

(Spinning) spindle

 $y \leftrightarrow \theta, \quad z \leftrightarrow \phi$

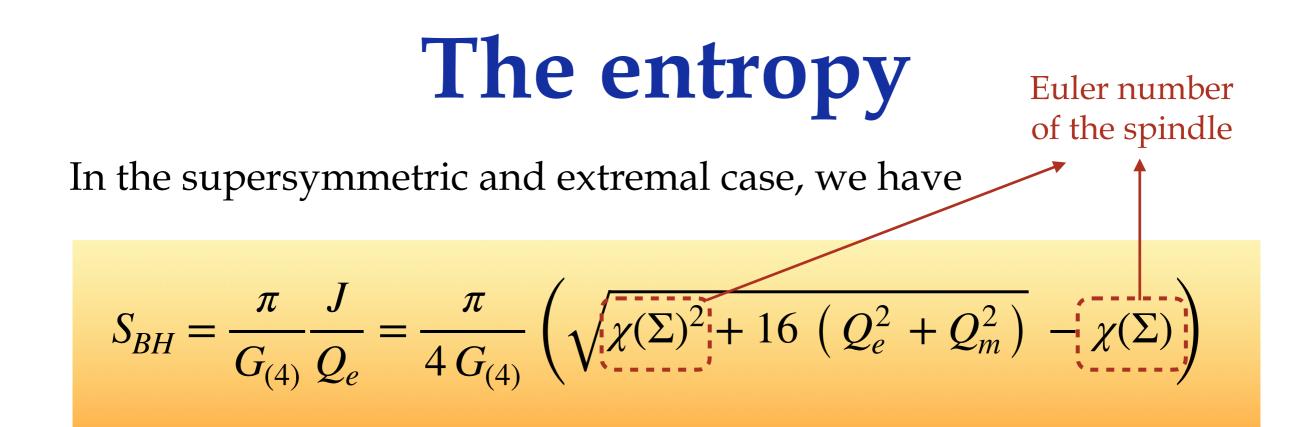
• a is fixed by n_{\pm} and $j \rightarrow$ **acceleration**

$$Q_e = \frac{\sqrt{2} j}{\sqrt{1 - 2j^2}} \frac{\sqrt{n_-^2 + n_+^2}}{4n_-n_+}$$

 $A = h(y)(dz + j \rho d\tau)$

$$Q_m = \frac{n_- - n_+}{4 \, n_- \, n_+}$$

$$J = Q_e \frac{\sqrt{2}\sqrt{8 n_-^2 n_+^2 Q_e^2 + n_-^2 + n_+^2} - (n_- + n_+)}{4 n_- n_+}$$



Related to known formulas in the literature for AdS₄ black holes

Hristov, Katmadas, Toldo 1907.05192 [hep-th] Cassani, Papini 1906.10148 [hep-th]

Can we reproduce it from the Field Theory? Done for D3-branes: $AdS_3 \times \mathbb{WCP}^1_{[n_-, n_+]}$ solutions!

The spinors

In these constructions, supersymmetry is typically preserved with a topological twist: $\omega_{\mu} \sim A_{\mu}$, in such a way that

$$\nabla_{\mu} \sim \partial_{\mu} + \omega_{\mu} + A_{\mu} \sim \partial_{\mu}$$

To check if this is the case, compare

Euler numberMagnetic flux
$$\chi(\Sigma) = \frac{1}{4\pi} \int_{\Sigma} R_2 \operatorname{vol}_2 = \frac{n_- + n_+}{n_+ n_-}$$
 $Q_m = \frac{1}{4\pi} \int_{\Sigma} dA = \frac{n_- - n_+}{4n_+ n_-}$

They are not proportional: **no topological twist!**

How is supersymmetry realized in the dual Field Theory?

The R-symmetry

From the spinor bilinears and the $\mathcal{N} = (0,2)$ superconformal algebra:

$$R_{1d} = R_{3d} + 2\sqrt{1 - j^2} \partial_z$$

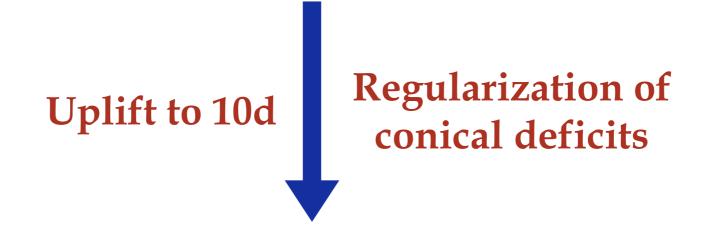
Generator of U(1)
isometry of the spindle

First example of mixing between higher and lower dimensional R-symmetry in supergravity (with no rotation)!

D3-branes on spindles

The type IIB picture

 $AdS_3 \times \mathbb{WCP}^1_{[n_-, n_+]}$ solutions of 5d minimal gauged supergravity

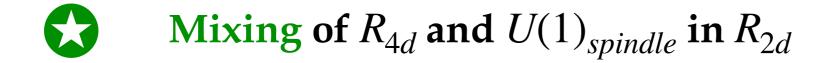


Completely regular $AdS_3 \times Y_7$ solutions of type IIB supergravity

Gauntlett, Kim, Waldram 0612253 [hep-th]

With analogies...

Interpretation as (D3-)branes wrapped on spindles



...and differences

Lack the full geometry: we conjecture the AdS_3 solutions to arise as near-horizon geometry of a 5d black string

Entropy and R-symmetry mixing reproduced with a Field Theory computation

Thank you for the attention!