All loop structures in SUGRA Amplitudes from CFT

Giulia Fardelli

Based on 2002.04604 & 2010.12557
with Agnese Bissi and Alessandro Georgoudis

Uppsala University

December 22, 2020
Overview & Motivations

- We will to study $\text{AdS}_5 \times S^5$ SUGRA amplitudes from CFT correlation functions
- We will see how CFT tree level data can fix part of them to all orders in a perturbative expansion
Overview & Motivations

• We will study AdS$_5 \times S^5$ SUGRA amplitudes from CFT correlation functions
• We will see how CFT tree level data can fix part of them to all orders in a perturbative expansion

Motivations

• Understand better how unitarity translates in the AdS/CFT scenario
 Aharony, Alday, Bissi, Caron-Huot, Meltzer, Perlmutter, Sivaramakrishnan
• We will consider flat space amplitude, but our results should extend to AdS$_5 \times S^5$ background ⇒ Apply Bootstrap techniques to get information on amplitudes in curved space-times (hard to access with other methods)
4d $SU(N) \mathcal{N} = 4$ SYM
at large N and large $\lambda = g_{YM}^2 N$

Type IIB SUGRA
on $AdS_5 \times S^5$ with g_s coupling
Setup & Strategy

4d $SU(N) \mathcal{N} = 4$ SYM
at large N and large $\lambda = g_{YM}^2 N$

Type IIB SUGRA
on $AdS_5 \times S^5$ with g_s coupling

\begin{align*}
\langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_2 \rangle &= \mathcal{G}^{(0)}(U,V) + \frac{1}{N^2} \mathcal{G}^{(1)}(U,V) + \frac{1}{N^4} \mathcal{G}^{(2)}(U,V) + \frac{1}{N^6} \mathcal{G}^{(3)}(U,V) + \ldots \\
A_{10}^{\text{sugra}} &= G_N + G_N^3 + G_N^3 + \ldots
\end{align*}

CFT
\[\{ \gamma_{n,i}^{(1)}, a_{n,i}^{(0)} \} \]

Flat Space

Amplitude

Cuts & Discontinuities
Setup & Strategy

4d \(SU(N) \mathcal{N} = 4 \) SYM

at large \(N \) and large \(\lambda = g_{YM}^2 N \)

\(\frac{1}{2} \) BPS scalar

\([0, 2, 0]_R \ \Delta = 2 \)

\(T_{\mu\nu} \) supermultiplet

Type IIB SUGRA

on \(\mathbb{R}^{10} \) with \(G_N \) coupling

\[
G_N = \frac{\pi^4 L^8}{2(N^2 - 1)}
\]

Graviton multiplet

\[
A_{10}^{\text{agra}} = G_N + G_N^2 + G_N^3 + \ldots
\]
Setup & Strategy

Mellin Space

\[\tilde{M}(s, t) = \frac{1}{N^2} \left(s-2 \right) \left(t-2 \right) + \sum_{m,n=2}^{\infty} \frac{c^{(2)}_{mn}}{(s-2m)(t-2n)} + \frac{c^{(3)}_{mn}}{(s-2m)^2(t-2n)} \ldots \]

CFT

\[\langle O_2 O_2 O_2 O_2 \rangle = G^{(0)}(U, V) + \frac{1}{N^2} G^{(1)}(U, V) + \frac{1}{N^4} G^{(2)}(U, V) + \frac{1}{N^6} G^{(3)}(U, V) + \ldots \]

dDisc

\[\{ \gamma_n^{(1)}, \alpha_n^{(0)} \} \]

Flat Space

Amplitude

\[A_{10}^{a\bar{a}r\bar{a}} = G_N + G_N^3 + G_N^3 + \ldots \]

Cuts & Discontinuities
4-point function

\[\langle \mathcal{O}_2(x_1)\mathcal{O}_2(x_2)\mathcal{O}_2(x_3)\mathcal{O}_2(x_4) \rangle \sim \frac{G(u,v)}{x_{12}^4 x_{34}^4} \]
4-point function

\[\langle \mathcal{O}_2(x_1)\mathcal{O}_2(x_2)\mathcal{O}_2(x_3)\mathcal{O}_2(x_4) \rangle \sim \frac{\mathcal{G}(u,v)}{x_{12}^4 x_{34}^4} \]

\[\mathcal{G}(u,v) = \mathcal{G}^{\text{short}}(u,v,N) + \mathcal{H}(u,v,N,\lambda) \]

\(\mathcal{O}_{\Delta,\ell} \in \begin{cases} \text{(semi-) short multiplets} \\ \text{long multiplets} \end{cases} \)

\(\mathcal{G}^{\text{short}}(u,v,N) \) known, \(N^{-2} \) exact

Dolan, Osborn
4-point function

\[\langle O_2(x_1)O_2(x_2)O_2(x_3)O_2(x_4) \rangle \sim \frac{G(u,v)}{x_{12}^4 x_{34}^4} \]

\[G(u,v) = \sum a_{\Delta,\ell} u^{\frac{\Delta-\ell}{2}} g_{\Delta+4,\ell}(u,v) \]

\[a_{\Delta,\ell} = a^{(0)}_{\Delta,\ell} + \frac{a^{(\kappa)}_{\Delta,\ell}}{N^{2\kappa}} \]

\[\Delta = 4 + 2n + \ell + \frac{\gamma_{\Delta,\ell}}{N^{2\kappa}} \]

\(G(u,v) = \sum \frac{G^{\text{short}}(u,v,N)}{N^2} + \mathcal{H}(u,v,N,\lambda) \)

\(\mathcal{H}(u,v,N,\lambda) \) known, \(N^{-2} \) exact

Dolan, Osborn

Double trace ops \([O_pO_p]_{n,\ell} \) at \(O(N^{-4}) \)

Higher trace ops at higher orders
One-loop example

- **Mixing problem**: degeneracy between operators with the same bare dimension
One-loop example

- **Mixing problem:** degeneracy between operators with the same bare dimension
- **Solved up to** $O(N^{-2})$: $a_{n,\ell,I}^{(0)}$ and $\gamma_{n,\ell,I}^{(1)}$ known for each degeneracy index I

Aprile, Drummond, Heslop, Paul Alday, Bissi
One-loop example

- **Mixing problem**: degeneracy between operators with the same bare dimension

- **Solved up to $O(N^{-2})$**: $a_{n,\ell,I}^{(0)}$ and $\gamma_{n,\ell,I}^{(1)}$ known for each degeneracy index I

- At one loop
 - Possible to fully reconstruct the correlator from its $d\text{Disc}$

 $\mathcal{H}^{(2)}(u, v) \supset \log^2 u u^{n+2} a_{n,\ell,I}^{(0)} \left(\gamma_{n,\ell,I}^{(1)}\right)^2 g_{2n+8,\ell}(u, v)$

 - Establish a connection between $d\text{Disc}$ of the correlator and discontinuity of the corresponding 10d flat space amplitude
Higher loops

- **Mixing problem**: degeneracy between operators with the same bare dimension
- **Solved up to $O(N^{-2})$**: $a_{n,\ell,I}^{(0)}$ and $\gamma_{n,\ell,I}^{(1)}$ known for each degeneracy index I
Higher loops

- **Mixing problem**: degeneracy between operators with the same bare dimension
- **Solved up to** $O(N^{-2})$: $a^{(0)}_{n,\ell,I}$ and $\gamma^{(1)}_{n,\ell,I}$ known for each degeneracy index I

\[\downarrow \]
\[\text{At higher loops} \]

- Completely fix **leading logs** in $\mathcal{H}^{(\kappa)}(u,v)$, $\kappa \geq 3$

\[
\log^\kappa u u^{n+2} a^{(0)}_{n,\ell,I} \left(\gamma^{(1)}_{n,\ell,I} \right)^\kappa g_{2n+8,\ell}(u,v)
\]

Caveats

- Not full dDisc
- Higher trace ops
Higher loops

- **Mixing problem**: degeneracy between operators with the same bare dimension
- **Solved up to** $O(N^{-2})$: $a^{(0)}_{n,\ell,I}$ and $\gamma^{(1)}_{n,\ell,I}$ known for each degeneracy index I

\[\log^\kappa u u^{n+2} a^{(0)}_{n,\ell,I} \left(\gamma^{(1)}_{n,\ell,I} \right)^\kappa g_{2n+8,\ell}(u,v) \]

Which term in the dual amplitude it maps to?

CAVEATS

Not full dDisc
Higher trace ops

Caron-Huot, Trinh
Higher loops

- **Mixing problem**: degeneracy between operators with the same bare dimension

- **Solved up to $O(N^{-2})$**: $a^{(0)}_{n,\ell,I}$ and $\gamma^{(1)}_{n,\ell,I}$ known for each degeneracy index I

\[\log^\kappa uu^{n+2} a^{(0)}_{n,\ell,I} \left(\gamma^{(1)}_{n,\ell,I} \right)^\kappa g_{2n+8,\ell}(u,v) \]

Which term in the dual amplitude it maps to?

CAVEATS
Not full dDisc
Higher trace ops

\[\text{Iterated } s\text{-cuts} \]
Conclusions

• All CFT loop structures dual to iterated s-cuts in the 10d amplitude ⇒ possible extension to curved space-time

Open problems:
▶ Include stringy corrections
▶ Perform a similar analysis in AdS$_5 \times$S$_5$
▶ Understand better the singularity structure

Thank you!
Conclusions

• All CFT loop structures dual to iterated s-cuts in the 10d amplitude \Rightarrow possible extension to curved space-time

• Similar results hold in Mellin space
Conclusions

• All CFT loop structures dual to iterated s-cuts in the 10d amplitude \Rightarrow possible extension to curved space-time

• Similar results hold in Mellin space

• Open problems:
 ▶ Include stringy corrections
 ▶ Perform a similar analysis in $\text{AdS}_5 \times S^5$
 ▶ Understand better the singularity structure
Conclusions

- All CFT loop structures dual to iterated s-cuts in the 10d amplitude \(\Rightarrow \) possible extension to curved space-time
- Similar results hold in Mellin space
- Open problems:
 - Include stringy corrections
 - Perform a similar analysis in AdS\(_5 \times S^5\)
 - Understand better the singularity structure

Thank you!