Moduli Stabilisation and the Statistics of SUSY Breaking in the Landscape

Igor Bröckel Avogadro Meeting 22.12.2020

Istituto Nazionale di Fisica Nucleare

Igor Bröckel

Moduli Stabilisation and the Statistics of SUSY Breaking in the Landscape

Igor Broeckel,^a Michele Cicoli,^a Anshuman Maharana,^b Kajal Singh^b and Kuver Sinha^c

^a Dipartimento di Fisica e Astronomia, Universitá di Bologna, via Irnerio 46, 40126 Bologna, Italy and INFN, Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
^b Harish-Chandra Research Institute, HBNI, Jhunsi, Allahabad, UP 211019, India
^c Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA E-mail: igor.broeckel@bo.infn.it, michele.cicoli@unibo.it, anshumanmaharana@hri.res.in, kajalsingh@hri.res.in, kuver.sinha@ou.edu

arXiv:2007.04327

22.12.2020

Content

1. Importance of the Kähler moduli

2. Stabilisation mechanism

- 2.1 LVS models
- 2.2 KKLT models
- 2.3 Perturbatively stabilized models

3. SUSY breaking statistics

4. Conclusion

Igor Bröckel

Importance of the Kähler moduli

Short summary of the results of D.D.:

- The Kähler potential is: $K_{\text{tree}} = -2 \ln \mathcal{V} \ln \left(S + \bar{S}\right) \ln \left(-i \int_{\mathcal{V}} \Omega(U) \wedge \bar{\Omega}(\bar{U})\right),$
- The Superpotential is: $W_{ ext{tree}} = \int_X G_3 \wedge \Omega(U)$
- Using the standard expression for the SUGRA scalar potential, one can write down the tree level potential as

$$\rightarrow V_{\text{tree}} = |F^S|^2 + |F^U|^2 + |F^T|^2 - 3m_{3/2}^2 \approx |F^S|^2 + |F^U|^2 - 3m_{3/2}^2$$

- Where the gravitino mass is given by: $m_{3/2} = e^{K/2}|W|$
- Kähler moduli not stabilized at tree-level \rightarrow only a small correction to leading order?

Igor Bröckel

Importance of the Kähler moduli

• Distribution of SUSY breaking vacua was assumed to be:

$$dN_{\Lambda=0}(F) = \prod d^2 F^S d^2 F^U d\hat{\Lambda} \rho(F, \hat{\Lambda}) \delta\left(|F^S|^2 + |F^U|^2 - \hat{\Lambda} \right)$$

- With the AdS vacuum depth: $\hat{\Lambda} = 3m_{3/2}^2$
- Assuming that the distribution of the SUSY breaking scale is decoupled from the distribution of the cosmological constant we can write: $\rho(F, \hat{\Lambda}) = \rho(F)$
- Assuming the vanishing of the cosmological constant:

$$F|^2 = 3m_{3/2}^2$$
 and $d^2F \simeq |F|d|F| \simeq m_{3/2}dm_{3/2}$

 $\rightarrow dN_{\Lambda=0}(m_{3/2}) \sim \rho(m_{3/2})m_{3/2}dm_{3/2}$

 $\rho(m_{3/2}) \sim m_{3/2}^{\beta}, \ \beta = 0$ [D

[Douglas, 04]

Importance of the Kähler moduli

• **BUT:** Using the famous 'no-scale' relation $K_{\bar{T}}K^{\bar{T}T}K_T = 3$ the scalar potential can be rewritten as

$$V_{\text{tree}} = |F^S|^2 + |F^U|^2 + m_{3/2}^2 \left(K_{\bar{T}} K^{\bar{T}T} K_T - 3 \right) = \frac{e^{K_{cs}}}{\mathcal{V}^2 (S + \bar{S})} \left(|D_S W|^2 + |D_U W|^2 \right)$$

- → any vacuum with $D_iW \neq 0$ is unstable since it gives rise to a run-away for the volume mode. Hence a stable solution requires $F^S = F^U = 0$
- \rightarrow at tree-level the gravitino mass is set by the F-terms of the T-moduli since 'no-scale' implies $|F^T|^2=3m_{3/2}^2$
- → soft terms are of order $m_{3/2}$ only for matter located on D7 branes, not for D3. For instance, gaugino masses for D3's are set by F^S , which is non-zero due to sub-leading corrections beyond tree-level. In order to determine F^S one needs to stabilise the Kähler moduli

\rightarrow SUSY statistics should be driven by the Kähler moduli

Stabilisation mechanism - KKLT

- Purely non-perturbative stabilisation: $W = W_0 + Ae^{-aT}$ [Kachru,Kallosh,Linde,Trivedi, 03]
- Here the Kähler modulus is $T = \tau + i\Theta$ and $a = 2\pi/\mathfrak{n}$ is a parameter that determines the nature of the non-perturbative effect.
- Minimizing the scalar potential leads to: $e^{a\langle au
 angle}$

• The gravitino mass at the minimum is:

$$\frac{a\langle \tau \rangle}{3W_0} \sim \frac{2Aa\langle \tau \rangle}{3W_0} \Leftrightarrow \langle \tau \rangle \sim \frac{1}{a} |\ln W_0|$$
$$\overline{m_{3/2}} = \frac{\pi g_s^{1/2}}{\mathfrak{n}^{3/2}} \frac{|W_0| M_p}{|\ln W_0|^{3/2}}$$

1

22.12.2020

9/(-)

 \rightarrow In order to be able to neglect stringy corrections to the effective action and pert. corrections to K one needs: $~W_0 \ll 1$

ightarrow the gravitino mass in KKLT is mainly driven by ${ m W}_0$

Stabilisation mechanism - LVS

[Balasubramanian,Berglund,Conlon,Quevedo, 05]

Perturbative and non-perturbative stabilisation:

[Cicoli,Conlon,Quevedo, 08]

→ perturbative:
$$K = -2 \ln \left(\mathcal{V} + \frac{\xi}{2} \left(\frac{S + \bar{S}}{2} \right)^{3/2} \right) + \dots$$

→ non-perturbative: $W = W_0 + A_s e^{-a_s T_s}$

- Minimizing the scalar potential leads to: $\langle \mathcal{V} \rangle \sim \frac{3\sqrt{\langle \tau_s \rangle}|W_0|}{4a_s A_s} e^{a_s \langle \tau_s \rangle}, \ \langle \tau_s \rangle \sim \frac{1}{g_s} \left(\frac{\xi}{2}\right)^{2/3}$
- The gravitino mass at the minimum is:

$$\boxed{m_{3/2} = c_1 \frac{g_s M_p}{\mathfrak{n}} e^{-\frac{c_2}{g_s \mathfrak{n}}}}$$

• Where c_1 and c_2 are numerical coefficients

\rightarrow the gravitino mass in LVS is mainly driven by g_s

Stabilisation mechanism - perturbative

• Purely perturbative stabilisation: [Berg,Haack,Kors, 06]

$$K_{g_s^0\alpha'^3} = -\frac{\xi}{g_s^{3/2}\mathcal{V}}, \quad K_{g_s^2\alpha'^2} = g_s \frac{b(U)}{\mathcal{V}^{2/3}}, \quad K_{g_s^2\alpha'^4} = \frac{c(U)}{\mathcal{V}^{4/3}}.$$

- The functions b(U), c(U) are known explicitly only for simple toroidal orientifolds but are expected to be O(1-10)
- Minimizing the scalar potential leads to: $\langle \mathcal{V} \rangle \sim 26 g_s^{9/2} \left(rac{c(U)}{|\xi|}
 ight)^3$
- The gravitino mass at the minimum is:

$$m_{3/2} = \lambda \frac{|W_0| M_p}{g_s^4 c(U)^3}$$

- Consistency of the stabilisation requires $~\langle \mathcal{V}
angle \gg 1, ~g_s \ll 1$

\rightarrow the gravitino mass in pert. stabilisation is mainly driven by c(U)

SUSY breaking statistics

- Gravitino mass is mainly determined by $W_0, \ g_s, \ \mathfrak{n}, \ c(U)$
- → The distribution of $|W_0|^2$ as a complex variable is assumed to be uniform: [Douglas, 04]

 $dN \sim |W_0| d|W_0|$

- → The distribution of g_s was checked to be uniform for rigid CY. And was shown to hold in more general cases: [Shok,Douglas, 04][Denef,Douglas, 04] [Blanco-Pillado,Sousa,Urkiola,Wachter, 20] $dN \sim dg_s$
- → The distribution of the rank of the condensing gauge group is still poorly understood. We expect the number of states N to decrease when n increases, since D7-tadpole cancellation is more difficult to satisfy

 $dN \sim -\mathfrak{n}^{-r}d\mathfrak{n}$

→ Since c(U) is a function of the complex structure, large values are considered as fine tuned

$$dN \sim -c^{-k}dc$$

SUSY breaking statistics - LVS

• Using the scaling of the underlying parameters, we can compute the scaling behavior of the gravitino in LVS:

$$\rightarrow dm_{3/2} \sim \mathfrak{n}m_{3/2} \left[\ln\left(\frac{M_p}{m_{3/2}}\right) \right]^2 \left[1 - \frac{c_2 \mathfrak{n}^{r-2}}{\ln\left(\frac{M_p}{m_{3/2}}\right)} \right] dN$$

• For any value of the exponent r the leading order result is given by

$$\rightarrow \left[\rho_{\rm LVS}(m_{3/2}) \sim \frac{1}{\mathfrak{n} m_{3/2}^2} \left[\ln \left(\frac{M_p}{m_{3/2}} \right) \right]^{-2} \right] \qquad \left[N_{\rm LVS} \sim \ln \left(\frac{m_{3/2}}{M_p} \right) \right]^{-2}$$

Igor Bröckel

• In LVS we have: $m_{3/2} \sim M_{\rm soft}^{1/p}$, where the value of p depends on the specific model (D3, D7, sequestered)

→ LVS vacua feature a logarithmic distribution of soft terms

SUSY breaking statistics - KKLT

• Using the scaling of the underlying parameters, we can compute the scaling behavior of the gravitino in KKLT:

$$dm_{3/2} \sim \frac{M_p^2}{m_{3/2}} \left[\frac{g_s}{\mathfrak{n}^3 |\ln W_0|^3} + \frac{m_{3/2}^2}{2M_p^2} \left(\frac{1}{g_s} + 3\mathfrak{n}^{r-1} \right) \right] dN$$

• For any value of the exponent r the leading order result is given by

$$\rightarrow \boxed{\rho_{\text{KKLT}}(m_{3/2}) \sim \frac{1}{M_p^2} \left(\frac{\mathfrak{n}^3 |\ln W_0|^3}{g_s}\right) \sim \text{const.}} \qquad \boxed{N_{\text{KKLT}} \sim \left(\frac{m_{3/2}}{M_p}\right)}$$

• In KKLT we have: $m_{3/2} \sim M_{\rm soft}$

→ KKLT vacua feature a power-law distribution of soft terms

22.12.2020

SUSY breaking statistics - KKLT

- The derivation of the previous result relied heavily on the assumption of a uniform distribution of the tree-level superpotential
- However, recent constructions of explicit KKLT models where the crucial relation $W_0 \ll 1$ is satisfied, showed a correlation between the tree-level superpotential and the string coupling of the form

$$\frac{W}{\sqrt{2/\pi}} = \sum_{\vec{q}} \frac{A_{\vec{q}} \vec{M} \cdot \vec{q}}{(2\pi i)^2} e^{2\pi i \tau \vec{p} \vec{q}}$$
[Demirtas, Kim, McAllister, Moritz 20]

- The procedure is based on the neglection of non-pert. correc. at the prepotential level and solving for fluxes, which produce a vanishing superpotential. A subsequent inclusion of the corrections, preserves the exponentially small value of the superpotential
- The exponential dependence of the superpotential on the string coupling lead to a logarithmic scaling in KKLT as well
- How general these constructions are is currently under investigation

Igor Bröckel

SUSY breaking statistics - perturbative

• Using the scaling of the underlying parameters, we can compute the scaling behavior of the gravitino in pert. stabilisation:

$$dm_{3/2} \sim m_{3/2} \left(3c^{k-1} - \frac{4}{g_s} \right) dN$$

• Control over the effective field theory requires k > 1

$$\rightarrow \boxed{\rho_{\text{PERT}}(m_{3/2}) \sim \frac{1}{M_p^2} \left(\frac{m_{3/2}}{M_p}\right)^{\frac{k-7}{3}}} \qquad \boxed{N_{\text{PERT}} \sim \left(\frac{m_{3/2}}{M_p}\right)^{\frac{k-1}{3}}}$$

- Qualitatively similar to KKLT (equal for k=7)
- Soft masses are expected to behave as in LVS
- \rightarrow pert. stabilised vacua feature a power-law distribution of soft terms

Igor Bröckel

Conclusion

- We have stressed that Kähler moduli stabilisation is a critical requirement for a proper treatment of the statistics of SUSY breaking
- Different no-scale breaking effects used to fix the Kähler moduli lead to a different dependence of $m_{3/2}$ on the flux dependent microscopic parameters
- In LVS models the distribution of the gravitino mass and soft terms are logarithmic
- In KKLT and perturbative stabilisation the distribution are **power-law (?)**
- Determining which distribution is more representative of the structure of the flux landscape translates into the question of which vacua are more frequent, LVS or KKLT?
- LVS needs less tuning \rightarrow larger parameter space \rightarrow LVS models favoured?
- Definite answer requires more detailed studies

Igor Bröckel