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Hubble's Law & Constant

v = Hd

v = velocity
H = Hubble constant
d = distance
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The Hubble “tension”: Why does the expansion
rate inferred from the CMB differ from that
observed locally?

* Problem with local measurements?
* Problem with CMB measurements?
* Problems with both?

* New physics?




The Hubble “tension”: Why does the expansion
rate inferred from the CMB differ from that
observed locally?

* Problem with local measurements?
* Problem with CMB measurements?
e Problems with both?

* New physics?
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CMB: Snapshot of Uni
380,000 years after big bang
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How does CMB data measure HOQ?

> Inference of H, from the CMB 1s model dependent.

[t comes from the measurement of three angular scales 0s0d,0eq.

V. Poulin - LUPM & JHU 2 KITP, Santa Barbara - 07/15/19




CMB power spectrum:

~ | Fourier transform | 2
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Acoustic peaks come from Fourier-space “ringing” of these spherical shells

Wavenumber (I) o« (sound horizon)!



How does CMB data measure HO?

o Inference of H, from the CMB is model dependent.
[t comes from the measurement of three angular scales 0s .04 0eq

0s sound horizon at last scattering ~1.0404

<4+—» from peak spacing
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plots by L. Knox multipole moment /¢

V. Poulin - LUPM & JHU 2 KITP, Santa Barbara - 07/15/19




H(m d()(‘ ( \[B (ldld measure HO?

> Inference of H, from the CMB is model dependent.
[t comes from the measurement of three angular scales 0504 0eq.

B4 photon diffusion length at last scattering ~ 0.1609

no photon diffusion

“Silk Damping”
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plots by L. Knox multipole moment ¢

e.g. Hu&White u'r:z‘ru ;w ‘?u{ 09079, Hu++astro-ph/0006436

V. Poulin - LUPM & JHU 3 KITP, Santa Barbara - 07/15/19
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How does CMB data measure HQ?

aference of P tram the CMB 1s model dependent.
Select an area to comment on

[t comes from the measurement of three angular scales 05,04 0eq

Beq horizon size at matter-radiation equality ~ (.81

1] 1]

potential envelope
+ phase shift

gravitational “boost”
l .of oscillations
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plots by L. Knox multipole moment /¢
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How does CMB measure H,?

* Three angles:
* sound horizon
* damping scale
* MR equality

* depend on
e dark-matter density
* baryon density
* Hubble constant

» Of three angles, sound-horizon angle determined best (1 part in 10%)









fto cdt/tg
tree [o(2)/po] /2
ftrec cs(t) dt/trec

0 [p(t)/p(trec)]™?

HO — Hrec

To increase H,, can

Decrease matter density at late times
Decrease sound speed in early Universe

ncrease matter density at early times



fto cdt/tg
tree [o(2)/po] /2
ftrec cs(t) dt/trec

0 [p(t)/p(trec)]™?

HO — Hrec

To increase H,, can

 Decrease matter density at late times (late-time solutions)
 Decrease sound speed in early Universe
* |Increase matter density at early times







Late-time solutions

Modify late expansion history to increase D,

e.g., exotic dark energy; phantom energy; exotic dark matter;

Requires energy density smaller than in standard model: negative-
density matter?!?! Violation of null energy condition?!?!
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Late-time solutions: Empirically disfavored by

BAO in galaxy distribution

Sound horizon imprinted
on galaxy distribution
measured in “redshift
space”

Provides standard ruler
to infer Hy --> lower H,
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fto cdt/tg
tree [o(2)/po] /2
ftrec cs(t) dt/trec

0 [p(t)/p(trec)]™?

HO — Hrec

To increase H,, can

 Decrease matter density at late times (late-time solutions)

 Decrease sound speed in early Universe (not workable yet)
* |ncrease matter density at early times




fto cdt/tg
trec [p(t)/po]'/?
ftrec Cs (t) dt/trec

0 [p(t)/p(trec)]*/?

HO — Hrec

To increase H,, can

 Decrease matter density at late times (late-time solutions)
 Decrease sound speed in early Universe (not workable yet)
* Increase matter density at early times (early dark energy)




Early dark energy (karwal & MK, 2016)
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The (postulated) physics of DE

Behaves like cosmological constant at late times; decays as (scale factor)<2n_2)/(2n+2)

at late times (MK, Pradler & Walker, 2014)



or




Devil is in the details:

Need detailed calculations to show that model
oredictions are consistent with CMB
measurements (Poulin, Karwal, Smith, MK, fall 2018)




Calculations

For each combination of cosmological/EDE parameters (DM density, baryon
density, Hubble parameter, scalar amplitude/spectral index, reionization optical
depth; scalar-field potential parameters, initial field value)....

Evolve (in time, from big bang to present) coupled differential equations for
evolution of

. dark-matter density and velocity

. (moments of) photon distribution function
. neutrino distribution function

. baryon density and velocity

. scalar field

. gravitational potential(s)

For each spatial Fourier mode

Use modified version (Poulin, Smith, Grin, Karwal, MK 2018) of publicly-available CLASS



Calculations

for oscillating-field model, slow-roll model, and phenomenological description in
terms of “generalized dark matter” (Hu 1998)

Products:
. CMB temperature/polarization power spectra
. Galaxy power spectrum

Analysis

Determine likelihood for each parameter combination; use MCMC to find peaks
in likelihood and seek parameter combinations with high Hubble parameter that
provide good fits to data
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Poulin et al. 2018
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New tests of scenario:

Measurements of fine-grain features of CMB
polarization by ACTPol/SPT3G/Simons/CMB-S4/etc
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Early Dark Energy

Early dark energy, the Hubble-parameter tension, and the string axiverse

Tanvi Karwal and Marc Kamionkowski
Department of Physics and Astronomy, Johns Hopkins University,
3400 N. Charles St., Baltimore, MD 21218
(Dated: November 8, 2016)

& Modified Grawty
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Recurrent dark energy?

* A # 0 today
* Inflation = A # 0 in the early Universe

 EDE (if this is what’s goingon) > A # 0atz~ 10,000

* Recurring periods of “A-like” behavior throughout cosmic history?



E.g. tracking oscillating energy (Dodelson, Kaplinghat,
Stewart, astro-ph/0002360; Griest, astro-ph/0202052)

A=4.0, A=0.98, v=0.51
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String Axiverse? (MK, pradler, Walker, 2014; based on
Arvanitaki et al., 2009; Svrcek & Witten, 2006 )

e String theory may imply ~100 axion fields
* Possibly with masses distributed logarithmically

* At each Log(Hubble time) there’s some chance that axion field, if
sufficiently displaced from its minimum, may act (at least briefly) like
dark energy



Summary

* Local observed cosmic expansion rate disagrees with
that inferred from cosmic microwave background

* One possible explanation is early dark energy, a
modification to early-Universe dynamics

* Hypothesis to be tested soon with new data

* |If correct, implies recurrent periods of something

ike a cosmological constant throughout cosmic

nistory




Constraining Early Dark Energy with Large-Scale Structure

Mikhail M. Ivanov,’*? Evan McDonough,® J. Colin Hill,5 Marko Simonovi¢,’
Michael W. Toomey,” Stephon Alexander,” and Matias Zaldarriaga®
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1 Esplanade des Particules, Geneva 23, CH-1211, Switzerland
"Brown Theoretical Physics Center and Department of Physics,
Brown University, Providence, RI 02912, USA
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An axion-like field comprising ~ 10% of the energy density of the universe near matter-radiation
equality is a candidate to resolve the Hubble tension; this is the “early dark energy” (EDE) model.
However, as shown in Hill et al. (2020) [1], the model fails to simultaneously resolve the Hubble
tension and maintain a good fit to both cosmic microwave background (CMB) and large-scale
structure (LSS) data. Here, we use redshift-space galaxy clustering data to sharpen constraints on
the EDE model. We perform the first EDE analysis using the full-shape power spectrum likelihood
from the Baryon Oscillation Spectroscopic Survey (BOSS), based on the effective field theory (EFT)

EDE ruled out by large-scale structure?

The Hubble Tension in Light of
the Full-Shape Analysis of Large-Scale Structure Data

Guido D’Amico!, Leonardo Senatore?®, Pierre Zhang*%, Henry Zheng?3

! Dipartimento di SMFI dell’ Universita’ di Parma & INFN Gruppo Collegato di Parma,
Parma, Italy

2 Stanford Institute for Theoretical Physics, Physics Department,
Stanford University, Stanford, CA 94306

3 Kavli Institute for Particle Astrophysics and Cosmology,
SLAC and Stanford University, Menlo Park, CA 94025

4 Department of Astronomy, School of Physical Sciences,
University of Science and Technology of China, Hefei, Anhui 230026, China

5 CAS Key Laboratory for Research in Galaxies and Cosmology,
University of Science and Technology of China, Hefei, Anhui 230026, China

5 School of Astronomy and Space Science,
University of Science and Technology of China, Hefei, Anhui 230026, China

235v1 [astro-ph.CO] 19 Jun 2020

Abstract The disagreement between direct late-time measurements of the Hubble constant from the
SHOES collaboration, and early-universe measurements based on the ACDM model from the Planck
collaboration might, at least in principle, be explained by new physics in the early universe. Recently,
the application of the Effective Field Theory of Large-Scale Structure to the full shape of the power
spectrum of the SDSS/BOSS data has revealed a new, rather powerful, way to measure the Hubble
constant and the other cosmological parameters from Large-Scale Structure surveys. In light of this,
we analyze two models for early universe physics, Early Dark Energy and Rock 'n’ Roll, that were
designed to significantly ameliorate the Hubble tension. Upon including the information from the
full shape to the Planck, BAO, and Supernovae measurements, we find that the degeneracies in the
cosmological parameters that were introduced by these models are well broken by the data, so that
these two models do not significantly ameliorate the tension.

of LSS. The inclusion of this likelihood in the EDE analysis yields a 25% tighter error bar on Hp
compared to primary CMB data alone, yielding Hy = 68.540:52 km/s/Mpc (68% CL). In addition,
we constrain the maximum fractional energy density contribution of the EDE to fgpr < 0.072
(95% CL). We explicitly demonstrate that the EF'T BOSS likelihood yields much stronger constraints
on EDE than the standard BOSS likelihood. Including further information from photometric LSS
surveys,the constraints narrow by an additional 20%, yielding Ho = 68.73%0 42 km/s/Mpc (68% CL)
and fegpr < 0.053 (95% CL). These bounds are obtained without including local-universe H, data,
which is in strong tension with the CMB and LSS, even in the EDE model. We also refute claims that
MCMC analyses of EDE that omit SHOES from the combined dataset yield misleading posteriors.
Finally, we show that upcoming Fuclid/DESI-like spectroscopic galaxy surveys will greatly improve
the EDE constraints. We conclude that current data preclude the EDE model as a resolution of the
Hubble tension, and that future LSS surveys can close the remaining parameter space of this model.

arXiv:2006.12420v2 [astro-ph.CO] 23 Jun 2020
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from their choice of ;%Ziiii‘,
measure on the EDE A
parameter space.

Best-fit EDE model
provides as good a fit

to data as LambdaCDM
(Smith et al., in prep)
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Cosmos?

Axions? Phantom energy? Astrophysicists scramble to pat

the universe, rewriting cosmic history in the process
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H, Values With Time

Hubble Constant Over Time
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H, “Consensus”
Kavli Meeting Santa Barbara, July 2019

Coordinators: Adam Riess, Tommaso Treu and Licia Verde

flat = ACDM

Ml SHOES

Miras

68 70 72 74 76 ' ' v .
. erde, Treu & Riess (2019
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EDE’s £
“THE REPORTS OF NX/ DEATH'HAVBIBEE]
GREATLY EXAGGERATEL -
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(®) Lifehack Quotes




A problem with local measurements?

“I keep reminiscing how similar and different
this is to 1998 —1 find the measurement side
probably stronger than then....”

(Adam Riess, email, 31 July 2020)
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Animation courtesy
NASA and WMAP
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380,000 years after big bang
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