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Main motivation: 

Understanding the Space of Quantum Field Theories 

CFTIR

CFTUV

massless
massive

CFT:   
Operator and state content

Critical exponents and correlation 
functions

Massive integrable CFT perturbations:

Exact S-matrix

Finite-Size spectrum 
(Thermodynamic Bethe ansatz)

Correlation Functions 
(Form-Factors)



4

Massless integrable CFT perturbations:

Exact S-matrix

Finite-Size spectrum 
(Thermodynamic Bethe ansatz)

IR leading attracting operators
 

Ising CFT

ordered

disordered 
Tricritical Ising 

CFT

first order p.t

TT̄ + …

TT̄(z, z̄) = T(z)T̄(z̄)

Txx = − Tyy = −
1

2π
(T̄ + T)

Tyx = Txy =
i

2π
(T̄ − T)

In a CFT

and 

(z = x + iy, z̄ = z − iy)



  
   
 

CFTIR

??
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Can we reverse the renormalisation group trajectory?

CFTIR

CFTUV

Let us try with the   perturbation …TT̄
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We need the correct definition of  outside a CFT fixed point:  TT̄

Txx = −
1

2π
(T̄ + T − 2Θ) , Tyy =

1
2π

(T̄ + T + 2Θ) , Txy =
i

2π
(T̄ − T) .

Sasha Zamolodchikov (2004): 

TT̄(z, z̄) := − π2 det(Tμν(z, z̄))

Therefore,  up to total derivatives
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ℒ(x, y; τ) = ℒ(x, y; 0) + τ det(Tμν(x, y; 0))

At first order

  Lagrangian and Hamiltonian flow equations:TT̄

∂τℒ(τ) = det(Tμν(τ)) , Tμν(τ) =
−2

g
∂ℒ(τ)
∂gμν

, ∂τℋ(τ) = det(Tμν(τ))

(Euclidean space-time)



8

Massless boson field theories

ℒ(0) = ∂ ⃗ϕ ⋅ ∂̄ ⃗ϕ

ℒ(τ) =
1
2τ (−1 + 1 + 4τ∂ ⃗ϕ ⋅ ∂̄ ⃗ϕ − 4τ2 ℬ) = −

1
2τ

+ ℒstatic
NG (τ)

ℬ =
N

∑
i=1

(∂ϕi)2
N

∑
j=1

(∂̄ϕj)
2

− (
N

∑
i=1

∂ϕi∂̄ϕi)
2

(In complex coordinates: )∂ = ∂z , ∂̄ = ∂z̄

(z = x1 + ix2, z̄ = x1 − ix2)
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The Nambu-Goto model

𝒜 = ∫ dA = ∫ d2x ℒNG =
1
2τ ∫ det

D

∑
μ=1

∂αXμ(x1, x2) ∂βXμ(x1, x2) d2x

in the  static gauge

X1 → x1 , X2 → x2 , Xi → τ
1
2 ϕi−2 , (i = 3,…D)

we have

ℒNG → ℒstatic
NG



Boson field theories with generic potential 

ℒV(τ) =
−V

1 + τ V
+

1
2τ̄ (−1 + 1 + 4τ̄ℒ(0) − 4τ̄2 ℬ)

ℒV(0) = ℒ(0) − V ℒ(0) = ∂ ⃗ϕ ⋅ ∂̄ ⃗ϕ , V = V( ⃗ϕ )

τ̄ = τ (1 + τV)

with
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The sine-Gordon model

with

and  EoM 
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∂ ( ∂̄ϕ
S ) + ∂̄ ( ∂ϕ

S ) = −
V′ 

4S ( S + 1
1 + τV )

2

S(ϕ) = 1 + 4τ (1 + τV) ∂ϕ∂̄ϕ

V′ = 2
m2

β
sin(βϕ)

V = 2
m2

β2 (1 − cos(βϕ))

ℒsG(ϕ, τ) =
−V

1 + τ V
+

−1 + S(ϕ)
2τ(1 + τV)



A local change of coordinates
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2∂w∂w̄ϕ = − V′ 

(z = x1 + ix2, z̄ = x1 − ix2)

(w = y1 + iy2, w̄ = y1 − iy2)

∂ ( ∂̄ϕ
S ) + ∂̄ ( ∂ϕ

S ) = −
V′ 

4S ( S + 1
1 + τV )

2

3.1 From the deformed to the undeformed model through a local change of

coordinates

Thus we have inferred that there must exist a coordinate system w = (w1(z), w2(z)) =

(w(z), w̄(z)) in which the matrices g
TT̄
µ⌫ and d

TT̄
µ⌫ assume the same form as g

sG
µ⌫ and d

sG
µ⌫ ,

respectively. In formulae

g
sG
µ⌫dw

µ
dw

⌫ = g
TT̄
µ⌫ dz

µ
dz

⌫ =) g
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= g

TT̄
⇢� , (3.15)

d
sG
µ⌫dw

µ
dw

⌫ = d
TT̄
µ⌫ dz

µ
dz

⌫ =) d
sG
µ⌫

dw
µ

dz⇢

dw
⌫

dz�
= d

TT̄
⇢� . (3.16)

It is now a matter of simple algebraic manipulations to obtain the following equations for the

new coordinates

@w =
(S + 1)2

4S (1� ⌧V )
, @̄w̄ =

(S + 1)2

4S (1� ⌧V )
, (3.17)

@̄w =
⌧

S

�
@̄�
�2

, @w̄ =
⌧

S
(@�)2 . (3.18)

Let us now use the latter relations to find the partial derivatives of the field � in the coordinates

w:  
@�

@̄�

!
= J

 
@�/@w

@�/@w̄

!
, J =

 
@w @w̄

@̄w @̄w̄

!
. (3.19)

The result is

@� =
1

1� ⌧ (K + V )

@�

@w
, @̄� =

1

1� ⌧ (K + V )

@�

@w̄
, (3.20)

where we have defined the following function

K =
@�(w)

@w

@�(w)

@w̄
. (3.21)

With the help of (3.20), we can now find the expression for S in the coordinates w

S =
q
1 + 4⌧ (1� ⌧V ) @�@̄� =

1 + ⌧ (K � V )

1� ⌧ (K + V )
. (3.22)

We can then write the Jacobian matrix J and its inverse J �1 in terms of w as

J =

 
@w @w̄

@̄w @̄w̄

!
=

1

(1� ⌧V )2 � ⌧2K2

0

@
1� ⌧V ⌧

⇣
@�
@w

⌘2

⌧

⇣
@�
@w̄

⌘2
1� ⌧V

1

A ,

J �1 =

 
@wz @wz̄

@w̄z @w̄z̄

!
=

0

@
1 + ⌧V �⌧

⇣
@�
@w

⌘2

�⌧

⇣
@�
@w̄

⌘2
1 + ⌧V

1

A . (3.23)
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(Pseudo-spherical solitonic  surface:  the  kink and the 
breather) 



(a) (b)

(c) (d)

Figure 2. The TT̄-deformed moving one-kink solution (m = � = 1 , a = 2), for di↵erent values of the
perturbation parameter ⌧ . Figure 2b represents the undeformed solution. Figure 2a corresponds to
⌧ = �1/4, while Figures 2c and 2d correspond to ⌧ = 1/8 and ⌧ = 1/3, respectively. Notice that at
⌧ = 1/8 a shock-wave singularity occurs.

and thus expressions (5.4) become

z(w) = w + 4⌧
m

a�
cos

 
�
(0)
1-kink(w)

2

!
, z̄(w) = w̄ + 4⌧

am

�
cos

 
�
(0)
1-kink(w)

2

!
, (5.6)

which are easily inverted as

w(z) = z � 4⌧
m

a�
cos

 
�
(0)
1-kink (w(z))

2

!
= z � 4⌧

m

a�
cos

 
�
(⌧)
1-kink (z)

2

!
,

w̄(z) = z̄ � 4⌧
am

�
cos

 
�
(0)
1-kink (w(z))

2

!
= z̄ � 4⌧

am

�
cos

 
�
(⌧)
1-kink (z)

2

!
.

(5.7)

Finally, plugging (5.7) into (5.3) we find

m

�

✓
az +

1

a
z̄

◆
= 8⌧

m
2

�2
cos

 
�
(⌧)
1-kink(z)

2

!
+ ln

 
tan

 
�
(⌧)
1-kink(z)

4

!!
, (5.8)

– 14 –

(a) (b)

(c) (d)

Figure 2. The TT̄-deformed moving one-kink solution (m = � = 1 , a = 2), for di↵erent values of the
perturbation parameter ⌧ . Figure 2b represents the undeformed solution. Figure 2a corresponds to
⌧ = �1/4, while Figures 2c and 2d correspond to ⌧ = 1/8 and ⌧ = 1/3, respectively. Notice that at
⌧ = 1/8 a shock-wave singularity occurs.

and thus expressions (5.4) become

z(w) = w + 4⌧
m

a�
cos

 
�
(0)
1-kink(w)

2

!
, z̄(w) = w̄ + 4⌧

am

�
cos

 
�
(0)
1-kink(w)

2

!
, (5.6)

which are easily inverted as

w(z) = z � 4⌧
m

a�
cos

 
�
(0)
1-kink (w(z))

2

!
= z � 4⌧

m

a�
cos

 
�
(⌧)
1-kink (z)

2

!
,

w̄(z) = z̄ � 4⌧
am

�
cos

 
�
(0)
1-kink (w(z))

2

!
= z̄ � 4⌧

am

�
cos

 
�
(⌧)
1-kink (z)

2

!
.

(5.7)

Finally, plugging (5.7) into (5.3) we find

m

�

✓
az +

1

a
z̄

◆
= 8⌧

m
2

�2
cos

 
�
(⌧)
1-kink(z)

2

!
+ ln

 
tan

 
�
(⌧)
1-kink(z)

4

!!
, (5.8)

– 14 –

(a) (b)

(c) (d)

Figure 2. The TT̄-deformed moving one-kink solution (m = � = 1 , a = 2), for di↵erent values of the
perturbation parameter ⌧ . Figure 2b represents the undeformed solution. Figure 2a corresponds to
⌧ = �1/4, while Figures 2c and 2d correspond to ⌧ = 1/8 and ⌧ = 1/3, respectively. Notice that at
⌧ = 1/8 a shock-wave singularity occurs.

and thus expressions (5.4) become

z(w) = w + 4⌧
m

a�
cos

 
�
(0)
1-kink(w)

2

!
, z̄(w) = w̄ + 4⌧

am

�
cos

 
�
(0)
1-kink(w)

2

!
, (5.6)

which are easily inverted as

w(z) = z � 4⌧
m

a�
cos

 
�
(0)
1-kink (w(z))

2

!
= z � 4⌧

m

a�
cos

 
�
(⌧)
1-kink (z)

2

!
,

w̄(z) = z̄ � 4⌧
am

�
cos

 
�
(0)
1-kink (w(z))

2

!
= z̄ � 4⌧

am

�
cos

 
�
(⌧)
1-kink (z)

2

!
.

(5.7)

Finally, plugging (5.7) into (5.3) we find

m

�

✓
az +

1

a
z̄

◆
= 8⌧

m
2

�2
cos

 
�
(⌧)
1-kink(z)

2

!
+ ln

 
tan

 
�
(⌧)
1-kink(z)

4

!!
, (5.8)

– 14 –

The deformed kink solution
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τ < 0

τ > 0

τ = 0
x1

x1

x2

x2

x2

x1

ϕ

ϕ

ϕ



The deformed sine-Gordon breather
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τ = 0

τ < 0

τ > 0

(a) (b)

(c) (d)

Figure 4. The TT̄-deformed stationary breather solution with envelope speed v = 0 (m = � =
1 ,  = 2

5⇡), for di↵erent values of the perturbation parameter ⌧ . Figure 4b represents the undeformed
solution, Figure 4a corresponds to ⌧ = �1/2, while Figures 4c and 4d correspond to ⌧ = 1/10 and
⌧ = 1/5, respectively.

Performing the change of variables u(w) = (u(w), ū(w)), one finds

(
@z
@u = �

m
1

2 sin 

�
@z
@w + @z

@w̄

�

@z
@ū = �

m
1

2 cos 

�
� @z
@w + @z

@w̄

� ,

(
@z̄
@u = �

m
1

2 sin 

�
@z̄
@w + @z̄

@w̄

�

@z̄
@ū = �

m
1

2 cos 

�
� @z̄
@w + @z̄

@w̄

� , (5.15)

and again plugging (5.1) into (5.15) with the identification �(w) ⌘ �
(0)
breather(w), one gets two

sets of di↵erential equations which can be solved for z(u) giving

z(u) =
�

m

✓
u

2 sin 
� ū

2 cos 

◆
� 8⌧

m

�
sin 

cos ū

coshu

sec ū sinhu+ sechu sin ū tan 

1 + (tan sin ū sechu)2
,

z̄(u) =
�

m

✓
u

2 sin 
+

ū

2 cos 

◆
� 8⌧

m

�
sin 

cos ū

coshu

sec ū sinhu� sechu sin ū tan 

1 + (tan sin ū sechu)2
.

(5.16)

As for the two-kink example, the constants of integration in (5.16) are fixed according to the

⌧ = 0 case, and again the solution u(z) to (5.16) is computed numerically. The deformed

solution �(⌧)breather(z) is displayed in Figure 4 for di↵erent values of ⌧ . The result is similar to
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1 + (tan sin ū sechu)2
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@ū = �

m
1

2 cos 

�
� @z
@w + @z

@w̄

� ,

(
@z̄
@u = �

m
1

2 sin 

�
@z̄
@w + @z̄

@w̄

�

@z̄
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ū

2 cos 

◆
� 8⌧

m

�
sin 

cos ū
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Generic -deformed modelsTT̄

and thus the metric, in the set of coordinates y, is

g
0
µ⌫ =

@x
⇢

@yµ

@x
�

@y⌫
g⇢� = �µ⌫ � ⌧✏µ⇢✏

�
⌫

�
2T + ⌧T

2
�⇢

�
, (4.10)

where we used the fact that g⇢� = �⇢�. Translating the first expression of (4.4) in z coordinates

and then moving to Euclidean coordinates, one obtains the inverse relation of (4.8)

@y
µ

@x⌫
= �

µ
⌫ + ⌧

� eT (⌧)
�µ

⌫
(x) ,

� eT (⌧)
�µ

⌫
(x) = �✏

µ
⇢✏

�
⌫

�
T
(⌧)

�µ
⌫
(x) , (4.11)

where
�
T
(⌧)

�µ
⌫
(x) is the stress energy tensor of the deformed theory.

Finally let us conclude this section with a couple of remarks:

• Consider the transformation of the Lagrangian7 (4.1) under the on-shell map (4.4)

L(⌧)
N (z(w)) =

L(0)
N (w) + ⌧

⇣
(KN )2 � V

2
⌘

1� 2⌧V � ⌧2
⇣
(KN )2 � V 2

⌘ . (4.13)

Using the latter expression together with

Det
�
J �1
N

�
= Det (JN )�1 = 1� 2⌧V � ⌧

2
⇣
(KN )2 � V

2
⌘

, (4.14)

we find that the action transforms as

A [�] =

Z
dz dz̄ L(⌧)(z) =

Z
dw dw̄

��det
�
J �1

��� L(⌧) (z(w))

=

Z
dw dw̄

⇣
L(0)(w) + ⌧ TT̄

(0)
(w)

⌘
(4.15)

where TT̄
(0)

(w) = (KN )2�V
2. Thus, we conclude that the action is not invariant under the

change of variables. This is not totally surprising since the map (4.4) is on-shell, however it

is remarkable that the (bare) perturbing field can be so easily identified once the change of

variables is performed. Again, our result matches with [18], where the TT̄
(0)

term emerges

as a JT gravity contribution to the action.

• Notice that the EoMs associated to (4.1) for a generic potential V are invariant under the

transformation8

z ! � z , ⌧ ! � ⌧ , V ! V � c , (4.16)

7
In the N = 1 case, the transformed Lagrangian takes an even simpler expression

L
(⌧)
1 (z(w)) =

L
(0)
1 (w)

1� ⌧L(0)
1 (w)

. (4.12)

8
We thank Sergei Dubovsky for questioning us about the possible existence of such symmetry of the EoMs.
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Notice that
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It is now a matter of simple algebraic manipulations to obtain the following equations for the

new coordinates

@w =
(S + 1)2

4S (1� ⌧V )
, @̄w̄ =

(S + 1)2

4S (1� ⌧V )
, (3.17)

@̄w =
⌧

S

�
@̄�
�2

, @w̄ =
⌧

S
(@�)2 . (3.18)

Let us now use the latter relations to find the partial derivatives of the field � in the coordinates

w:  
@�

@̄�

!
= J

 
@�/@w

@�/@w̄

!
, J =

 
@w @w̄

@̄w @̄w̄

!
. (3.19)

The result is

@� =
1

1� ⌧ (K + V )

@�

@w
, @̄� =

1

1� ⌧ (K + V )

@�

@w̄
, (3.20)

where we have defined the following function

K =
@�(w)

@w

@�(w)

@w̄
. (3.21)

With the help of (3.20), we can now find the expression for S in the coordinates w

S =
q
1 + 4⌧ (1� ⌧V ) @�@̄� =

1 + ⌧ (K � V )

1� ⌧ (K + V )
. (3.22)

We can then write the Jacobian matrix J and its inverse J �1 in terms of w as

J =

 
@w @w̄

@̄w @̄w̄

!
=

1

(1� ⌧V )2 � ⌧2K2

0

@
1� ⌧V ⌧

⇣
@�
@w

⌘2

⌧

⇣
@�
@w̄

⌘2
1� ⌧V

1

A ,

J �1 =

 
@wz @wz̄

@w̄z @w̄z̄

!
=

0

@
1 + ⌧V �⌧

⇣
@�
@w

⌘2

�⌧

⇣
@�
@w̄

⌘2
1 + ⌧V

1

A . (3.23)

– 9 –



16

Quantum -deformations on infinite cylinder of circumference RTT̄

∂τℋ(τ) = det(Tμν(τ)) → ∂τ⟨n |ℋ(τ) |n⟩ = ⟨n | det(Tμν(τ)) |n⟩

⟨n | det(Tμν(τ)) |n⟩ = ⟨n |T11 |n⟩⟨n |T22 |n⟩ − ⟨n |T12 |n⟩⟨n |T21 |n⟩ [Zamolodchikov 2004]
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∂τEn(R, τ) = En(R, τ)∂REn(R, τ) +
P2

n(R)
R

The inviscid Burgers equation for the quantum spectrum

 source term

Pn = 0 → En(R, τ) = En(R + τEn(R, τ),0)



(Typical  finite-volume spectrum)τ = 0

where,    is the “effective central charge” of the UV CFT state.ceff = c − 24Δ
18
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For  (i.e. the ground-state energy) we have a “wave-breaking” phenomenaceff > 0

(τ > 0)
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For  (i.e. generic excited state) the branch points move off, along the imaginary axis ceff < 0

(τ < 0)



    The CFT case

The total energy:

 (primary)ceff = c − 25Δ

which matches the form of  the (D=26, ) Nambu Goto spectrum, for a generic  CFT.ceff = 24

so that equations (2.1) are replaced by the system of two coupled nonlinear integral equa-

tions:

f (±)(✓) = ±i↵� i
M

2
e±✓ R (2.8)

⌥

Z

C(±)
1

dyK(✓ � y) ln
⇣
1 + e⌥f

(±)(y)
⌘
±

Z

C(±)
2

dyK(✓ � y) ln
⇣
1 + e±f

(±)(y)
⌘

⌥

Z

C(⌥)
1

dy �CDD(✓ � y) ln
⇣
1 + e±f

(⌥)(y)
⌘
±

Z

C(⌥)
2

dy �CDD(✓ � y) ln
⇣
1 + e⌥f

(⌥)(y)
⌘
.

Plugging in (2.7), it is simple to show that these equations can be rewritten as

f (±)(✓) = ±i↵� i
M

2
e±✓

⇣
R+ 2tE(⌥)(R, t)

⌘
(2.9)

⌥

Z

C(±)
1

dyK(✓ � y) ln
⇣
1 + e⌥f

(±)(y)
⌘
±

Z

C(±)
2

dyK(✓ � y) ln
⇣
1 + e±f

(±)(y)
⌘
,

where E(±)(R, t) denote the canonical expressions for I(±), evaluated on the solutions of

the deformed NLIE system:

E(±)(R, t) =
M

2

"Z

C(±)
1

d✓

2⇡i
e±✓ ln

⇣
1 + e�f

(±)(✓)
⌘
�

Z

C(±)
2

d✓

2⇡i
e±✓ ln

⇣
1 + ef

(±)(✓)
⌘#

.(2.10)

Equations (2.9) reveal that the deformation can be interpreted as a redefinition of the

length-parameters appearing in the NLIEs, R ! R+ 2tE(±)(R, t). Consistency with (2.5)

then yields the following conditions:

R ! R+ 2⌧E(±)(R, ⌧) (2.11)

E(+)(R, ⌧) = 2⇡

✓
n0 � ce↵/24

R+ 2⌧E(�)(R, ⌧)

◆
, E(�)(R, ⌧) = 2⇡

✓
n̄0 � ce↵/24

R+ 2⌧E(+)(R, ⌧)

◆
.(2.12)

These are precisely the relations found in [9] starting from (generic) TBA equations and

imply that the energy levels have the form [7, 9]:

E(R, ⌧) = E(+)(R, ⌧) + E(�)(R, ⌧)

= �
R

2⌧
+

s
R2

4⌧2
+

2⇡

⌧

⇣
n0 + n̄0 �

ce↵
12

⌘
+

✓
2⇡(n0 � n̄0)

R

◆2

, (2.13)

P (R) = E(+)(R)� E(�)(R) =
2⇡(n0 � n̄0)

R
. (2.14)

As reviewed in the introduction, for ce↵ = D � 2 this coincides with the spectrum of the

Nambu-Goto string inD-dimensional target space obtained through light-cone quantization

(for more comments on this relation, see the Conclusions).

Let us also briefly mention that there are other NLIEs describing integrable CFTs, as well

as massless flows between minimal models [11, 13, 14]. The analysis of this section could

be repeated without essential modifications to study the t-deformation of these systems

as well. The purpose of the following Section 3 is to illustrate the generalization of these

results to the case of a massive integrable QFT, the sine-Gordon model.

6
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Caselle-Gliozzi-Fioravanti-Tateo 2013



22

Notice that  there are  spectral singularities connecting the two branches.
 The most evident being the tachyonic critical point at 

Rcr =
2πcτ

3

From the point of view of a QFT at finite temperature , this critical point is consequence of an exponential 
growing of the degeneracy of the energy levels at large  energy 

T = 1/R
E

Consider the degeneracy of a free (massless) fermionic system on a circle, with   and circumference  c = 1/2 L → ∞

R = 1/T

L



23

δS(E) =
δE
T

→ T(E) =
1

∂ES(E)
, S = log ρ(E)

Indeed,   coincides with  the upper limit temperature of the system:TH

TH = sup(T(E))

Comparing this result  with the tachyonic singularity at   we obtain: Rcr

Rcr = 1/TH .

The asymptotic behaviour of the level degeneracy for large   isn0 = n̄0 = n

ρ(n) = 3 ( πTH

3E )
3

eE/TH = ρ(E)
dE
dn

, TH =
3
πτ

, E(n) ≃ 4πn/τ



Thank you for 
your attention!
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