# Muon g–2: the showdown

Massimo Passera INFN Padova

GGI Tea Breaks Firenze - April 21<sup>st</sup> 2021 Muon g-2: FNAL confirms BNL





 $a_{\mu}^{\text{EXP}} = (116592089 \pm 63) \times 10^{-11} [0.54ppm] \text{ BNL E821}$  $a_{\mu}^{\text{EXP}} = (116592040 \pm 54) \times 10^{-11} [0.46ppm] \text{ FNAL E989 Run 1}$  $a_{\mu}^{\text{EXP}} = (116592061 \pm 41) \times 10^{-11} [0.35ppm] \text{ WA}$ 

- FNAL aims at 16 x 10<sup>-11</sup>. First 3 runs completed, 4th in progress.
- Muon g-2 proposal at J-PARC: Phase-1 with ~ BNL precision.



- $\bigcirc$  Muon g-2  $\iff \Delta \alpha$  connection
- **The MUonE project**

# Muon g-2: the Standard Model prediction

WP20 = White Paper of the Muon g-2 Theory Initiative: arXiv:2006.04822

Muon g-2: the QED contribution

μ

 $a_{\mu}^{QED} = (1/2)(\alpha/\pi)$ 

Schwinger 1948

## + 0.765857426 (16) (α/π)<sup>2</sup>

Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; MP '04

## + 24.05050988 (28) (α/π)<sup>3</sup>

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek '99; MP '04; Friot, Greynat & de Rafael '05, Ananthanarayan, Friot, Ghosh 2020

## + 130.8780 (60) (α/π)<sup>4</sup>

Kinoshita & Lindquist '81, ..., Kinoshita & Nio '04, '05; Aoyama, Hayakawa,Kinoshita & Nio, 2007, Kinoshita et al. 2012 & 2015; Steinhauser et al. 2013, 2015 & 2016 (all electron & τ loops, analytic); Laporta, PLB 2017 (mass independent term) COMPLETED<sup>2</sup>!

## + 750.86 (88) (α/π)<sup>5</sup> COMPLETED!

Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta,... Aoyama, Hayakawa, Kinoshita, Nio 2012, 2015, 2017 & 2019. Volkov 1909.08015: A<sub>1</sub><sup>(10)</sup>[no lept loops] at variance, but negligible δa<sub>μ</sub>~6×10<sup>-14</sup>

## Adding up, we get:





#### The electroweak contribution



#### • One-loop plus higher-order terms:



Kukhto et al. '92; Czarnecki, Krause, Marciano '95; Knecht, Peris, Perrottet, de Rafael '02; Czarnecki, Marciano and Vainshtein '02; Degrassi and Giudice '98; Heinemeyer, Stockinger, Weiglein '04; Gribouk and Czarnecki '05; Vainshtein '03; Gnendiger, Stockinger, Stockinger-Kim 2013, Ishikawa, Nakazawa, Yasui, 2019.



#### The hadronic LO contribution



= 6928 (24) x 10<sup>-11</sup> = 6931 (40) x 10<sup>-11</sup> (0.6%)

WP20 value

WP20 value obtained merging conservatively DHMZ + KNT + constraints from CHHKS Colangelo, Hoferichter, Hoid, Kubis, Stoffer 2018-19

ĕ **Radiative Corrections to**  $\sigma(s)$  are crucial. S. Actis et al, Eur. Phys. J. C66 (2010) 585

#### The low-energy hadronic cross section



Great progress in lattice QCD results. The BMW collaboration reached 0.8% precision:  $a_{\mu}^{HLO} = 7075(23)_{stat}(50)_{syst} \times 10^{-11}$ . Some tension with dispersive evaluations. BMWc 2021



μ

• O(α<sup>3</sup>) contributions of diagrams containing HVP insertions:



Krause '96; Keshavarzi, Nomura, Teubner 2019; WP20.

• O(α<sup>4</sup>) contributions of diagrams containing HVP insertions:





Kurz, Liu, Marquard, Steinhauser 2014

μ

## The hadronic LbL contribution



Significant improvements due to data-driven dispersive approach.
 Colangelo, Hoferichter, Procura, Stoffer, 2014–17; Pauk, Vanderhaeghen 2014.

- Lattice: RBC: 82(35)x10-11 1911.08123 Mainz: 110(15)x10-11 2104.02632
- Hadronic light-by-light at O(α<sup>4</sup>)

 $a_{\mu}^{HNNLO}(IbI) = 2(1) \times 10^{-11}$ 

Colangelo, Hoferichter, Nyffeler, MP, Stoffer 2014; WP20





#### Is $\Delta a_{\mu}$ due to new physics beyond the SM? Could be due to:

- NP at the weak scale and weakly coupled to SM particles
- NP very heavy and strongly coupled to SM particles
- NP very light ( $\Lambda \lesssim 1$  GeV) and feebly coupled to SM particles

U

# **Muon g-2** $\iff \Delta \alpha$ connection

Marciano, MP, Sirlin 2008 & 2010 Keshavarzi, Marciano, MP, Sirlin 2020

- Can  $\Delta a_{\mu}$  be due to missing contributions in the hadronic  $\sigma(s)$ ?
- An upward shift of  $\sigma(s)$  also induces an increase of  $\Delta \alpha_{had}^{(5)}(M_z)$ .
- Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\text{HLO}} &\to \\ a &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^{3}}, \, s_{u} < M_{Z}^{2}, \\ \Delta \alpha_{\text{had}}^{(5)} &\to \\ b &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_{Z}^{2}}{(M_{Z}^{2} - s)(4\alpha\pi^{2})}, \end{aligned}$$

and the increase

$$\Delta \sigma(s) = \epsilon \sigma(s)$$

 $\epsilon$ >0, in the range:

$$\sqrt{s} \in \left[\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2\right] \quad \Longrightarrow$$

How much does the  $M_H$  upper bound from the EW fit change when we shift up  $\sigma(s)$  by  $\Delta\sigma(s)$  [and thus  $\Delta\alpha_{had}^{(5)}(M_Z)$ ] to fix  $\Delta a_{\mu}$ ?



Δα

# Major update: Higgs discovered, improved EW observables (Mw, $\sin^2\theta$ , M<sub>top</sub>, ...), updates to $\sigma$ (s), theory improvements, global fit, ...

| Parameter                                            | Input value            | Reference | Fit result                    | Result w/o input value |
|------------------------------------------------------|------------------------|-----------|-------------------------------|------------------------|
| $M_W$ (GeV)                                          | 80.379(12)             | [5]       | 80.359(3)                     | 80.357(4)(5)           |
| $M_H$ (GeV)                                          | 125.10(14)             | [5]       | 125.10(14)                    | $94^{+20+6}_{-18-6}$   |
| $\Delta \alpha_{\rm had}^{(5)}(M_Z^2) 	imes 10^4$    | 276.1(1.1)             | [23]      | 275.8(1.1)                    | 272.2(3.9)(1.2)        |
| $m_t (\text{GeV})$                                   | 172.9(4)               | [5]       | 173.0(4)                      |                        |
| $\alpha_s(M_Z^2)$                                    | 0.1179(10)             | [5]       | 0.1180(7)                     |                        |
| $M_Z$ (GeV)                                          | 91.1876(21)            | [5]       | 91.1883(20)                   |                        |
| $\Gamma_Z$ (GeV)                                     | 2.4952(23)             | [5]       | 2.4940(4)                     |                        |
| $\Gamma_W$ (GeV)                                     | 2.085(42)              | [5]       | 2.0903(4)                     |                        |
| $\sigma_{\rm had}^0$ (nb)                            | 41.541(37)             | [108]     | 41.490(4)                     |                        |
| $R_{I}^{0}$                                          | 20.767(25)             | [108]     | 20.732(4)                     |                        |
| $R_c^0$                                              | 0.1721(30)             | [108]     | 0.17222(8)                    |                        |
| $R_b^0$                                              | 0.21629(66)            | [108]     | 0.21581(8)                    |                        |
| $\bar{m_c}$ (GeV)                                    | 1.27(2)                | [5]       | 1.27(2)                       |                        |
| $\bar{m_b}$ (GeV)                                    | $4.18_{-0.02}^{+0.03}$ | [5]       | $4.18\substack{+0.03\\-0.02}$ |                        |
| $A_{ m FB}^{0,l}$                                    | 0.0171(10)             | [108]     | 0.01622(7)                    |                        |
| $A_{\rm FB}^{0,c}$                                   | 0.0707(35)             | [108]     | 0.0737(2)                     |                        |
| $A_{\rm FB}^{0,b}$                                   | 0.0992(16)             | [108]     | 0.1031(2)                     |                        |
| $A_{\ell}$                                           | 0.1499(18)             | [75,108]  | 0.1471(3)                     |                        |
| A <sub>c</sub>                                       | 0.670(27)              | [108]     | 0.6679(2)                     |                        |
| $A_b$                                                | 0.923(20)              | [108]     | 0.93462(7)                    |                        |
| $\sin^2 \theta_{\rm eff}^{\rm lep}(Q_{\rm FB})$      | 0.2324(12)             | [108]     | 0.23152(4)                    | 0.23152(4)(4)          |
| $\sin^2 \theta_{\rm eff}^{\rm lep}({ m Had \ Coll})$ | 0.23140(23)            | [100]     | 0.23152(4)                    | 0.23152(4)(4)          |

#### Keshavarzi, Marciano, MP, Sirlin, PRD 2020 (using Gfitter)

Δα

#### Muon g-2: connection with the SM Higgs mass (2020)



#### Shifts $\Delta \sigma(s)$ to fix $\Delta a_{\mu}$ are possible, but conflict with the EW fit if they occur above ~1 GeV

Keshavarzi, Marciano, MP, Sirlin, PRD 2020



Uniform scaling of  $\sigma(s)$  below ~0.7 GeV? +9% required!

Keshavarzi, Marciano, MP, Sirlin, PRD 2020

Δα



Shifts below ~1 GeV conflict with the quoted exp. precision of  $\sigma(s)$ 

Keshavarzi, Marciano, MP, Sirlin, PRD 2020 (updated 2021)

# What happens to the electron g-2?

#### • The 2008 measurement of the electron g-2 is:

a<sub>e</sub>EXP = 11596521807.3 (2.8) x 10<sup>-13</sup> Hanneke et al, PRL100 (2008) 120801

vs. old (factor of 15 improvement, 1.8 o difference):

**a**<sub>e</sub><sup>EXP</sup> = **11596521883 (42) x 10**<sup>-13</sup> Van Dyck et al, PRL59 (1987) 26

• Equate  $(a_e^{SM}(\alpha) = a_e^{EXP}) \rightarrow "g_e - 2"$  determination of alpha:

a<sup>-1</sup> = 137.035 999 151 (33) [0.24 ppb]

### • The best determination of α is obtained via atomic interferometry:

 $\alpha^{-1} = 137.035\ 999\ 046\ (27)\ [0.20\ ppb]$  Parker et al, Science 360 (2018) 192 (Cs)  $\alpha^{-1} = 137.035\ 999\ 206\ (11)\ [0.08\ ppb]$  Morel et al, Nature 588 (2020) 61 (Rb)

### **2018** $\rightarrow$ **2020**: improvement in precision, but 5.4 $\sigma$ difference!



#### Morel et al, Nature 588 (2020) 61

Using the best determinations of α (which differ by 5.4σ!):

 $\alpha = 1/137.035\ 999\ 046\ (27)\ [Cs\ 2018]$  $\alpha = 1/137.035\ 999\ 206\ (11)\ [Rb\ 2020]$ 

 $a_e^{SM}$  = 115 965 218 16.16 (0.11) (0.08) (2.28) x 10<sup>-13</sup> [Cs18] = 115 965 218 02.64 (0.11) (0.08) (0.93) x 10<sup>-13</sup> [Rb20]

 $\delta C_{5}^{\text{qed}}$ 

 $\delta a_{a}^{had}$ 

 $a_e^{EXP} = 115\ 965\ 218\ 07.3\ (2.8)\ x\ 10^{-13}$  Hanneke et al, PRL 2008

• The (EXP – SM) difference is:

 $\Delta a_e = a_e^{EXP} - a_e^{SM} = -8.9 (3.6) \times 10^{-13} [2.5\sigma] [Cs18]$ = + 4.7 (3.0) x 10<sup>-13</sup> [1.6 $\sigma$ ] [Rb20]

NP sensitivity limited only by the experimental errors in α and a<sub>e</sub>.
 May soon play a pivotal role in probing NP in the leptonic sector.

M. Passera GGI 21.4.2021

**from** δα

QED 5-loop:  $a_e^{QED5} = 4.6 \times 10^{-13}$ 

- Using  $\alpha$ (Rb2020), the sensitivity is  $\delta \Delta a_e = 3.0 \times 10^{-13}$ , ie (×10<sup>-13</sup>):  $(0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (0.9)_{\delta \alpha}, \quad (2.8)_{\delta a_e^{\text{EXP}}}$   $(0.2)_{\text{TH}}$
- The (g-2)<sub>e</sub> experimental error may soon drop below 10<sup>-13</sup> → a<sub>e</sub> sensitivity below 10<sup>-13</sup> may soon be reached!
- In a broad class of BSM theories, contributions to a<sub>l</sub> scale as

$$\frac{\Delta a_{\ell_i}}{\Delta a_{\ell_j}} = \left(\frac{m_{\ell_i}}{m_{\ell_j}}\right)^2$$
 This Naive Scaling leads to:

$$\Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.7 \times 10^{-13}; \qquad \Delta a_\tau = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.8 \times 10^{-6}$$

Giudice, Paradisi & MP, JHEP 2012

#### Shift of the electron g-2



Shifts  $\Delta \sigma(s)$  to fix  $\Delta a_{\mu}$  only slightly change  $\Delta a_{e}$ 

Keshavarzi, Marciano, MP, Sirlin, PRD 2020

### Shift of the e/ $\mu$ g-2 scaled HLO ratio



# Good agreement between lattice [Giusti & Simula 2020] and KNT19. Possible future bounds on very low energy shifts $\Delta\sigma(s)$ ?

Keshavarzi, Marciano, MP, Sirlin, PRD 2020

- Crivellin, Hoferichter, Manzari and Montull, "Hadronic vacuum polarization: (g-2)<sub>μ</sub> versus global electroweak fits," arXiv:2003.04886.
- Eduardo de Rafael, "On Constraints Between  $\Delta \alpha_{had}(Mz^2)$  and  $(g_{\mu}-2)_{HVP}$ ," arXiv:2006.13880.
- Malaescu and Schott, "Impact of correlations between a<sub>μ</sub> and α<sub>QED</sub> on the EW fit," arXiv:2008.08107.
- Colangelo, Hoferichter and Stoffer, "Constraints on the two-pion contribution to hadronic vacuum polarization," arXiv:2010.07943.

# **The MUonE project**





 The leading hadronic contribution a<sub>µ</sub><sup>HLO</sup> computed via the timelike formula:



$$a_{\mu}^{\text{HLO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma_{\text{had}}^{(0)}(s)$$
$$K(s) = \int_0^1 dx \, \frac{x^2 \, (1-x)}{x^2 + (1-x) \left(s/m_{\mu}^2\right)}$$

• Alternatively, simply exchanging the x and s integrations:



$$a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_0^1 dx \left(1 - x\right) \Delta \alpha_{\text{had}}[t(x)]$$
$$t(x) = \frac{x^2 m_{\mu}^2}{x - 1} < 0$$

Lautrup, Peterman, de Rafael, 1972

# $\Delta \alpha_{had}(t)$ is the hadronic contribution to the running of $\alpha$ in the spacelike region: $a_{\mu}^{HLO}$ can be extracted from scattering data!

Carloni Calame, MP, Trentadue, Venanzoni, 2015



- $\Delta \alpha_{had}(t)$  can be measured via the elastic scattering  $\mu e \rightarrow \mu e$ .
- We propose to scatter a 150 GeV muon beam, available at CERN's North Area, on a fixed electron target (Beryllium). Modular apparatus: each station has one layer of Beryllium (target) followed by several thin Silicon strip detectors.



Abbiendi, Carloni Calame, Marconi, Matteuzzi, Montagna, Nicrosini, MP, Piccinini, Tenchini, Trentadue, Venanzoni EPJC 2017 - arXiv:1609.08987

- For a 150 GeV muon beam ( $\sqrt{s}$ ~400 MeV), MUonE's scan region extends up to x=0.932, ie beyond the peak! (the peak is at x=0.914)
- The high-energy region inaccessible to MUonE contributes only 13% of a<sub>μ</sub><sup>HLO</sup> integral. It can be determined with timelike data and/or lattice QCD results. Already obtained via lattice QCD! Giusti&Simula and Marinkovic´&Cardoso 2019







- Statistics: With CERN's 150 GeV muon beam M2 (1.3 × 10<sup>7</sup> µ/s), incident on 40 15mm Be targets (total thickness 60cm), 2-3 years of data taking (2×10<sup>7</sup> s/yr) → ℒ<sub>int</sub> ~ 1.5 × 10<sup>7</sup> nb<sup>-1</sup>.
- With this  $\mathscr{L}_{int}$  we estimate that measuring the shape of d $\sigma$ /dt we can reach a <u>statistical</u> sensitivity of ~0.3% on  $a_{\mu}^{HLO}$ , ie ~20 × 10<sup>-11</sup>.
- Systematic effects must be known at ≤ 10ppm!
- Test beams performed at CERN in 2017 & 2018 arXiv:1905.11677, 2102.1111
- Lol submitted to CERN SPSC in 2019: Test run approved for 2021.
- Full-statistics run hopefully in 2022–24.

To extract △α<sub>had</sub>(t) from MUonE's measurement, the ratio of the SM cross sections in the signal and normalisation regions must be known at ≤ 10ppm!



- Fully differential fixed-order MC @ NLO ready Pavia and PSI 2018-19
- NNLO QED: Master Integrals for 2-loop box diagrams computed. Full 2-loop amplitude close to completion. Padova 2017 - present
- Two MC built including partial subsets of the NNLO QED corrections due to electron and muon radiation Pavia and PSI 2020
- NNLO hadronic effects computed Padova and KIT 2019
- Extraction of the leading electron mass effects from the massless muon-electron scattering amplitudes PSI 2019-present
- New Physics extracting  $\Delta \alpha_{had}(t)$  at MUonE? Padova and Heidelberg 2020

Theory for muon-electron scattering @ 10 ppm: A report of the MUonE theory initiative. arXiv:2004.13663

• ...

### **MUonE** — Theory workshops





#### Muon-electron scattering: Theory kickoff workshop

4-5 September 2017

Padova Europe/Rome timezone

Venue

Logistic Map



MUonE theory workshops: Padova 2017, Mainz 2018, Zurich 2019 Next MUonE theory workshop: MITP Mainz 2020-21 postponed to 2022

# Conclusions

- Fermilab's Muon g-2 experiment confirms BNL's result.
- $\bigcirc$  The discrepancy between experiment and SM increases to 4.2 $\sigma$ .
- The BMWc lattice QCD result weakens the exp-SM discrepancy. It must be confirmed or refuted by other lattice calculations.
- Solution Is the present  $\Delta a_{\mu}$  discrepancy due to missed contributions in the hadronic  $\sigma(s)$ ?

Shifts  $\Delta \sigma(s)$  to fix  $\Delta a_{\mu}$  conflict with the global EW fit above ~1 GeV Shifts below ~1 GeV conflict with the quoted exp. error of  $\sigma(s)$ .

Solution Leading hadronic contribution to  $a_{\mu}$ : dispersive vs lattice? MUonE will provide a new independent determination alternative to both.