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What is an EFT?
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Heavy loop corrections
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Irrelevant Operators

• Generic operators in LEEFT are irrelevant and contain 
higher derivatives


• Neither is fundamentally a problem

• Naive additional states from higher derivatives have 

masses above cutoff of EFT, therefore do not exist! (no S-
matrix)
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sensitive to truncation!!!

do not take seriously!



Redundant Operators and Field 
redefinitions

• Frequently useful to perform field redefinitions of Light 
fields - scattering amplitudes invariant under invertible, 
local field redefinitions (that do not change asymptotic 
states)

Light0 = Light+
a

⇤5
(⇤Light)2 + . . .

Light = Light0 � a

⇤5
(⇤Light0)2 + . . .

• Operators which can be removed with a field redefinition 
are called redundant operators (N.B. Often carelessly and 
incorrectly referred to as using equations of motion)

E.g.
invertible



UV MODIFICATIONS



Type I: UV Modifications: 

eg. Quantum Gravity, string theory, extra 

dimensions, branes, supergravity

At energies well below the scale of new physics     , 

gravitational effects are well incorporated 

in the language of Effective Field Theories

⇤



Beyond Einstein Theories of  Gravity

Addition of Higher Dimension, (generally higher derivative operators), no 
failure of well-posedness/ghosts etc as all such operators should be treated 

perturbatively (rules of EFT)

GR	itself	should	be	understood	as	an	EFT	with	a	cutoff	at	most	
at	Planck	scale	physics	-	no	problem	quantizing	gravity	as	a	
LEEFT,	


Perturbative	scattering	breaks	unitarity	at	Planck	scale,	known	
irrelevant	operators	can	renormalize	UV	divergence


see e.g. reviews by Donoghue, Burgess
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GR+Light field EFT
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Include all local interaction consistent with symmetries:

For example, we have no trouble computing loop corrections to 
scalar and tensor fluctuations produced during inflation

Straight	forward	to	extend	to	include	low	energy	‘light’	matter




Example: Propagation of   
Gravitational Waves

Can the propagation of gravitational waves be different (e.g. 
around FRW?)

UV Completion/Quantum Effects: Yes!

Tree Level Effects:   Addition of massive higher spin states with                  

             will modify propagation provided their is kinetic mixings � 2

Loop Level Effects:  Loop effects from particles with all spin           
including               modify propagation speeds < 2



Curvature Squared Corrections

Generic EFT of gravity will include higher curvature operators. 
Leading curvature ones in four dimensions can be packaged into
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only affects scalar sector
affects tensor (gravitational wave) sector



Curvature Squared Corrections
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d4x
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• Can be removed with field redefinitions BUT will modify 
couplings to matter!! 


• Loop contributions log divergent (in 4 dimensions), so values 
dependent on unknown UV boundary condition

Things to know:



‘Einstein/tensor frame picture’which matter minimally couples and that in which gravity minimally couples, following from (4.6). To
see this explicitly, we can start with our EFT Lagrangian for GR including the leading order curvature
corrections as given in (3.16)
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where Lmatter(g, ) is the Lagrangian for the (low–energy) matter fields that we assume (for now) are
minimally coupled to gravity. For definiteness, we refer to this frame as the frame in which matter is
minimally coupled and denote the metric in this frame as gµ⌫ = gmatter
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then the field redefined Lagrangian is13
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where again ellipses represent higher order curvature operators (e.g. of order R3/M4) and gµ⌫ is not
the tensor (Einstein) frame metric gtensor

µ⌫
. At the order at which we are working, the dimension–4

curvature–squared interactions have now disappeared, other than the Gauss–Bonnet term which does
not a↵ect local physics, at the price of non–minimal interactions in the matter sector. Such types
of operators were considered within the context of EFTs for cosmic acceleration [66, 67]. It is clear
that to this order, in this representation, gravitational waves will travel at the speed defined by the
lightcones of the metric gtensor

µ⌫
, but light itself will no longer travel at this speed since Maxwell’s

equations are modified by the inclusion of higher order operators.

13To this order this is similar to a four dimensional T T̄ deformation, however the coincidence ends at this order [65].
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Perform the field redefinition:

Gravitationally Induced Matter Interactions

This leading order ‘TT deformation’ of the matter Lagrangian in (4.7) can be understood diagrammat-
ically as arising from the process given in Figs. 1 and 2. The diagram in Fig. 2 represents the tree level
process whereby a massive heavy state of spin–2 or –0 is exchanged between the two stress energies.
This corresponds to the explicit example given in Section 4.3.1. The diagram in Fig. 1 describes a loop
process from a heavy field mediated via tree level massless graviton exchange. This corresponds to
the explicit example given in Section 5.1.1, at least after field redefinition. We stress again that while
the perspective obtained by performing these field redefinitions is useful, at least at these low orders,
once we consider higher order interactions, gravitational couplings arise (e.g. Riemann3) which cannot
be removed via local field redefinitions alone, it will not be possible to give such a simple e↵ective
description in terms of gravitationally induced matter interactions. Of course S-matrix elements are
invariant under these field redefinitions, and the on-shell process described by Figs. 1 and 2 can be
computed in any frame.

Figure 1: TT amplitude: Graviton mediated loop contributions to matter interactions. � symbolizes
a matter field present in the stress–energy tensor Tµ⌫ , a wiggly line is a graviton propagator and solid
purple lines are the loops of heavy fields.

Connection with the NEC

After performing the field redefinition to remove the curvature–squared terms, we have the Einstein
(or tensor) frame metric in which the gravitational tensor fluctuations are minimally coupled
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Evaluating this on–shell, then to the same order we have
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For concreteness, we now focus on the FLRW metric considered in Section 3.2, although the following
argument clearly applied for any background (as for the example of the static warped geometry in
Section 3.3), not just FLRW.

When the matter metric has the FLRW form gmatter

µ⌫
dxµdx⌫ = a(⌘)2(�d⌘2 + d~x2), then to this

order the Einstein (tensor) frame metric is
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Redundant



‘Einstein/tensor frame picture’
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which matter minimally couples and that in which gravity minimally couples, following from (4.6). To
see this explicitly, we can start with our EFT Lagrangian for GR including the leading order curvature
corrections as given in (3.16)
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where Lmatter(g, ) is the Lagrangian for the (low–energy) matter fields that we assume (for now) are
minimally coupled to gravity. For definiteness, we refer to this frame as the frame in which matter is
minimally coupled and denote the metric in this frame as gµ⌫ = gmatter
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. The leading order equation
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Consider now the following field redefinition
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where again ellipses represent higher order curvature operators (e.g. of order R3/M4) and gµ⌫ is not
the tensor (Einstein) frame metric gtensor

µ⌫
. At the order at which we are working, the dimension–4

curvature–squared interactions have now disappeared, other than the Gauss–Bonnet term which does
not a↵ect local physics, at the price of non–minimal interactions in the matter sector. Such types
of operators were considered within the context of EFTs for cosmic acceleration [66, 67]. It is clear
that to this order, in this representation, gravitational waves will travel at the speed defined by the
lightcones of the metric gtensor

µ⌫
, but light itself will no longer travel at this speed since Maxwell’s

equations are modified by the inclusion of higher order operators.

13To this order this is similar to a four dimensional T T̄ deformation, however the coincidence ends at this order [65].
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Field redefined Lagrangian



Example: Gravitational Waves on 
FLRW
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Assume that matter is minimal (for simplicity)

Perturbing around a cosmological background:
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Equation for Gravitational Waves
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Field redefining/Rearranging to remove higher time derivatives

This perturbative substitution can be performed on the first three terms of the Operator Ôdim�4

defined in (3.24) so that only the last three terms remains with slightly altered coe�cients,
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At this stage we see directly that to this order, the modified equation of motion for the tensor modes
on FLRW is
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The friction term can easily be taken care of by performing a rescaling of the field which will keep
the second space and time derivatives una↵ected and simply modify the e↵ective mass term by order
H2/M2

Pl
corrections. As a result we can directly read o↵ the e↵ective low–energy sound speed which

as we see gets a↵ected by the Weyl–term (and solely the Weyl term) on this spontaneously Lorentz
breaking background,
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Interestingly, we see that the e↵ective sound speed is superluminal on a null–energy condition satis-
fying background 9H < 0 as soon as CW 2 > 0. At this stage we may be inclined to conclude that
CW 2 ought to be negative for any consistent (causal) UV completion, however this conclusion would
be wrong, or at least highly premature, as we will argue in what follows (see Section 4).

In a weakly coupled UV completion, the natural scale for CW is M2

Pl
/⇤2 where ⇤ is the scale of

new tree level physics. Hence the correction to the sound speed may be as large as ⇠ | 9H|/⇤2. This is
particularly interesting in the case of inflationary models where the hierarchy between | 9H|

1/2 and the
scale of new physics ⇤ is not necessarily large.

3.3 Static Warped Geometries

Although our main focus is on cosmological spacetimes, it is worth noting that the above analysis
trivially generalizes to static warped geometries with ISO(1, 2) symmetry. By analytic continuation
we can equally well consider metrics with non–trivial dependence on only one space dimension, e.g. y
and associated matter profiles

ds2 = a(y)2(dy2 � dt2 + dx2 + dz2) + a(y)habdx
adxb , (3.37)

where hab, transverse and traceless with respect to the (t, x, z) subspace. Due to the fact that these
solutions have the same amount of symmetry as the FLRW solutions, the equivalently defined tensor
modes decouple from the matter degrees of freedom which source the background y dependence.
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‘Einstein/tensor frame picture’

Gravitational Waves Luminal:

which matter minimally couples and that in which gravity minimally couples, following from (4.6). To
see this explicitly, we can start with our EFT Lagrangian for GR including the leading order curvature
corrections as given in (3.16)
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where Lmatter(g, ) is the Lagrangian for the (low–energy) matter fields that we assume (for now) are
minimally coupled to gravity. For definiteness, we refer to this frame as the frame in which matter is
minimally coupled and denote the metric in this frame as gµ⌫ = gmatter
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where again ellipses represent higher order curvature operators (e.g. of order R3/M4) and gµ⌫ is not
the tensor (Einstein) frame metric gtensor

µ⌫
. At the order at which we are working, the dimension–4

curvature–squared interactions have now disappeared, other than the Gauss–Bonnet term which does
not a↵ect local physics, at the price of non–minimal interactions in the matter sector. Such types
of operators were considered within the context of EFTs for cosmic acceleration [66, 67]. It is clear
that to this order, in this representation, gravitational waves will travel at the speed defined by the
lightcones of the metric gtensor

µ⌫
, but light itself will no longer travel at this speed since Maxwell’s

equations are modified by the inclusion of higher order operators.

13To this order this is similar to a four dimensional T T̄ deformation, however the coincidence ends at this order [65].
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Matter Fluctuations Subluminal if NEC satisfied and 

c2s(tensor) = 1

c
2
s(matter) = 1�

16CW 2(�Ḣ)

M
2
Pl

+O(1/M4
Pl)

This has been used in the cosmological context in [58]. It is clear that due to the logarithm, the
massless loops can dominate over the heavy loop contributions, in particular in the IR. However, if as
we will assume, the number of heavy fields is much greater than the number of massless or light fields,
then we expect Ci � Ĉi and so it will be su�cient to focus on the heavy contributions.

2.2 A Word of Caution on Field Redefinitions

As is well–known, the R2 and R2

µ⌫
interactions are redundant operators and are therefore removable

with field redefinitions. Since the S–matrix is invariant under field redefinitions, it seems appropriate
to ignore these contributions. This would be true for pure gravity, but when gravity is coupled to
matter, all the field redefinition does is shift the same e↵ect into another operator that arises at the
same scale, specifically into a pure matter contribution that produces the same e↵ect. In general field
redefinitions of the metric change the ‘speed’ of propagation by virtue of modifying the background
metric with respect to which the speed is identified. However field redefinitions do not change the
relative speed. For instance, if gravitational waves travel faster than photons in one ‘field frame’, they
do so in all ’field frames’. That is in the cosmological context

c2
s
(tensor)

c2
s
(matter)

is invariant under field redefinitions. (2.10)

The relative causal structure is kept in tact [15]. Thus the question of whether gravitational waves
are superluminal or subluminal with respect to light is a frame independent question.

For backgrounds with FLRW symmetry, it is always technically possible to perform a field redefi-
nition that renders the gravitational waves luminal. This is largely a triviality, due to the symmetry,
the di↵erence between the metric which matter couples to and the metric on which gravitational waves
propagate is just a rescaling of the time component of the metric combined with an overall conformal
factor (see e.g. [59]). Given whatever field is used to spontaneously break time di↵eomorphism,  , we
can always perform a field redefinition in the manner (as an example)

gµ⌫ ! A( )gµ⌫ +B( )rµ rµ , (2.11)

and engineer the functions A and B so that for a given background the metric travels luminally. How-
ever, there is in general no single local and covariant background field redefinition that would render
gravitational modes luminal around all backgrounds and so this procedure while comforting is also
misleading. At one–loop level and higher order, we find Riemann cubed terms in the e↵ective action
generated from loops (5.1), part of which are Weyl cubed terms. These terms cannot be removed with
a local field redefinition since they are not proportional to the leading equations of motion. Although
these terms do not contribute on FLRW backgrounds, for backgrounds with less symmetry they do
change the speed of gravitational waves and yet there is clearly no local field redefinition that removes
them.

In this work we shall mainly focus on dimension–4 R2 and dimension–6 (R3 and Rr
2R) curva-

ture operators, as well as specific dimension–8 R4 curvature operators in Section 5.2. Dimension–4
curvature operators are naturally the leading contributions, but if those vanish (as will be considered
in Section 5) the dimension–6 curvature operators are then the leading contributions.

– 9 –

CW 2 > 0



Curvature Cubed Corrections
Even if we artificially tune curvature squared terms to zero

Finite Curvature Cubed corrections from lowest mass particles 
intgreated out in deriving EFT 

5.1 Dimension–6 Curvature Operators

5.1.1 One–Loop E↵ective Action

The general form of the dimension–6 curvature operators that are expected to arise in a gravitational
EFT are well known and can be parameterized by [79]

�(1�loop)

dim�6
=

1

12(2⇡)4
p
�g

X

i

1

M2

i

"
d(si)
1

R2R+ d(si)
2

Rµ⌫2R
µ⌫ + d(si)

3
R3 + d(si)

4
RR2

µ⌫
(5.1)

+d(si)
5

RR2

µ⌫↵�
+ d(si)

6
R3

µ⌫
+ d(si)

7
Rµ⌫R↵�Rµ↵⌫� + d(si)

8
Rµ⌫Rµ↵��R⌫

↵��

+d(si)
9

Rµ⌫↵�Rµ⌫��R↵�
�� + d(si)

10
Rµ

↵
⌫
�R

↵
�
�
�R

�
µ
�
⌫

#
,

where d(si)
I

denotes the contribution from integrating out a particle of mass Mi and spin si. As usual,
the above form can be simplified by using field redefinitions to remove for example all the R and
Rµ⌫ terms (see [8] for a recent discussion), but doing so will only introduce interactions in the matter
sector which capture the same basic one–loop process, such as those described in Fig. 1. Performing
this field redefinition would take us out of the frame in which we have chosen to minimally couple SM
fields and so we prefer to remain in this frame, being the natural one from the perspective of a path
integral calculation.

Unlike the case for the curvature–squared corrections, other than the coe�cients d(si)
1

and d(si)
2

there are no known positivity bounds that fix the signs of the remaining coe�cients. That is because,
even if we were to rewrite these interactions as pure matter ones, they would correspond to TabTcdTef

interactions, and would only contribute (at tree–level) to 3�3 scattering and higher order amplitudes,
or to 3 point Källén–Lehman dispersion relations, for which clean statements of positivity are not
known (although see [41] for statements in the holographic/CFT context).

We can bypass this problem by however focusing on the explicit example of loop corrections from
particles of spin si  1 for which the coe�cients are known and are finite. This finiteness is crucial
since it tells us there is no need to add any counterterms at this order, and so their is no ambiguity
about the signs of the resulting coe�cients. For these dimension–6 operators, the explicit one–loop
e↵ective action was computed exactly in [52, 80] for massive particles of spin 0, 1/2 and 1, where the
dimensionless coe�cients d(si)n are given in table 1 of appendix A and depend on the spin si of the
particle integrated. We reproduce these results for spin–0 explicitly in Appendix A using dimensional
regularization for convenience.

As before, we shall see that the very existence of these dimension–6 operators leads to a sound speed
for gravitational waves at low–energy which can di↵er from luminality. On a cosmological background
they lead to corrections to the sound speed of order N 9HH2/M2

Pl
M2 where N is the number of fields

integrated out and M their mass. What is crucially di↵erent at this order is, depending on the field
content of heavy modes, the speed of gravitational waves can e↵ectively turn both superluminal and
subluminal. This is true even for matter forced to respect the null energy condition, for signs we know
to be consistent with positivity since they are derived from an explicitly unitary calculation from a
local and well–behaved field content.
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Pure Riemann terms cannot be removed with field redefinition



Scales
S = M2

Planck

Z
d4x

p
�g


1

2
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a

⇤2
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b
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R2

µ⌫ + · · ·+ c

⇤4
RabcdR

cd
efR
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+
d

⇤6
(RabcdR

abcd)2 + . . .

SW =

Z
d4x

"
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P
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✓
r
⇤

◆2N ✓
Riemann

⇤2
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LightB

⇤

◆P ✓
LightF
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◆Q
#

Cutoff scale is scale of new gravitational physics - e.g. 
higher spin string states/KK modes

Except in early universe, realistic curvatures are far too 
small for these effects to be observable 

To be interesting phenomenologically 

- made artificially large… (ultimately inconsistent)

- or search elsewhere … (IR modifications)



IR MODIFICATIONS



Theorem: General Relativity is the Unique local and Lorentz 
invariant theory describing an interacting single massless spin 
two particle that couples 

to matter

Locality

Massless

Single Spin 2

Lorentz Invariant?

Weinberg, Deser, Wald, Feynman, ….. 

Type 2: IR Modifications: 




IR extensions of  gravity

If we want to preserve locality and Lorentz invariance

Extension or modification of gravity will either

I. Include new propagating degrees of freedom 

II. Render spin-2 graviton effectively massive (soft or hard) 

E.g. spin 0 (Brans Dicke/f(R)/Galileon/Horndeski ….), 

spin 2 (extra dimensions/Kaluza-Klein)

Massive gravity/DGP/Cascading gravity/warped massive gravity



Explosion of  models beyond  
GR+SM+standard extensions

Many	models	which	attempt	to	solve	various	hierarchy	problem	
or	Dark	Energy	introduce	new	physics	at	lower	scales

 
(eg.	DBI,	K-inflation,	Brane-world	models,	DGP,	Chameleon,	Symmetron,	
ghost	condensate,	Massive	Gravity,	Galileon,	Generalized	galileon,	
Horndeski,	beyond	Horndeski,	beyond	beyond	Horndeski,	superfluid	dark	
matter	…	)

EFTs with cutoff typically lower than the Planck scale

e.g. even Higgs inflation breaks down at a scale parameterically 
well below Planck scale since              is non-renormalizable ⇠RH

2



Explosion of  models beyond  
GR+SM+standard extensions

Many	models	are	non-traditional,	in	the	sense	that	naive	non-
renormalizable	operators	play	a	significant	role:	


N +M > 4Non-renormalizable/irrelevant if 

L ⇠ ⇤4rN�M

⇤N+M

Despite large irrelevant operators, EFT for fluctuations remains 
under control!



Silverstein,	Tong,	PRD70,	2004	
Alishahiha,	Silverstein,	Tong,	PRD70,	2004

Poincare	invariance	in	5d	implies	 
global	symmetry	for	DBI	in	4d:

DBI

Poster child example 1: DBI

Despite large irrelevant operators, 
EFT for fluctuations remains under control!

admits a weakly coupled UV completion by interpreting as a 
probe brane in an extra dimension

L = �⇤4
p
1 + (@�)2/⇤2

(@�)2 ⇠ ⇤4 @(@�)2 ⌧ ⇤5as long as

Example of P(X) model



Galileon	Symmetry

Galileon

Poster child example 2: Galileon

as long as

L = �1

2
(@�)2 +

1

⇤3
⇤�(@�)2 + . . .

� ! �+ c+ vµx
µ

@@� ⇠ ⇤3 @@@� ⌧ ⇤4

Very Optimistically in Vainshtein region ….

Z ⇠ @@�
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p
Z⇤
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EFTS FOR BROKEN 
SYMMETRIES



Breaking Symmetries
In SM, Electroweak symmetry       


is spontaneously broken by the VEV of the Higgs field

SU(2)⇥ U(1)Y ! U(1)EM

Result, W and Z bosons become massive

Goldstone Equivalence Theorem
At high energies, scattering of additional longitudinal modes of 

massive boson determined by Goldstone/Stuckelberg EFT

When symmetries are broken, frequently easier to work 
with EFT for broken symmetry



e.g. Abelian Higgs

� = (v + ⇢)ei⇡

Below the mass of the Higgs boson, integrate out 

Goldstone/

Stuckelberg field

Higgs Boson

Aµ ! Aµ + @µ� ⇡ ! ⇡ + q�

� ! eiq��

⇢

L = �1

4
F 2
µ⌫ � 1

2
m2AµA

µ + �(AµA
µ)2 + . . .

In unitary gauge ⇡ = 0 after integrating out Higgs Boson …

Dµ� = @µ�� iqAµ� Aµ ! Aµ + @µ�

Dµ� ! eiq�Dµ�

Higgs vev

⇢ ! ⇢



Stuckleberg Procedure

Reintroduce Stuckelberg/Goldstone mode via a gauge 
transformation promoted to a field

L = �1

4
F 2
µ⌫ � 1

2
m2(Aµ � 1

m
@µ⇡)(A

µ � 1

m
@µ⇡) + �((Aµ � 1

m
@µ⇡)(A

µ � 1

m
@µ⇡))2 + . . .

Aµ ! Aµ � 1

m
@µ⇡

Aµ ! Aµ + @µ⇠

Massive theory is now gauge invariant under

⇡ ! ⇡ +m⇠

Therefore the number of degrees of freedom are
2 Aµ + 1 ⇡ = 3

L = �1

4
F 2
µ⌫ � 1

2
m2AµA

µ + �(AµA
µ)2 + . . .



Decoupling Limit
L = �1

4
F 2
µ⌫ � 1

2
m2(Aµ � 1

m
@µ⇡)(A

µ � 1

m
@µ⇡) + �((Aµ � 1

m
@µ⇡)(A

µ � 1

m
@µ⇡))2 + . . .

E � mAt high energies

send m ! 0 � ! 0 ⇤ =
m

�1/4
keeping fixed

LDL = �1

4
F 2
µ⌫ � 1

2
(@µ⇡@

µ⇡) +
1

⇤4
(@µ⇡@

µ⇡)2 + . . .

Goldstone/Stuckelberg LEEFT!!!



EFTS FOR BROKEN 
SYMMETRIES - 

GRAVITY!



EFTS FOR BROKEN 
SYMMETRIES - GRAVITY!

Global Symmetry = Poincare Invariance

Local Symmetry = Diffeomorphism Invariance

Symmetries are spontaneously broken by Matter!

E.g. 1: Matter/Radiation/Inflation in Cosmology breaks 
time diffs

E.g. 2: A hairy black hole breaks radial diffs



EFTS FOR BROKEN TIME 
TRANSLATION

EFT of inflation 0709.0293           

/EFT of dark energy  1210.0201

Unitary gauge

Stuckelberg

Goldstone LEEFT

The theory of perturbations around the time evolving solution is quite different from the theory

of φ we started with: while φ is a scalar under all diffeomorphisms (diffs), the perturbation δφ is a

scalar only under spatial diffs while it transforms non-linearly with respect to time diffs:

t → t + ξ0(t, $x) δφ → δφ + φ̇0(t)ξ
0 . (1)

In particular one can choose a gauge φ(t, $x) = φ0(t) where there are no inflaton perturbations, but

all degrees of freedom are in the metric. The scalar variable δφ has been eaten by the graviton, which

has now three degrees of freedom: the scalar mode and the two tensor helicities. This phenomenon

is analogous to what happens in a spontaneously broken gauge theory. A Goldstone mode, which

transforms non-linearly under the gauge symmetry, can be eaten by the gauge boson (unitary gauge)

to give a massive spin 1 particle. The non-linear sigma model of the Goldstone can be embedded

and UV completed into a linear representation of the gauge symmetry like in the Higgs sector of

the Standard Model. This is analogous to the standard formulation of inflation, where we start

from a Lagrangian for φ with a linear representation of diffs. In this paper we want to stress the

alternative point of view, describing the theory of perturbations during inflation directly around

the time evolving vacuum where time diffs are non-linearly realized. This formalism has been firstly

introduced, for a generic FRW background, in [1] to study the possibility of violating the Null Energy

Condition; here we will extend this formalism focusing on an inflationary solution.

We will show that in unitary gauge the most generic Lagrangian with broken time diffeomor-

phisms (but unbroken spatial diffs) describing perturbations around a flat FRW with Hubble rate

H(t) is given by

S =

∫
d4x

√
−g

[1

2
M2

PlR + M2
PlḢg00 − M2

Pl

(
3H2 + Ḣ

)
+

M2(t)4

2!
(g00 + 1)2 (2)

+
M3(t)4

3!
(g00 + 1)3 + . . . −

M̄2(t)2

2
δKµ

µ
2 + ...

]
.

The first two operators after the Einstein-Hilbert term are fixed by the requirement of having a given

unperturbed solution H(t), while all the others are free and parametrize all the possible different

theories of perturbations with the same background solution. As time diffs are broken one is allowed

to write any term that respects spatial diffs, including for example g00 and the extrinsic curvature

Kµ
ν of the surfaces at constant time. The coefficients of the operators will be in general time

dependent. The reader may be worried by the use of a Lagrangian that is not invariant under

diffeomorphisms. But clearly diff. invariance can be restored as in a standard gauge theory. One

performs a time-diffeomorphism with parameter ξ0(t, $x) and promotes the parameter to a field π(t, $x)

which shifts under time diffs: π(t, $x) → π(t, $x)− ξ0(t, $x). The scalar π is the Goldstone mode which

non linearly realizes the time diffs and it describes the scalar perturbations around the FRW solution.

It is well known that the physics of the longitudinal components of massive gauge bosons can be

studied, at sufficiently high energy, concentrating on the scalar Goldstone mode (equivalence theo-

rem). The same is true in our case: for sufficiently high energy the mixing with gravity is irrelevant

and we can concentrate on the Goldstone mode. In this regime the physics is very transparent and

most of the information about cosmological perturbations can be obtained. Performing the broken

diff transformation on the Lagrangian (2) and concentrating on the Goldstone mode π one gets

Sπ =

∫
d4x

√
−g

[
M2

PlḢ (∂µπ)2 + 2M4
2

(
π̇2 + π̇3 − π̇

1

a2
(∂iπ)2

)
−

4

3
M4

3 π̇3 −
M̄2

2

1

a4
(∂2

i π)2 + . . .

]
. (3)

2

The theory of perturbations around the time evolving solution is quite different from the theory

of φ we started with: while φ is a scalar under all diffeomorphisms (diffs), the perturbation δφ is a

scalar only under spatial diffs while it transforms non-linearly with respect to time diffs:

t → t + ξ0(t, $x) δφ → δφ + φ̇0(t)ξ
0 . (1)

In particular one can choose a gauge φ(t, $x) = φ0(t) where there are no inflaton perturbations, but

all degrees of freedom are in the metric. The scalar variable δφ has been eaten by the graviton, which

has now three degrees of freedom: the scalar mode and the two tensor helicities. This phenomenon

is analogous to what happens in a spontaneously broken gauge theory. A Goldstone mode, which

transforms non-linearly under the gauge symmetry, can be eaten by the gauge boson (unitary gauge)

to give a massive spin 1 particle. The non-linear sigma model of the Goldstone can be embedded

and UV completed into a linear representation of the gauge symmetry like in the Higgs sector of

the Standard Model. This is analogous to the standard formulation of inflation, where we start

from a Lagrangian for φ with a linear representation of diffs. In this paper we want to stress the

alternative point of view, describing the theory of perturbations during inflation directly around

the time evolving vacuum where time diffs are non-linearly realized. This formalism has been firstly

introduced, for a generic FRW background, in [1] to study the possibility of violating the Null Energy

Condition; here we will extend this formalism focusing on an inflationary solution.

We will show that in unitary gauge the most generic Lagrangian with broken time diffeomor-

phisms (but unbroken spatial diffs) describing perturbations around a flat FRW with Hubble rate

H(t) is given by

S =

∫
d4x

√
−g

[1

2
M2

PlR + M2
PlḢg00 − M2
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(
3H2 + Ḣ

)
+
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(g00 + 1)2 (2)

+
M3(t)4
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M̄2(t)2

2
δKµ

µ
2 + ...

]
.

The first two operators after the Einstein-Hilbert term are fixed by the requirement of having a given

unperturbed solution H(t), while all the others are free and parametrize all the possible different

theories of perturbations with the same background solution. As time diffs are broken one is allowed

to write any term that respects spatial diffs, including for example g00 and the extrinsic curvature

Kµ
ν of the surfaces at constant time. The coefficients of the operators will be in general time

dependent. The reader may be worried by the use of a Lagrangian that is not invariant under

diffeomorphisms. But clearly diff. invariance can be restored as in a standard gauge theory. One

performs a time-diffeomorphism with parameter ξ0(t, $x) and promotes the parameter to a field π(t, $x)

which shifts under time diffs: π(t, $x) → π(t, $x)− ξ0(t, $x). The scalar π is the Goldstone mode which

non linearly realizes the time diffs and it describes the scalar perturbations around the FRW solution.

It is well known that the physics of the longitudinal components of massive gauge bosons can be

studied, at sufficiently high energy, concentrating on the scalar Goldstone mode (equivalence theo-

rem). The same is true in our case: for sufficiently high energy the mixing with gravity is irrelevant

and we can concentrate on the Goldstone mode. In this regime the physics is very transparent and

most of the information about cosmological perturbations can be obtained. Performing the broken

diff transformation on the Lagrangian (2) and concentrating on the Goldstone mode π one gets

Sπ =

∫
d4x

√
−g

[
M2

PlḢ (∂µπ)2 + 2M4
2

(
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−
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t ! t+ ⇡(x)



EFTS FOR BROKEN 

RADIAL DIFFS

e.g. EFT of Black Hole Quasinormal Modes in Scalar-Tensor 
Theories 

Unitary gauge

Stuckelberg

Goldstone LEEFT

1810.07706

covariantly.10 Thus, we define �Kµ⌫ by Kµ⌫ � K̄µ⌫ , and it is not a covariant tensor. The two
main consequences of this fact are: i) new independent operators are in principle allowed
at any order in perturbations, including as we will see one additional tadpole; ii) invariance
under residual (temporal and angular) di↵eomorphisms in general will not be manifest in the
Lagrangian at a given order in perturbations i.e. an object like �Kµ⌫�K

µ⌫ is not invariant
because �Kµ⌫ is not a covariant tensor.

In the case of spherically symmetric backgrounds, the perturbation of a given operator Oi

that belongs to the building blocks {Rµ⌫↵� , g
rr
,Kµ⌫} or their derivatives can be defined by

subtracting the background value of the operator, �Oi ⌘ Oi� Ōi. Even if the �Oi so defined
does not transform covariantly, at a given order n in the number of perturbations, the most
general action will be of the form:

S
(n) =

Z
d4x

p
�g

X

i1,...,in

C
(n)
i1,...,in

(r)�Oi1 . . . �Oin , (2.3)

where the indices im run on the operators up a to given order in derivatives. Now, for every

choice of the functions of the radial coordinate C
(n)
i1,...,in

(r) there is clearly a gauge invariant
Lagrangian (with respect to temporal and angular di↵s.) of the form (2.2) such that its
expansion in perturbations up to order n gives the desired coe�cients. On the other hand, in
general, at fixed order n a specific Lagrangian (2.2) in two di↵erent gauges will give rise to an

action for perturbations with di↵erent values for the coe�cients C(n)
i1,...,in

(r), so a Lagrangian
of the form (2.3) is well defined only once the gauge choice for perturbations is made. This
aspect, as we will see in the next sections, does not turn out to be a limitation in any practical
application of the EFT for perturbations that we are constructing.

As we prove in App. A, the most general action for perturbations in unitary gauge up to
quadratic order and with no more than two derivatives can be written as

S =

Z
d4x

p
�g


1

2
M

2

1 (r)R� ⇤(r)� f(r)grr � ↵(r)K̄µ⌫K
µ⌫

+M
4

2 (r)(�g
rr)2 +M

3

3 (r)�g
rr
�K +M

2

4 (r)K̄µ⌫�g
rr
�K

µ⌫

+M
2

5 (r)(@r�g
rr)2 +M

2

6 (r)(@r�g
rr)�K +M7(r)K̄µ⌫(@r�g

rr)�Kµ⌫ +M
2

8 (r)(@a�g
rr)2

+M
2

9 (r)(�K)2 +M
2

10(r)�Kµ⌫�K
µ⌫ +M11(r)K̄µ⌫�K�K

µ⌫ +M12(r)K̄µ⌫�K
µ⇢
�K

⌫
⇢

+ �(r)K̄µ⇢K̄
⇢
⌫ �K�K

µ⌫ +M
2

13(r)�g
rr
�R̂+M14(r)K̄µ⌫�g

rr
�R̂

µ⌫ + . . .

�
,

(2.4)

where R̂µ⌫ is the Ricci tensor built out of the induced metric hµ⌫ .

A few comments are in order at this point. As anticipated above, one has formally a larger
number of operators for perturbations with respect to [38]. In particular, there is in principle
an additional tadpole parametrized by the function ↵(r), which, together with ⇤(r) and f(r),
will be determined by the Einstein equations.11

10
For instance, one might be tempted to define K

(0)
µ⌫ =

1
2@rhµ⌫ , but this is not a good tensor under r

dependent (t, ✓,�) di↵eomorphisms.

11
The analog of the additional tadpole term in the case of the EFT for inflation would be K

(0)
µ⌫ K

µ⌫
, and this

can be shown to be rewritable in terms of the other tadpole terms, for an FLRW background (see Appendix

of [38]).
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Notice the extra factor of 1/(a2b2), which is needed because the (t, t) and (r, r) components
of the background metric are non-trivial. Using the particular form of the kinetic coe�cients
in Eqs. (6.11a) and (6.11b), we find that the two eigenvalues of the matrix (6.12) are

c
2

r,1 = 1 , c
2

r,2 =
f � 4M4

2

f
, (6.13)

where f(r) is the tadpole coe�cient (2.11) with M1 ⌘ MPl, ↵ ⌘ 0 and c(r) = r. Thus,
we see that the last operator in (6.5) breaks the degeneracy between the two sound speeds.
Absence of superluminality as well as gradient instabilities in the radial direction then implies
0 < 4M4

2
/f < 1. At this order in the derivative expansion, the sound speeds in (6.13) can

also be recovered by working in the decoupling limit, as we will show in the next section.
This is no longer true when higher derivative operators such as �grr�K are included in the
action.

By varying the action (6.10) with respect to  and K one finds a system of two coupled,
linear di↵erential equations, which can be further simplified with an appropriate rescaling of
the coordinate r and a redefinition of the field  and K. A discussion along this line will be
presented elsewhere, while in the following we will focus only on a very specific limit such
that the dynamics of the scalar degree of freedom decouples from the gravity sector.

6.2 Goldstone mode and decoupling limit

In constructing the unitary gauge action (2.4) we have chosen a specific foliation of the
spacetime by fixing radial di↵eomorphisms in such a way to set to zero the perturbations
of the scalar field. In turn, they have shown up in the metric tensor (6.1). An alternative
but equivalent choice, which turns out to be particularly convenient to decouple scalar and
metric perturbations, can be made by restoring the full di↵eomorphism invariance using the
so-called Stückelberg trick. This amounts to performing a broken radial di↵eomorphism of
the form r ! r + ⇡(r, xa) in the action (2.4), and promoting the gauge parameter ⇡ to a
full-fledged field. The field ⇡ then admits a natural interpretation as the Goldstone boson
that realizes non-linearly the spontaneously broken r-translations. After restoring full di↵-
invariance, one can then fix the gauge by imposing conditions on the metric perturbations
alone, as discussed below Eq. (6.4).

The explicit transformation laws of the various geometric ingredients appearing in (2.4)
under a broken radial di↵eomorphism are summarized in Appendix C. For the purposes of
the present discussion, it is su�cient to remind the reader of the following result:

g
rr ! g

rr(1 + 2⇡0 + ⇡
02) + 2gar@a⇡ + 2gar⇡0@a⇡ + (@a⇡)(@b⇡)g

ab
, (6.14)

Without loss of generality, in the remaining of this section we will work with a radial coor-
dinate such that b ⌘ 1 in the background metric (2.1).

For simplicity we will restrict our attention to the leading order action (6.5). The inclusion
of higher derivative operators is discussed in Appendix C.1. The tadpole coe�cients (2.11)
and (2.12) then reduce to

⇤(r) = �
✓
c
00

c
+

a
0
c
0

ac
+

c
02

c2
� 1

c2

◆
M

2

Pl
f(r) =

✓
a
0
c
0

ac
� c

00

c

◆
M

2

Pl
. (6.15)

– 28 –

After performing the Stückelberg transformation (6.14), the action (6.5) takes on the form

S =

Z
d4x

p
�g


M

2

Pl

2
R� ⇤(r + ⇡)

� f(r + ⇡)
⇣
g
rr(1 + 2⇡0 + ⇡

02) + 2gar@a⇡ + 2gar⇡0
@a⇡ + (@a⇡)(@b⇡)g

ab
⌘

+M
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02) + 2gar@a⇡ + 2gar⇡0
@a⇡ + (@a⇡)(@b⇡)g

ab
⌘
2
�
.

(6.16)

Despite this action’s complicated appearance, one can usually find a regime—known as de-
coupling limit—where the kinetic mixing between the scalar mode and the graviton helicities
becomes negligible compared to their kinetic terms. For instance, let’s consider the mix-
ing term 2f(r)�grr⇡0 in Eq. (6.16). After introducing the canonically normalized fields

⇡c ⌘ ⇡
p
2f and �g

rr
c ⌘ �g

rr
MPl, this terms reads

p
2f

MPl
�g

rr
c ⇡

0
c. Thus, for energies above

Emix ⌘
p
2f

MPl
it can be safely neglected compared to the kinetic terms for �gµ⌫c and ⇡c.21 As

a result, in this regime one study the perturbations �gµ⌫ and ⇡ separately. Focusing on the
latter, we set the metric to its background value (2.1) to obtain the following quadratic action
for ⇡:

S
(2)

⇡ =

Z
dtdrd⌦ ac

2

("
@r

�
ac

2
f
0�

ac2
� (⇤00 + f

00)

2

#
⇡
2 �

�
f � 4M4

2

�
⇡
02 � f(@a⇡)(@

a
⇡)

)
.

(6.17)
The sound speeds of ⇡ in the angular and radial directions can be immediately read o↵ from
(6.17):

c
2

⇡,r =
f � 4M4

2

f
, c

2

⇡,⌦ = 1 . (6.18)

As anticipated, c2⇡,r coincides with one of the two eigenvalues found in (6.13).

In the usual covariant language, the theory described by the action (6.5) corresponds to a
P (X,�)-theory. It is a straightforward exercise to show that the action (6.17) can also be
obtained from the Lagrangian L = P (X,�) by expanding � = �̄+ ��. The relation between
the Stückelberg field ⇡ and the scalar fluctuation �� is given by the equation �̄(r + ⇡) =
�̄(r) + ��(r, xa). In particular, the tadpole conditions (6.15) reduce to

⇤ ⌘ �P +XPX , f ⌘ �XPX , M
4

2 ⌘ 1

2
X

2
PXX . (6.19)

After expanding the action (6.16) in powers of ⇡, the linear term vanishes because it is
proportional to the background equation of motion for �, which in light of the results (6.19)
reads:

2

ac2
@r

�
ac

2
f
�
� 2f�̄00

�̄0 + P,��̄
0 = 0 . (6.20)

Quite remarkably, if the theory is shift symmetric (i.e. P,� = 0), the equation (6.20) can be
solved analytically irrespective of the functional form of P (X). Indeed, integrating twice Eq.

21
For simplicity we do not distinguish between energy and momentum scales. Since, strictly speaking, this

is truly legitimate only for luminal propagation, we will tacitly assume here that the speed of sound is not

too small.
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BREAK ALL DIFFS!: 
MASSIVE GRAVITY



Stuckelberg Formulation 

for Massive Gravity

Diffeomorphism invariance is spontaneously broken but 
maintained by introducing Stueckelberg fields

Vev of spin 2 Higgs field

defines a ‘reference metric’

gµ⌫(x)
Fµ⌫ = fAB(�)@µ�

A@⌫�
B

reference metric

�a = xa +
1

mMP
Aa +

1

⇤3
@a⇡ ⇤3 = m2MP

Stuckelberg 

fields

helicity-0 mode of graviton

helicity-1 mode of graviton

fµ⌫ = hÔµ⌫i

Dynamical Metric

de Rham, Gabadadze 2009
Arkani-Hamed et al 2002 



How to 

square root

Helicity zero mode enters reference metric squared

Fµ⌫ ⇡ ⌘µ⌫ +
2

⇤3
@µ@⌫⇡ +

1

⇤6
@µ@↵⇡@

↵@⌫⇡

To extract dominant helicity zero interactions we need 
to take a square root

hp
g�1F

i

µ⌫
⇡ ⌘µ⌫ +

1

⇤3
@µ@⌫⇡

Branch uniquely chosen to give rise to 1 when Minkowski

Fµ⌫ = fAB(�)@µ�
A@⌫�

B �a = xa +
1

mMP
Aa +

1

⇤3
@a⇡



Helicity Zero mode = Galileon

only enters in the combination⇡(x)

<latexit sha1_base64="IAUVXSNCgRwMo5jU/TPcwwkBWUs=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsqutOix6MVjBfsB7VKyabaNzSZLkhXL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz249UaSbFvZnE1I/wULCQEWys1OrFrPx03i+W3Io7B1olXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tP5tVN0ZpUBCqWyJQyaq78nUhxpPYkC2xlhM9LL3kz8z+smJrzyUybixFBBFovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMGG4C2/vEpaFxWvWqndVUv16yyOPJzAKZTBg0uowy00oAkEHuAZXuHNkc6L8+58LFpzTjZzDH/gfP4A9i2OvA==</latexit>

The helicity zero mode

⇧µ⌫ = @µ@⌫⇡(x)
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This is invariant under the 

global nonlinearly realized symmetry

⇡(x) ! ⇡(x) + c+ vµx
µ

⇧µ⌫ ! ⇧µ⌫
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        Massive Gravity

Det[1 + �K] =
dX

n=0

�nUn(K)

L =
1

2

p
�g

 
M2

P R[g]�m2
4X

n=0

�n Un

!
+ LM

K = 1�
p
g�1f

Unique low energy EFT where the strong coupling scale is 

⇤3

⇤3 = (m2MP )
1/3

Characteristic 

Polynomials

de Rham, Gabadadze, AJT 2010

Double epsilon structure!!!!!

Unitary gauge



At energies m ⌧ E ⌧ MPLanck

All Lorentz invariant Hard and Soft and Multi-graviton theories 
look like Galileon theories  (plus massless spin 2 plus Maxwell)

⇡ ! ⇡ + vµx
µ + c

⇤3 = (m2MPlanck)
1/3

Kµ⌫ =
@µ@⌫⇡

⇤3
3

Massive Gravity as an EFT

Generic one-loop Graviton diagram needs 

counter-terms at the scale (principally due to 


helicity zero mode interactions)

⇤3 = (m2MPlanck)
1/3

Counter-terms which are not needed in GR!



Massive Gravity as an EFT
⇤3 = (m2MPlanck)

1/3
K = 1�

p
g�1f

In decoupling limit:

Kµ⌫ ! @µ@⌫⇡

⇤3
3

MPLanck ! 1,m ! 0

EFT corrections then take the form:
de Rham, Melville, Tolley 2017

Infinite number of derivative suppressed operators
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Generic feature of  IR 
modifications

Intermediate scale new physics!!!!!

Cosmologically motivated models desire to change physics at 
scale 

m ⇠ Htoday

Decoupling limit EFTs generally indicate new physics at scale 

⇤n = (mn�1Mpl)
1/n



WHAT 
DISTINGUISHES EFTS?



How do we distinguish 
between different EFTs?

Remain	agnostic	and	wait	for	observations	to	decide:	

Right	approach	in	principle	but	#	theories	>	observations


Work	with	a	given	UV	completion	like	String	theory:

Subject	to	limited	current	understanding


Look	at	low	energy	consistency	questions	(causality,	
caustics,	…):	

Not	always	insensitive	to	field	redefinitions,	or	may	only	
indicate	break	down	of	LEEFT	and	not	fundamental	
problem



How do we distinguish 
between different EFTs?

Look	at	low	energy	consistency	questions	(causality,	caustics,	…):		
Not	always	insensitive	to	field	redefinitions,	or	may	only	indicate	
break	down	of	LEEFT	and	not	fundamental	problem

Clearly do not preserve speed of light of gravitons, rendering 
meaningless the requirement 

gµ⌫ ! gµ⌫ + f(�, X)@µ�@⌫�

gµ⌫ ! gµ⌫ + ↵Rµ⌫

e.g.

or

e.g. in b. Horndeski

c2T  1



Solution: Remove field redefinition ambiguities 
by looking at the S-matrix 

Look for asymptotic superluminalities:
We cannot send signals faster than what is allowed by asymptotic causal structure of the 
spacetime Gao and Wald 2000

Amounts to demanding that the Eisenbud-Wigner 
scattering time delay is positive

e.g.  Camanho, Edelstein, Maldacena, Zhiboedov, `Causality Constraints on
Corrections to the Graviton Three-Point Coupling," arXiv:1407.5597
Massive Spin-2 Scattering and Asymptotic Superluminality 
Hinterbichler. Joyce, Rosen arXiv:1708.05716 

T ⇠ d�(E)

dE

�(E) is phase shift between scattered wave and unscattered

> 0



Solution: Remove field redefinition ambiguities 
by looking at the S-matrix 

Closely related are the requirements that the S-matrix is 

1. Local (Polynomially (or exponentia#y) bounded in 
momentum space) and 

2. Causal (Analytic as a function of Mandelstam variables)

A precise definition of analyticity for the 2-2 scattering amplitude 
at fixed momentum transfer    was rigourously proven in the 50’s 

and 60’s
t

although not too much progress ever made beyond this



Positivity Constraints



S-Matrix lore
1. Unitarity

2. Locality:          Scattering Amplitude Polynomially  (Exponentially) Bounded

3. Causality:        Analytic Function of Mandelstam variables (modulo poles+cuts)

4. Poincare Invariance

5. Crossing Symmetry:     Follows from above assumptions

6. Mass Gap:       Existence of Mandelstam Triangle and Validity of Froissart Bound

Added Ingredient: Crossing Symmetry

A+B ! C +D A+ D̄ ! C + B̄

s-channel u-channel

A

B

C

D
�p4 �p2

D̄ B̄

A Cs = �(p1 + p2)
2

t = �(p1 + p3)
2

u = �(p1 + p4)
2



Scattering Amplitude Analyticity

	 	 	

Complex s plane Physical scattering 

region is   s � 4m2

crossing: u = 4m2 � s� t

�t �t

Poles Branch cutsSubtractions



Forward Limit Positivity Bounds

M � 2 RH Cut LH Cut

A0
s(s, t) = c0(t) + c1(t)s+

s2

⇡

Z 1

⇤2

dµ
Im(As(µ, t))

µ2(µ� s)
+

u2

⇡

Z 1

⇤2

dµ
Im(Au(µ, t))

µ2(µ� u)

1

M !

dM

dsM
A0

s(2m
2, 0) =

1

⇡

Z 1

⇤2

dµ
Im(As(µ, t)) + Im(Au(µ, t))

(µ� 2m2)M+1
> 0



Positivity Bounds = (Sub)luminality

Adams	et.	al.	2006

@2
sA

0
s = c� ↵c2 + · · · > 0

For example: L = �1

2
(@�)2 +

c

⇤4
(@�)4

c > ↵c2 > 0

c2s = 1� c

⇤4
�̇2 < 1

Makes sense since positivity derivation relies on 
Analyticity=Causality

Positivity implies:

Causality implies:



Model	that	naturally	emerges	as	
probe	brane	in	extra	dimension

No	obstructions	to	standard	
UV	completion	(known	so	far)

Model	relevant	for	inflation

Model	that	naturally	emerges	as	probe	
brane	in	extra	time	dimension…

Model	relevant	for	dark	energy	with	 
screening	in	dense	environments

Known	obstructions	to	
standard	UV	completion

DBI versus anti-DBI



Example:

Positivity constraints in 

interacting massive spin-2 
theories



Application to EFT of  

Interacting Spin 2 (aka Massive Gravity)

the scattering amplitude for those finite number of terms that give non-trivial independent

information. Once this has been done, the O
`
g2˚{⇤12

5

˘
EFT corrections may be included which

compete with the 1{M2 suppressed terms from the leading interactions in 2.6. The bounds

should then be applied for only those terms for which the leading interactions contributed

zero. Repeating this process, nontrivial bounds may be applied to the coe�cients of the

interactions to any order in the EFT expansion.

Scattering Amplitudes: Following the above discussion, we may first consider only the

leading interactions that come from the mass potential, which may in unitary gauge be written

in the form:

L Å M2
Pl

2

ˆ
R rgs ´ m2

4
V pg, hq

˙
(6.14)

In order to compare with previous works we further parameterize the interactions to quartic

order in the manner7

V pg, hq Årh2s ´ rhs2 ` pc1 ´ 2qrh3s ` pc2 ` 5

2
qrh2srhs (6.15)

` pd1 ` 3 ´ 3c1qrh4s ` pd3 ´ 5

4
´ c2qrh2s2 ` ... . (6.16)

Here rhs “ ⌘µ⌫hµ⌫ , rh2s “ ⌘µ⌫hµ↵⌘↵�h�⌫ , etc.. The expected order of magnitude for the

coe�cients c1, c2, d1, d3 can be determined by matching in unitary gauge to the expansion of

the action 6.9 or 6.10. In order to bridge comparison with previous treatments and the ⇤5

theory we shall however continue to remain agnostic about their magnitude. The fluctuations

are then canonically normalized by performing the redefinition hµ⌫ Ñ 2hµ⌫{MPl so that the

propagator is

Dµ⌫↵�ppq “ 1

p2 ` m2

ˆ
1

2
⇧µ↵⇧⌫� ` 1

2
⇧µ�⇧⌫↵ ´ 1

3
⇧µ⌫⇧↵�

˙
, ⇧µ⌫ “ ⌘µ⌫ ` pµp⌫

m2
. (6.17)

It is convenient to define

d3 “ ´d1{2 ` 3{32 ` �d, c2 “ ´3c1{2 ` 1{4 ` �c, (6.18)

and interpret the bounds on the parameter space tc1, d1,�c,�du. �c “ �d “ 0 corresponds

to the dRGT tuning which results in the ⇤3 theory to be considered later.

7
There are a few parametrizations for the mass terms. The relation between c3 and d5 and ↵3 and ↵4 is

given right after Eq. (23) of [23]: ↵3 “ ´2c3 and ↵4 “ ´4d5. The relation between ↵i and �i can be found,

for instance, in Eq.(6.24) of [28].
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the action 6.9 or 6.10. In order to bridge comparison with previous treatments and the ⇤5

theory we shall however continue to remain agnostic about their magnitude. The fluctuations

are then canonically normalized by performing the redefinition hµ⌫ Ñ 2hµ⌫{MPl so that the

propagator is

Dµ⌫↵�ppq “ 1

p2 ` m2

ˆ
1

2
⇧µ↵⇧⌫� ` 1

2
⇧µ�⇧⌫↵ ´ 1

3
⇧µ⌫⇧↵�

˙
, ⇧µ⌫ “ ⌘µ⌫ ` pµp⌫

m2
. (6.17)

It is convenient to define

d3 “ ´d1{2 ` 3{32 ` �d, c2 “ ´3c1{2 ` 1{4 ` �c, (6.18)

and interpret the bounds on the parameter space tc1, d1,�c,�du. �c “ �d “ 0 corresponds

to the dRGT tuning which results in the ⇤3 theory to be considered later.

7
There are a few parametrizations for the mass terms. The relation between c3 and d5 and ↵3 and ↵4 is

given right after Eq. (23) of [23]: ↵3 “ ´2c3 and ↵4 “ ´4d5. The relation between ↵i and �i can be found,

for instance, in Eq.(6.24) of [28].
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Einstein-Hilbert Mass Term

Parameterize generic mass term (without dRGT tuning) as

where
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Polarizations: To exploit crossing symmetry, it is helpful to work in the transversity basis.

For momenta kµ “ p!, 0, 0, kq, the corresponding polarizations are,

✏p⌧“˘2q
µ⌫ “ 1

2m2

¨

˚̊
˚̋

k2 ˘ikm 0 kw

˘ikm ´m2 0 ˘imw

0 0 0 0

kw ˘imw 0 w2

˛

‹‹‹‚, ✏p⌧“˘1q
µ⌫ “ 1

2m

¨

˚̊
˚̋

0 0 ik 0

0 0 ¯m 0

ik ¯m 0 iw

0 0 iw 0

˛

‹‹‹‚,

✏p⌧“0q
µ⌫ “ 1?

6m2

¨

˚̊
˚̋

k2 0 0 kw

0 m2 0 0

0 0 ´2m2 0

kw 0 0 w2

˛

‹‹‹‚ (6.19)

and we can express a general spin state via a five component vector ↵,

✏p↵q
µ⌫ “

ÿ

⌧

↵⌧ ✏
p⌧q
µ⌫ . (6.20)

These polarizations are related to the standard SV T decomposition by
¨

˚̊
˚̊
˚̊
˚̋

↵T1

↵T2

↵V1

↵V2

↵S

˛

‹‹‹‹‹‹‹‚

“ 1

2
?
2

¨

˚̊
˚̊
˚̊
˚̋

´1 0
?
6 0 ´1

0 2 0 ´2 0

´2 0 0 0 2

0 2 0 2 0?
3 0

?
2 0

?
3

˛

‹‹‹‹‹‹‹‚

¨

˚̊
˚̊
˚̊
˚̋

↵´2

↵´1

↵0

↵`1

↵`2

˛

‹‹‹‹‹‹‹‚

, (6.21)

It is more useful to express the residues f↵� in terms of ↵S,V,T because these polarizations

have definite scaling with s

✏pT q „ s0, ✏pV q „ s

m
, ✏pSq „ s2

m2
, (6.22)

and correspond more closely to scattering �, A or h Stückelberg fields.

Forward Limit: We define the positive residue

f⌧1⌧2 “ 1

10!

B10

Bs10
“
s4ps ´ 4m2q4 pT⌧1⌧2⌧1⌧2ps, ✓q ` T⌧1⌧2⌧1⌧2ps,´✓qq

‰

as described in Section 2. We will explore bounds provided by f⌧1⌧2 in what follows, but first

we consider the bound imposed by imposing indefinite transversity B2

Bv2 f↵� ° 0 in the forward

limit as it is allows us to restrict the parameter space.

In the forward limit, we have the leading order bound

2M2
Plm

6 B2

Bv2 f↵� |t“0 “352

9
|↵S�S |2 p�c p´6 ` 9c1 ´ 4�cq ´ 6�dq

` 176

3
↵˚
S�

˚
Sp↵V1�V1 ´ ↵V2�V2q�c p3 ´ 3c1 ` 4�cq . (6.23)
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Forward Limit positivity bounds

where ↵⌧ and �⌧ are purely real8.

Significantly, there exists a choice of polarizations, namely,

↵S “ ✏, |↵T1 |2 ` |↵T2 |2 “ 1 ´ ✏2 ´ |↵V1 |2 ´ |↵V2 |2 (6.24)

such that

2M2
Plm

6 B2

Bv2 f↵↵|t“0 “ 176

3
p↵V1↵V1 ´ ↵V2↵V2q�c p3 ´ 3c1 ` 4�cq

`
✏2 ` Op✏4q

˘
(6.25)

This must be positive for all values of ↵V1 and ↵V2 (with |↵V1 |2 ` |↵V2 |2 § 1), and therefore

one is forced to set

�c “ 0 (6.26)

to this order9, which further imposes �d § 0. Remarkably one of the dRGT tunings is then

forced on us by the positivity bounds.

The other forward limit bound is quite cumbersome to display, but can be written more

succinctly by noting that only certain combinations of the polarization ↵⌧ may appear (while

respecting particle exchange and parity invariance). Specifically using the definitions in Ap-

pendix B , then we have

2m2M2
Plf↵� |t“0 “2↵2

T�
2
T ` X2

S

ˆ
55

18
` 10

3
c1 ´ 2c21 ´ 32

9
d1 ` 32

3
�dp2 ´ 11

v2

m4
q
˙

` X2
V`

ˆ
´7

2
` 12c1 ´ 15

2
c21 ´ 16�d

˙
` X2

V´

ˆ
6 ´ 6c1 ` 9

2
c21 ´ 4d1

˙

` XSV

ˆ
8 ´ 9c1 ` 9

2
c21 ´ 8

3
d1

˙
` XSXV`

`
18 ´ 38c1 ` 21c21

˘

` XST

ˆ
16

3
´ 4c1

˙
` XSXT

ˆ
´52

3
` 32c1 ´ 24c21 ` 32

3
d1 ´ 64

3
�d

˙

` XV`XT

`
12 ´ 24c1 ` 12c21

˘
` XV T p4 ´ 3c1q

`
?
3XSTV V

ˆ
4

3
´ 2c1 ` 3c21 ´ 8

3
d1

˙
´ 1?

3
XSV V T

`
3c21 ´ 2

˘2
. (6.27)

Note that a negative �d can relax the bounds imposed by SS, V1V1 and V2V2 scattering.

Finding the analytic minimum of this expression (a quartic form in ↵⌧�⌧↵˚
⌧�

˚
⌧ ) is an NP hard

problem [6], so we present an allowed region of parameter space which is found by approxi-

mate numerical minimization (Figure 2).

Therefore, positivity requirements on the four point function require that the coe�cients

c1, c2 are tuned to their dRGT values, but d1 and d3 may di↵er. In particular, minimizing

8
Considering complex ↵⌧ and �⌧ does not yield stronger bounds, so for brevity we shall quote the real

expressions.
9
In principle, it could be Op1{MPlq in such a way that higher derivative operators are capable of satisfying

the bound.
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Beyond forward

the bound numerically, it is found that when considering the leading order bound alone in

the forward limit, then analyticity prefers a large negative �d, but this is no longer true

beyond the forward limit. Note that tc3, d2, d4, d5u are not constrained by the 2 to 2 tree

level analysis, but in principle they can be likewise constrained via loop amplitudes.

First t derivatives: The leading s5 contribution gives

2M2
Plm

8BtB2
vf↵�9�c2 |↵S |2|�S |2, (6.28)

which vanishes to this order when we take �c “ 0 to satisfy the forward limit bounds. (Note

that the t derivative bounds only apply for definite transversity bounds; here the use of f↵� is

only for book-keeping, i.e., to write the various independent f⌧1⌧2 quantities in more compact

way.) The other t derivative bound may be written as

2M2
Plm

6 B
Btf↵�

ˇ̌
ˇ
t“0

“ ` 2↵2
T�

2
T ` X2

V`

ˆ
41

4
´ 33

2
c1 ` 27

4
c21

˙
` X2

V´

ˆ
8 ´ 12c1 ` 9

2
c21

˙

` X2
S

ˆ
925

36
´ 43c1 ` 21c21 ´ 32

9
d1 ` 32

9
�dp´6 ` 22

v

m2
q
˙

` XV T p4 ´ 3c1q

` XST p7 ´ 6c1q `
?
3↵S�S p↵S�T1 ` �S↵T1q

ˆ
´4

9
` 2c1 ´ 16

9
d1 ` 32

9
�d

˙

` p↵2
S�

2
V1

` �2
S↵

2
V1

q
ˆ
40

3
´ 21c1 ` 33

4
c21 ´ 32

3
�d

˙

` p↵2
S�

2
V2

` �2
S↵

2
V2

q
ˆ
44

3
´ 23c1 ` 45

4
c21 ´ 8

3
d1

˙

` ↵S�S↵V1�V1

ˆ
101

6
´ 33c1 ` 33

2
c21 ´ 176

3
�d

˙

` ↵S�S↵V2�V2

ˆ
43

6
´ 11c1 ` 27

2
c21 ´ 32

3
d1 ` 16�d

˙
. (6.29)

These tree level amplitudes can be used in the positivity bounds with M5 „ MPlm4 “ ⇤5
5 as

the cuto↵, and as we have discussed for the leading interactions it is consistent to take the

bounds (6.12)

B
Btf⌧1⌧2pv, tq ° 0, (6.30)

B3

BtBv2 rf⌧1⌧2pv, tqs ° 0. (6.31)

The latter simply sets �c “ 0 as before.

Assuming a hierarchy betweenm2 and µb Á ⇤5 (the scale at which the branch cut begins),

we can consider |v| in the range m2 ! |v| ! µb, and the first t derivative bound gives,

B
Btf⌧1⌧2pv, tq 9 v

⇤10
5

�d ` O
ˆ
m2

⇤10
5

˙
° 0 (6.32)
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As v can take either sign, this enforces the condition,

�d “ 0. (6.33)

Of the parameters which appear in the 2 to 2 scattering amplitude, analyticity requires the

dRGT ⇤3 tuning.

Goldstone Equivalence: The bound which forces �d “ 0 beyond the forward limit is

from SS scattering. While it is not yet known whether scattering arbitrary superpositions

of transversities should obey positivity conditions beyond the forward limit, this particular

combination,

✏S “ 1

2
✏⌧“0 `

?
6

4
p✏⌧“`2 ` ✏⌧“´2q (6.34)

becomes the scalar component (Goldstone) at high energies, where we expect similarities with

the Galileon. Therefore While it not yet known whether indefinite transversity combinations

satisfy t derivative positivity bounds in general, this particular SSSS amplitude does because

it has trivial crossing properties at high energies.

Significantly, while the forward limit bound strengthens gradually as �d is made more

negative (imposing ´0.3 À �d § 0), as shown in Fig. 2, the first t derivative bound imposes

the much stricter requirment that �d “ 0. It is this analyticity result that makes raising

the cuto↵ from ⇤5 a well-motivated thing to do in the massive spin-2 EFT, supposing that

the theory had come from an underlying, analytical, local, Lorentz-invariant UV completion,

then the näıvely eight-dimensional parameter space in tci, diu is (at least partially) projected

onto ⇤3 massive gravity.

7 ⇤3 Massive Gravity

In this section, we consider the consequences of the dRGT tuning [23] which raises the cuto↵

of massive gravity from ⇤5 to ⇤3.

Raising the cuto↵: Generic massive gravity has a unitarity cuto↵ at ⇤5 “ pm4MPlq1{5

due to the infamous Boulware-Deser ghost. In the EFT construction, this manifests itself as

an SSSS which scales as s5{⇤10
5 . This cuto↵ can be raised as high as ⇤3 “ pm2MPlq1{3 by

performing the tuning

c1 “ 2c3 ` 1

2
, c2 “ ´3c3 ´ 1

2
, d1 “ ´6d5 ` 3

2
c2 ` 5

16
, d3 “ 3d5 ´ 3

4
c3 ´ 1

16
. (7.1)

This removes the s5 and s4 contributions to every four-point function at tree level (and

projects out the Boulware-Deser ghostly degree of freedom). As discussed earlier, removing

ghosts in this way is not, a priori, a particularly natural thing to do in a bottom-up approach

of EFT. However, we have seen that positivity requires that the coe�cients are tuned so

that the cuto↵ is at least above ⇤4. It is interesting to study the case where the further
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Together positivity bounds fix

for either sign of 
hence

v = s� 2m2 + t/2

�c = �d = 0
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Multiple Interacting Spin 2
4 Two metrics

We shall be interested in the theory of two interacting massive spin-2 fields g(1) and g(2) of mass
and Plank mass: m1, MPl1 and m2, MPl2, respectively. As before we shall parametrize the metric
perturbations as

g(1)µ⌫ = (⌘µ⌫ + hµ⌫)
2 , g(2)µ⌫ = (⌘µ⌫ + fµ⌫)

2 . (4.1)

The action describing the fields hµ⌫ and fµ⌫ can then be written as

L =
�2M2

Pl
2

p
�g(1) R[g(1)] +

x2�2m2M2
Pl

4

p
�⌘

4X

n=0

(1)
n Un

⇥
⌘�1h

⇤

+
M2

Pl
2

p
�g(2) R[g(2)] +

m2M2
Pl

4

p
�⌘

4X

n=0

(2)
n Un

⇥
⌘�1f

⇤

+
�m2M2

Pl
2

c1 Lhhf +
�m2M2

Pl
2

c2 Lhff +
�m2M2

Pl
4

�Lhhff ,

(4.2)

with the interaction terms given by

Lhhf = "µ⌫↵�"
µ⌫0↵0�0

h⌫
⌫0h↵

↵0f�
�0 ,

Lhff = "µ⌫↵�"
µ⌫0↵0�0

h⌫
⌫0f↵

↵0f�
�0 ,

Lhhff = "µ⌫↵�"
µ0⌫0↵0�0

hµ
µ0h⌫

⌫0f↵
↵0f�

�0 .

(4.3)

Coefficients
m1 = xm
m2 = m

MPl1 = �MPl

MPl2 = MPl

Table 1: Coefficients used in Eq.4.2.

The coefficients that will be used in the rest of the paper are in Table 1.

The interaction terms in the Lagrangian leading to the hf ! hf scattering can be written as:

L ��2M2
Pl@h@hh+M2

Pl@f@ff

+
x2�2m2M2

Pl
4

(1)
3 "µ⌫⇢d"abcdh

a
µh

b
⌫h

c
⇢ +

m2M2
Pl

4
(2)
3 "µ⌫⇢d"abcdf

a
µf

b
⌫f

c
⇢

+
�m2M2

Pl
2

c1 "µ⌫↵�"
µ⌫0↵0�0

h⌫
⌫0h↵

↵0f�
�0 +

�m2M2
Pl

2
c2 "µ⌫↵�"

µ⌫0↵0�0
h⌫
⌫0f↵

↵0f�
�0

+
�m2M2

Pl
4

� "µ⌫↵�"
µ0⌫0↵0�0

hµ
µ0h⌫

⌫0f↵
↵0f�

�0 ,

(4.4)

where c1, c2 and � are dimensionless variables. Note that the first two terms in Eq. 4.4 are a short
version of Eq. 3.19.
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Lint =
�m2M2

Pl

2
c1Lhhf +

�m2M2
Pl

2
c2Lhff +

�m2M2
Pl

4
�Lhhff

Figure 2: The allowed region of parameters obtained from the indefinite hh ! hh scattering for
di↵erent values of c1 at x = m1/m2 = 0.5 (up) and x = 2 (down). The results are presented in both
(c3, d5) plane (left) and (3,4) plane (right). By increasing c1 the island shrinks until it becomes a
point at c1 = c1max. For x = 0.5 this point is reached at c1max = 3.62, and for x = 2 at c1max = 0.291.
The cross in both figures represents the minimal model with c3 = 1/6 and d5 = �1/48, or 3 = 4/3,
4 = 1/2.
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Figure 3: The allowed values of the cubic couplings, c1 (blue) and c2 (yellow), as a function of the
mass ratio, x, obtained from hh ! hh scattering. For a given value of x, the maximal allowed value,
c1 = c1max, is determined as the value at which the allowed (c3, d5) island shrinks to a point.

Figure 4: Comparison of the allowed region of cubic parameters c1,3 obtained from the indefinite
hh ! hh and hf ! hf scatterings, for x = m1/m2 = 1 c2 = c1 and vanishing quartic couplings
� = 4 = 0. Each channel allows the removal of a di↵erent region of parameter space.

4.3 Z2 Symmetric Case

In general we are dealing with a nine–dimensional parameter space x, �,
(1,2)
3,4 , c1,2,� and providing

the generic positivity constraints in the full nine–dimensional space is beyond the scope of this work.
However much progress can be made by investigating specific slices of this nine–dimensional manifold.
One of the most natural scenarios to consider is the one that enjoys a Z2 symmetry with respect
to swapping the two fields, h and f , corresponding to c1 = c2, 

(1)

n = 
(2)

n , x = m1/m2 = 1 and
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c1 = c1max, is determined as the value at which the allowed (c3, d5) island shrinks to a point.

Figure 4: Comparison of the allowed region of cubic parameters c1,3 obtained from the indefinite
hh ! hh and hf ! hf scatterings, for x = m1/m2 = 1 c2 = c1 and vanishing quartic couplings
� = 4 = 0. Each channel allows the removal of a di↵erent region of parameter space.

4.3 Z2 Symmetric Case

In general we are dealing with a nine–dimensional parameter space x, �,
(1,2)
3,4 , c1,2,� and providing

the generic positivity constraints in the full nine–dimensional space is beyond the scope of this work.
However much progress can be made by investigating specific slices of this nine–dimensional manifold.
One of the most natural scenarios to consider is the one that enjoys a Z2 symmetry with respect
to swapping the two fields, h and f , corresponding to c1 = c2, 

(1)

n = 
(2)

n , x = m1/m2 = 1 and
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Constraints on the Graviton Mass
de Rham, Deskins, AJT, Zhou, Reviews of Modern Physics



Constraints modifications of the 

dispersion relation

Generic for the helicity-2 modes of any Lorentz 
invariant model of massive gravity

GW signal would be more squeezed than in GR

Direct Detection of  GW

1� vg
c

= 5⇥ 10�17

✓
200Mpc

D

◆✓
�t

1s

◆
Speed increases with frequency vg/c ⇡ 1� 1

2
(c/⇤gf)

2

For GW150914, Will 1998

Abbott et al., 2016



Massive Gravity leads a scalar (helicity zero) field

New scalar degree of freedom that 
couples to the trace of the stress 
energy momentum tensor

Massive  spin-2 field, has 5 degrees of freedom

hµ� �
GN

�4 �m2

�
Tµ� �

1
3
gµ�T

�

�
in GR its hµ� �

GN

�4

�
Tµ� �

1
2
gµ�T

��

van	Dam	&	Veltman,	Nucl.Phys.B	22,	397	(1970) 
Zakharov,	JETP	Lett.12	(1970)	312

hµ⌫ = h0
µ⌫ + ⌘µ⌫⇡

1

3
6= 1

2

Why?



Vainshtein mechanism
Well understood for Static & Spherically Symmetric 
configurations 

For	Sun-Earth	System

For	Earth-Moon	System

For	Hulse-Taylor	Pulsar

Vainshtein,	PLB39,	393	(1972)

For Sun
r⇤ ⇠ 250pc



Extra polarizations of graviton = extra modes of 
gravitational wave 


Binary pulsars lose energy faster than in GR so the 
orbit slows down more rapidly

de Rham, AJT, Wesley 2012

de Rham, Matas, AJT 2013


Dar, de Rham, Deskins, Giblin, AJT 2018

Vainshtein mechanism in a Binary System



Hierarchy of  Scales

Slide thanks to C. de Rham
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A Cubic Galileon Radiation

For convenience, in this appendix we shall reproduce the analytic calculation of the power

emitted in scalar waves for a free theory and a cubic Galileon exhibiting the Vainshtein

mechanism as derived in [32, 33]. We therefore consider a cubic Galileon with conformal

coupling to matter

S “
ª
d4x

ˆ
´3

4
pB⇡q2 ´ 1

4⇤3
pB⇡q2l⇡ ` 1

2MPl
⇡T

˙
. (A.1)

In the limit ⇤ Ñ 8 we recover a free Klein-Gordon scalar field coupled to an external

source. In that limit (corresponding to the large masses in the context of massive gravity

⇤ “ pMPlm2q1{3), there is no Vainshtein screening and since the coupling to external source

arises at the same MPl scale as in GR, the power emitted by these scalar waves would be of

the same order of magnitude as the gravitational power emitted in GR. Actually even higher

as we would expect monopole and dipole radiation which are typically suppressed by fewer

powers of angular speed as compared with the quadrupole. In the non-relativistic limit the

monopole and dipole vanish by energy and momentum conservation, but not once relativistic

corrections are considered.

In the rest of this appendix we recall how to derive the analytic expressions for the period

averaged power radiated via the e↵ective action method, and specifically compute the leading

contribution given by the quadrupole power for two equal mass objects in circular orbits

(zero eccentricity). Computing this for non-zero eccentricity is slightly more complicated, as

suggested in [32]. Since the numerical simulations focus on non-eccentric orbits, this case will
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The key ingredient of the analytic approach is to split the source into the static and spherically

symmetric center of mass contribution and departures from it,

Tµ
⌫ “ T0

µ
⌫ ` �Tµ

⌫ , (A.3)

with

T0
µ
⌫ “ ´2M�p3qp~xq�µ0 �0⌫ . (A.4)

T0
µ
⌫ leads to a static and spherically symmetric field background ⇡0 and in all generality, the

full exact solution can always be split as

⇡pt, ~xq “ ⇡0prq `
a
2{3�pt, ~xq . (A.5)

At this level those splits are purely mathematical and rely on no assumption. The only

assumptions that will be performed in the analytic derivation is a large hierarchy between

the di↵erent scales involved, and as a consequence � can be treated linearly. Whether or not an

actual hierarchy between the orbit size r̄, the inverse frequency scale ⌦´1
p , and the Vainshtein

radius rv (eq. (2.3)), is present, depends on the specific scales chosen but this hierarchy is

realized for the binary systems we have in mind. Whether or not � can be treated linearly

is an assumption which can be checked after the fact as seen in appendix E(for the cubic)

and section 3.2 (for the quartic/quintic) of [33]. Once the appropriate hierarchy of scales has

been considered, fluctuations on top of the static and spherically symmetric background are

indeed small and can be treated linearly.

The center of mass source T0 leads to a field profile that satisfies
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where Eprqr̂ “ ~r⇡0. There are two branches of solutions for E, and we focus on the ‘normal’

branch which behaves as a free field (leading to a well-known Newton square law E 9 1{r2)
for r " rv.

The quadratic action for the perturbation � is then
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where Zµ⌫ is diagonal with non-vanishing components given by
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We define the modified d’Alembertian operator l̃, as

l̃� “ Bµ pZµ⌫B⌫q� “ Zttprq :� ` 1

r2
B
Br

ˆ
r2Zrrprq B

Br�
˙

` Z⌦⌦prqr2
⌦� , (A.11)

and the mode functions for this operator have the form

�lm!pt, r, ✓,�q “ ul!prqYlmp✓,�qe´i!t. (A.12)

Imposing periodicity TP on the mode functions forces ! to be discretized, ! Ñ n⌦p for integer

n.

A.2 Radiation from the E↵ective Action

Following [32, 33, 36, 65] we compute the power radiated by a field using the e↵ective action

technique. The e↵ective action is defined by integrating out perturbatively the scalar field

from eq. (A.7). At leading order we can express � in terms of the Feynman propagator

�Fpxq “ i?
6MPl

ª
d4y GFpx, yq�T pyq, (A.13)

where the propagator is defined as

l̃GFpx, yq “ i�4px ´ yq, (A.14)

and the modified d’Alembertian operator is that given in eq. (A.11). Once we have the

solution for �Fpxq in eq. (A.13), we can compute the amplitude of the non-linear operators

that enter eq. (A.7) and confirm that they are indeed negligible within the regime we are

working in. We write down the propagator in terms of the Wightman functions

GFpx, yq “ ⇥pxt ´ ytqW`px, yq ` ⇥pyt ´ xtqW´px, yq , (A.15)

where the Wightman functions are defined as

W˘px, yq “
ÿ

lm

ª 8

0
d! �lm!p˘xt, ~xq�˚

lm!p˘yt, ~yq , (A.16)

and the �lm! are the complete set of mode functions defined in eq. (A.12). Thus integrating

out � from eq. (A.7) yields the e↵ective action

Se↵ “ i

12M2
Pl

ª
d4x d4y �T pxqGF�T pyq. (A.17)

As pointed out in [32, 65] the time averaged power in the system is

P “
ª 8

0
d! !fp!q, (A.18)
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Vainshtein effect

Vainshtein region Z � 1 fifth force suppressed by
1

Z
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technique. The e↵ective action is defined by integrating out perturbatively the scalar field

from eq. (A.7). At leading order we can express � in terms of the Feynman propagator

�Fpxq “ i?
6MPl

ª
d4y GFpx, yq�T pyq, (A.13)

where the propagator is defined as

l̃GFpx, yq “ i�4px ´ yq, (A.14)

and the modified d’Alembertian operator is that given in eq. (A.11). Once we have the

solution for �Fpxq in eq. (A.13), we can compute the amplitude of the non-linear operators

that enter eq. (A.7) and confirm that they are indeed negligible within the regime we are

working in. We write down the propagator in terms of the Wightman functions

GFpx, yq “ ⇥pxt ´ ytqW`px, yq ` ⇥pyt ´ xtqW´px, yq , (A.15)

where the Wightman functions are defined as

W˘px, yq “
ÿ

lm

ª 8

0
d! �lm!p˘xt, ~xq�˚

lm!p˘yt, ~yq , (A.16)

and the �lm! are the complete set of mode functions defined in eq. (A.12). Thus integrating

out � from eq. (A.7) yields the e↵ective action

Se↵ “ i

12M2
Pl

ª
d4x d4y �T pxqGF�T pyq. (A.17)

As pointed out in [32, 65] the time averaged power in the system is

P “
ª 8

0
d! !fp!q, (A.18)
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Power emitted

Mlmn =
1

TP

Z Tp

0
dt

Z
d3xuln(r)Ylm(✓,�)e�int/Tp�T (x, t)

Radiated power is

where

and modes satisfy

@µ(Z
µ⌫(⇡0)@⌫

⇥
u`(r)Y`m(⌦)e�i!t

⇤
) = 0

where fp!q is related to the e↵ective action (integrated over one period) by

2ImpSe↵q
TP

“
ª 8

0
d! fp!q. (A.19)

Defining the moments

Mlmn “ 1

TP

ª TP

0
dt

ª
d3x�lmnpx, tq�T (A.20)

and solving for fp!q yields

fp!q “ ⇡

3M2
Pl

8ÿ

n“0

ÿ

l,m

|Mlmn|2�p! ´ n⌦pq. (A.21)

Thus the period averaged power is

P “ ⇡

3M2
Pl

8ÿ

n“0

ÿ

lm

n⌦p|Mlmn|2. (A.22)

Consequently the power in a given mode l is

Pl “ ⇡

3M2
Pl

8ÿ

n“0

ÿ

m

n⌦p|Mlmn|2. (A.23)

We now restrict ourselves to circular orbits in the ✓ “ ⇡{2 plane with equal mass objects.

That is,

�T “ M

„
�3pxq ´ 1

2

`
�3p~r ´ ~r1q ` �3p~r ´ ~r2q

˘⇢
(A.24)

where r1,2 “ r̄{2, ✓1,2 “ ⇡{2, and �1,2 “ ⌦pt ` ⇡�i,2. Combining this and eq. (A.12) into

eq. (A.20) gives us

Mlmn “ M

„
ulnp0qYlmp0, 0q�n,0 ´ p1 ` p´1qmq

2
ulnpr̄{2qYlmp⇡{2, 0q�n,m

⇢
. (A.25)

We note that since there is a leading n in the expression for the power, the first term of

eq. (A.25) will never contribute to the power. Thus we rewrite the power in a given mode l

as

Pl “ ⇡⌦pM2

6M2
Pl

lÿ

m“0

mp1 ` p´1qmqu2lmpr̄{2q|Ylmp⇡{2, 0q|2. (A.26)

As expected, the power radiated in the monopole mode is zero (because l “ 0 constrains

m to vanish). As in GR, the monopole being zero can be understood as a consequence of

conservation of energy.

Further, the power in the dipole mode is also zero because for l “ 1,m “ 0, the leading

m kills the power, and for l “ 1,m “ 1, the term p1 ` p´1qmq will be zero. This is also

understood (as in GR) as a consequence of conservation of momentum.

This means that the first non-zero multipole will be the quadrupole. Further since m ° 0

and must be even in order that p1 ` p´1qmq is non-zero, we know that the m “ 2 term is the

only contributing term to the quadrupole power.
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WKB Matching
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Scalar Gravitational Waves: 
Power Radiated
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Numerics tests

Movie

https://www.dropbox.com/s/c7d36qxako9e3i6/3Ddf2.mov?dl=0


Power per multipole (numerics)

Figure 2. Left Panel: Free field ( “ 0) time averaged power in each multipole divided by the total
power at late time for the simulations with parameters rbox “ 60r̃, and ⌦pr̃ “ ⇡{22. Total Power:
solid black, Monopole: dotted blue, Dipole: dotted gray, Quadrupole: dashed red, l “ 3: dashed
gray, l “ 4: dot-dashed green, l “ 5: dot-dashed gray, l “ 6: dashed green. Right Panel: Late
time, time averaged quadrupole power for simulations of the free Klein Gordon field ( “ 0) with
⌦p P t⇡{22,⇡{25,⇡{30,⇡{33,⇡{38,⇡{44u and rbox “ 60r̄. The analytic power eq. (2.5) is shown as the
solid black line where the analytic expectation (P th

tot9!8) is the dashed red line.

total final power (left panel). The simulation has fully relaxed at about 15Tp » 650r̃. The

instantaneous power is shown after the simulation has relaxed in the right panel of figure 3.

As predicted by perturbative analysis the quadrupole is the dominant mode, containing more

than 99% of the total radiated power. This can be seen visually in the plot of the energy

density figure 4. Oddly the monopole is the next dominant mode. This is likely due to a poor

hierarchy. That is, both rv �" ⌦´1
p and rbox �" ⌦´1

p , implying that we are not computing the

power deeply in the linear WKB regime.

Figure 3. Cubic Galileon time averaged power (left) and instantaneous power (right) in each multipole
divided by the total power at late time for the fiducial parameters rbox “ 60r̃, rv “ 50r̃, and ⌦pr̃ “
⇡{22. Total Power: solid black, Monopole: dotted blue, Dipole: dotted gray, Quadrupole: dashed red,
l “ 3: dashed gray, l “ 4: dot-dashed green, l “ 5: dot-dashed gray, l “ 6: dashed green. The vertical
dashed gray line is at t3 “ 350r̃., when the non-linear terms are turning on.
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Consistent with analytic estimate:

Black: Total power

Dotted Blue: Monopole

Dotted Grey: Dipole

Dashed Red: Quadrupole

quadrupole power dependence on ⌦p gives us

P cub
2

PKG
2

ˇ̌
ˇ̌
numeric

9 ⌦´2.49
p while

P cub
2

PKG
2

ˇ̌
ˇ̌
analytic

9 ⌦´5{2
p . (3.14)

We therefore see a remarkable agreement with the expected analytic dependence derived in

eq. (2.7).

Figure 5. Cubic Galileon late time, time-averaged quadrupole power from simulation divided
by the Klein-Gordon power. The left panel shows simulations with rv “ 50r̄ and ⌦p P
t⇡{22,⇡{25,⇡{30,⇡{33,⇡{38,⇡{44u. The best fit for P cub

2 {PKG
2 9 !´2.49 is the solid black line

where the best fit with the analytic scaling (P theory
2 {PKG

2 9 !´5{2) is the dashed red line. The
right panel shows simulations with ⌦pr̃ “ ⇡{22 and rv{r̃ P t50, 44, 39, 34, 31, 27u. The best
fit for P cub

2 {PKG
2 9 r´1.44

v is the solid black line where the best fit with the analytic scaling
(P theory

2 {PKG
2 9 r´3{2

v ) is the dashed red line.

3.4.2 Dependence on Vainshtein Radius

As rv shrinks we weaken the hierarchy ⌦´1
p ! rv. We find that we can go down to a relative

hierarchy of rv « 3⌦´1
p and maintain more than 98% of the power in the quadrupole mode.

Similarly, increasing rv is constrained by being able to resolve all scales of the problem. We

find that the quadrupole mode remains the dominant mode, always containing more than

98%. Despite these constraints the computed quadrupole power dependence on rv gives us

P cub
2

PKG
2

ˇ̌
ˇ̌
numeric

9 r´1.44
v while

P cub
2

PKG
2

ˇ̌
ˇ̌
analytic

9 r´3{2
v , (3.15)

which is again in good agreement with the expected dependence of eq. (2.7).

4 Conclusion

We have successfully performed full four dimensional simulations of a cubic Galileon coupled

to a binary system on Keplerian orbits, and computed the resulting radiated scalar gravita-

tional power. Our numerical results exhibit a power law dependence on the parameters ⌦p
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Summary
• EFT methods are well established for UV modifications of gravity


• Unfortunately largely uninteresting phenomenologically except in 
early universe


• IR EFTs are more interesting - new physics in the IR but also at 
intermediate scales


• Emerge quite generally in EFTs for broken symmetries


• Common features: additional light states - significant irrelevant 
operators - emergence of approximate global symmetries - 
significance of decoupling limit EFT


• IR EFTs are very testable gravitationally - new polarisations - fifth 
forces - new gravitational waves


• Nonlinear screening mechanisms (e.g. Vainshtein) more poorly 
understood, don’t fit well into PN parameterisations - as yet not well 
understood how affects e.g. black hole physics

⇤n = (mn�1Mpl)
1/n


