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Outline

1. Soft Theorems (for Scattering Amplitudes)
• Universal behavior of  low-frequency radiation

2. Ward Identities
• Universal behavior due to symmetry

3. Asymptotic Symmetries
• Identification of  symmetries implied by soft theorems

4. IR Divergences & Faddeev-Kulish States
• Role of  vacuum transitions in scattering amplitudes
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QFT approach to Gravitational Radiation
• QFT approach: Scattering Amplitudes involving gravitons

• Behavior of  radiation at low-frequency?
→Amplitudes with emission of  low-energy graviton

• Universality of  infrared behavior = Soft Theorems

• Soft Theorems: universal relation among scattering amplitudes

initial/final state : |in/outi = |p1, p2, · · · i| {z }
particles

= a†(p1)a
†(p2) · · · |0i

A(p1, p2, · · · ) ⌘ hout|S|ini

A(p1, · · · pn; q)
!!0�!


1

!
S(0) + log! Slog

(1) + S(1) + !S(2)

�
A(p1, · · · pn)
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Weinberg’s Soft Graviton Theorem

4

ØScattering amplitude for the emission of  a soft graviton has a pole in the energy of  that graviton with 
a universal residue:

lim
!!0

!hout|a+(!x̂)S|ini =
nX

k=1

Sk(x̂)hout|S|ini

Graviton Momentum:

qµ = !q̂µ = !
�
1, x̂(✓,�)

�
Soft Factor:

Sk(x̂) =


2

"+µ⌫p
µ
kp

⌫
k

q̂ · pk

[Weinberg 1965]



Feynman Diagrammatic Derivation
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ØConsider 𝒮-matrix for emission of  outgoing graviton of  momentum 𝑞 in the limit 𝑞 → 0.

Ø There are two classes of  diagrams which contribute:

Graviton emitted from external line Graviton emitted from internal line



Graviton emission from external line
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ØFocus on the first diagram:

= (vertex) (propagator) A(p1, · · · , pk + q, · · · , pn)

for particle of  
type k

matrix element without 
graviton & with particle 
k’s momentum shifted



Graviton emission from external line
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ØConsider for concreteness, emission from a scalar particle of  mass 𝑚!:

Lint =


2
hµ⌫Tµ⌫

Tµ⌫ ⇠ @µ'@⌫'

⇡ 

2

"µ⌫p
µ
kp

⌫
k

pk · q A(p1, · · · , pn)

= (vertex) (propagator) A(p1, · · · , pk + q, · · · , pn)

= (i"µ⌫p
µ
kp

⌫
k)

�i

(pk + q)2 +m2
k � i✏

⇥ A(p1, · · · , pk + q, · · · , pn)



Graviton emission from external line
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ØThe net contribution from graviton emission from external line is just given by the sum: 

⇡
nX

k=1



2

"µ⌫p
µ
kp

⌫
k

pk · q A(p1, · · · , pn)
nX

k=1

Leading behavior in 𝑞 → 0 limit 
involves a simple pole in 𝑞⇒



Graviton emission from internal line
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ØNext, consider second class of  diagrams: 

⇠ �i

`2 +m2 � i✏
i"µ⌫`

µ`⌫
�i

(`+ q)2 +m2 � i✏

Emission from internal line carrying momentum ℓ

⇡ �i

`2 +m2 � i✏

Internal momentum ℓ is off-
shell (ℓ! ≠ −𝑚!) so no pole 

in 𝑞 → 0 limit.



Weinberg’s Soft Graviton Theorem
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lim
!!0

!hout|a+(!x̂)S|ini =
nX

k=1

Sk(x̂)hout|S|ini

Soft Factor

Sk(x̂) =


2

"+µ⌫p
µ
kp

⌫
k

q̂ · pk

• Infrared: Low-energy graviton probes long-distance properties of  scattering process.

• Universality: Soft factor is independent of  precise theory.
• Only depends on momenta of  external particles

• Same contribution for each external particle

• Symmetry: Implies exact relationship between scattering amplitudes.

hout|U�1SU|ini = hout|S|ini
U = eiQ

hout|[Q,S]|ini = 0
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Soft Theorems Imply Symmetries
Ø Can always interpret soft theorems as statements of  invariance of  the 𝒮-matrix under an infinite-dimensional symmetry

Weinberg’s Soft Graviton Theorem:

Ø Regard soft factor 𝑆! as eigenvalue of  single particle state under operator Q"

Ø RHS gives transformation of  single particle states under 𝛿($,&)

Ø Soft theorem implies that the 𝒮-matrix is invariant under the transformation 𝛿(#,%) of  single particle 
states provided that a soft particle is added.

nX

k=1

Skhout|S|ini = hout|[QH ,S]|ini

lim
!!0

!hout|a+(!x̂)S|ini =
nX

k=1

Sk(x̂)hout|S|ini

Sk(x̂)|pki = QH(✓,�)|pki = �i�(✓,�)|pki

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

Sk(x̂) =


2

"+µ⌫p
µ
kp

⌫
k

q̂ · pk
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Soft Theorems Imply Symmetries

Ø Denote operator which adds soft particles 𝑄(

Ø Then, the LHS can be written as

Ø Rearranging the soft theorem

hout|[Q,S]|ini = 0, Q = QH +QS

lim
!!0

hout|!a+(!x̂)S|ini =
nX

k=1

Skhout|S|ini = hout|[QH ,S]|ini

lim
!!0

hout|!a+(!x̂)S|ini = �hout|[QS ,S]|ini

QS(✓,�) ⇠ � lim
!!0

!
h
a+ (!x̂) + a†� (!x̂)

i

Weinberg’s Soft Graviton Theorem:

⇒ Obtain statement of  invariance under symmetry generated by 𝑄

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

Ø Can always interpret soft theorems as statements of  invariance of  the 𝒮-matrix under an infinite-dimensional symmetry.
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Supertranslations & Weinberg’s Soft Theorem
Ø To identify symmetry transformation, parametrize by functions 𝑓(𝜃, 𝜙) rather than points (𝜃, 𝜙). 
• Identify soft factor for massless 𝑝' as Green’s function on 𝑆!

pµk = !k(1, x̂k)

q̂µ = (1, x̂)

D(x̂)Sk(x̂) ⇠ !k�
(2)(x̂, x̂k)

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

Sk(x̂) =


2

"+µ⌫p
µ
kp

⌫
k

q̂ · pk

z = ei� tan
�
1
2✓

�

D(x̂) ⇠
2


@2
z̄

x̂(z, z̄) =

✓
z + z̄

1 + zz̄
,
�i(z � z̄)

1 + zz̄
,
1� zz̄

1 + zz̄

◆

Sk(z, z̄) ⇠


2
!k

z̄ � z̄k
z � zk



14

Supertranslations & Weinberg’s Soft Theorem

Sk(x̂) =


2

"+µ⌫p
µ
kp

⌫
k

q̂ · pk

• Construct charges with local action (i.e. action only depends on 𝑓 at point (𝜃',𝜙'))  

�i�f |pki = QH [f ]|pki = !kf(✓k,�k)|pki

Q[f ] =

Z
d2x̂ f(x̂)D(x̂)Q(x̂)

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

D(x̂)Sk(x̂) ⇠ !k�
(2)(x̂, x̂k)

• Action on massless particles:

Z
d2x̂ f(x̂)D(x̂)QH(x̂)

QH(x̂)|pki = Sk(x̂)|pki

Charges act locally on massless particles. ⇒
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Supertranslations & Weinberg’s Soft Theorem

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

�i�f |pki = QH [f ]|pki = !kf(✓k,�k)|pki

Q[f ] =

Z
d2x̂ f(x̂)D(x̂)Q(x̂)

Ø Having identified transformation 𝛿( as the symmetry implied by the soft theorem, can now determine 
physical interpretation

Ø When 𝑓 = 1, find total energy

⇒𝑄[𝑓 = 1] generates ordinary time translations

�i�f=1|pki = !k|pki
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Supertranslations & Weinberg’s Soft Theorem

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

⇒𝑄[𝑓] generates translation weighted at each angle by 𝑓
Ø 𝑓 is arbitrary

⇒ Independent translation symmetry at every angle (“Supertranslations”)
⇒𝑄) characterizes local energy flux at every angle

�i�f |pki = !kf(x̂k)|pki

Ø Generic 𝑓 = 𝑓 𝜃, 𝜙 , find energy weighted by 𝑓
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Locality on the Celestial Sphere

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

• To understand why transformations that act independently at every angle in momentum space
also act locally at every angle in position space, consider the saddle point approximation:

eix·pk = e�i!u�i!r(1�x̂·x̂k) r!1⇠ 1

i!r
e�i!u�zz̄�(2)(z � zk)

u = t� r, ~x = rx̂(z, z̄),

�zz̄ =
2

(1 + zz̄)2

ds2 = ⌘µ⌫x
µx⌫

= �du2 + 2dudr + 2r2�zz̄dzdz̄

⇒Plane waves of  massless particles localize to the point 
on the sphere in the direction of  propagation.



18
[He, Lysov, Mitra, Strominger, hep-th/1401.7026;

Strominger, hep-th/1703.05448]

Ø Expansion of  massless scalar field in plane wave modes

Transformation
of  momentum state 

Ø Saddle point approximation ⇒ localization in angles at large 𝑟

Ø Transformation under angle-dependent time translation

�i�f |pki = !kf(x̂k)|pki

Locality on the Celestial Sphere

�f� ⇠ f@u� ⇠
Z

d! ei!uf!a†(!, z, z̄) + c.c.

�(x) =
1

r
�(u, z, z̄) + · · · , �(u, z, z̄) ⇠

Z
d! ei!ua†(!, z, z̄) + c.c.

�(x) =

Z
d3~p

(2⇡)3
1

2p0
⇥
eip·xa(~p) + e�ip·xa†(~p)

⇤
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BMS Symmetries
Method: Asymptotic symmetry analysis

asymptotic
symmetries

=
allowed di↵eomorphisms

trivial di↵eomorphisms

ds2 = �du2 � 2dudr + 2r2�zz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 +DzCzzdudz +Dz̄Cz̄z̄dudz̄ + · · ·

Minkowski:

u = t� r, ~x = rx̂(z, z̄), �zz̄ =
2

(1 + zz̄)2

[Bondi, van der Burg, Metzner (1962);  Sachs (1962)]
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BMS Symmetries

[Bondi, van der Burg, Metzner (1962);  Sachs (1962)]

Result: Supertranslations + Lorentz transformations

⇠ = f(z, z̄)@u + · · ·

• Independent translation symmetry at every angle on the celestial sphere

• These are precisely the symmetries implied by Weinberg’s soft graviton theorem.
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[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

Ø With result from saddle point approximation can also give explicit operator expression for hard charge

Construction of Hard Charge

QH [f ] =

Z
du

Z
d2x̂ f(x̂) Tuu(u, x̂) Tuu ⇠ @u�@u�

Ø Use canonical commutation relations to verify its action:

Position space:

Momentum space:
�(u, z, z̄) ⇠

Z
d! ei!ua†(!, z, z̄) + c.c.

⇒𝑄) characterizes local energy flux at every angle

[@u�(u, x̂),�(u
0, x̂0)] ⇠ �(u� u0)�(2)(x̂� x̂0)

[QH [f ],�(u, x̂)] ⇠ f(x̂)@u�(u, x̂) ⇠ �f�(u, x̂)

QH [f ]|pki = !f(x̂k)|pki = �i�f |pki
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Ø Previous analysis for construction of  charge 𝑄[𝑓] assumed scattering of  massless particles.

Ø Used property of  soft factor:

Massive Particles

Sk(x̂) =


2

"+µ⌫p
µ
kp

⌫
k

q̂ · pk
D(x̂)Sk(x̂) ⇠ !k�

(2)(x̂, x̂k)
pµk = !k(1, x̂k)

q̂µ = (1, x̂)

Ø Found 𝑄)[𝑓] characterized local energy flux through null infinity.

Ø Massive particles in momentum eigenstates do not reach null infinity

Ø There is no canonical way to associate massive momenta to points on the celestial sphere
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Ø On the other hand, argument that soft theorem implies infinite-dimensional symmetries applied 
regardless of  whether massive or massless. 

Massive Particles

Charges parametrized by points (𝜃, 𝜙):

Sk(x̂)|pki = QH(✓,�)|pki = �i�(✓,�)|pki Sk(x̂) =


2

"+µ⌫p
µ
kp

⌫
k

q̂ · pk
q̂µ = (1, x̂)

⇒This is the transformation of  massive particles under the symmetry generated by 𝑄(9𝑥)

Ø What is the transformation of  massive particles under the symmetry generated by 𝑄[𝑓]?
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Ø Recall relation between 𝑄(9𝑥) and 𝑄[𝑓]:

Massive Particles

Q[f ] =

Z
d2x̂ f(x̂)D(x̂)Q(x̂)

Localizes soft factor 
for massless 𝑝!

)

⇒ Implies the following transformation under the symmetry generated by 𝑄[𝑓]

[Campiglia & Laddha, hep-th/1509.01406]

�i�f |pki ⌘ QH [f ]|pki

=

Z
d2x̂ f(x̂)D(x̂)QH(x̂)|pki

=

✓Z
d2x̂ f(x̂)D(x̂)



2

"+
µ⌫
pµ
k
p⌫
k

pk · q̂

◆
|pki
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Ø To further elucidate the action on massive particles, identify momenta with points on 3D hyperboloid

Massive Particles

[Campiglia & Laddha, hep-th/1509.01406]

Ø Similar saddle point analysis shows massive particles in momentum eigenstates localize to this point 
on unit hyperboloid in spacetime.

pµk = mkp̂
µ
k , p̂2k = �1, p̂µk =

1

2⇢k

�
nµ + ⇢2k q̂(zk, z̄k)

�

nµ = (1, 0, 0,�1), q̂µ(z, z̄) = (1 + zz̄, z + z̄,�i(z � z̄), 1� zz̄)

xµ =
⌧

2⇢

�
nµ + ⇢2q̂µ(z, z̄)

�
, x2 = �⌧2

(Covers points inside the lightcone of  the origin)
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Massive Particles

[Campiglia & Laddha, hep-th/1509.01406]

Ø Then, symmetry transformation takes the form:

�i�f |pki =
✓Z

d2x̂ f(x̂)D(x̂)


2

"+µ⌫p
µ
kp

⌫
k

pk · q̂

◆
|pki

⇠ mkG(3)(p̂k; x̂) ⇠
mk

(p̂k · q̂)3

Bulk-to-boundary 
propagator on AdS3

⇒

Extension of  𝑓 from null infinity 
to timelike infinity under de 

Donder gauge condition

�i�f |pki = mk
ef(p̂k)|pki

ef(p̂k) ⌘
Z

d2x̂ f(x̂)G(3)(p̂k; x̂)
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Recap

Ø Introduced soft theorems as quantum theoretic characterization of  the universality of  gravitational 
radiation in the infrared.

Ø By showing soft theorems are equivalent to Ward identities of  infinite-dimensional symmetries, 
demonstrated that this universal behavior in the infrared was equivalent to universal behavior due to 
symmetry.

Ø Studied the action of  the hard charge on single particle states to identify the physical interpretation of  
the symmetry.

Ø Recall needed to introduce soft charge to interpret the soft theorem as the Ward identity.

→What is the role of  the soft charge?

→What transformation does it implement?

→What transforms non-trivially under its action?
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Soft Modes & Infinite-Dimensional Symmetries

[He, Lysov, Mitra, Strominger, hep-th/1401.7026; Strominger, hep-th/1703.05448]

Ø Form of  hard charge 𝑄)[𝑓] fixes the form of  the soft charge:

Ø Finitely many symmetry transformations preserve particle number.

Ø Infinitely many require addition of  soft particles.

Ø For some choices ;𝑓 of  𝑓, 

Ø In the case of  supertranslations, soft charge vanishes for four ordinary translations.

ØAddition of  soft particles was crucial to obtain infinite-dimensional symmetry

Ø If  restrict to charges with no soft contributions, only find four translational symmetries.

QS [f ] ⇠
Z

d2x̂ f(x̂)D(x̂) lim
!!0

!
⇥
a(!x̂) + a†(!x̂)

⇤

D(x̂)f̂ = 0 ) QS [f̂ ] = 0

D(x̂) ⇠ DzDz ) f̂ = Y`m, ` = 0, 1.



Construction of Soft Charge
ØAs for hard charge, can identify field operator expression for soft charge

• The soft charge given is the zero-frequency component of  the radiative gravitational field.

Z
d!

ei!t

!
⇠ ⇥(t)

Follows from

hµ⌫(tf )� hµ⌫(ti)

QS(✓,�) ⇠ "µ⌫�hµ⌫

QS(✓,�) ⇠ lim
!!0

!
⇥
a(!x̂) + a†(!x̂)

⇤
⇠ lim

!!0

Z
dt "µ⌫ei!t@th

rad
µ⌫

• Equivalently, the soft charge can be written as a permanent net shift in the asymptotic metric.

29 29



Gravitational Memory from Soft Theorems

30

© 1987 Nature  Publishing Group

© 1987 Nature  Publishing Group

© 1987 Nature  Publishing Group

© 1987 Nature  Publishing Group

1

lim
!!0

!hout|a+(!x̂)S|ini =
nX

k=1

Sk(x̂)hout|S|ini

Sk(x̂) =


2

"+µ⌫p
µ
kp

⌫
k

q̂ · pk

30

hout|"µ⌫+ �hµ⌫S|ini

"µ⌫+ h�hµ⌫i ⌘
hout|"µ⌫+ �hµ⌫S|ini

hout|S|ini

=


2

nX

k=1

"+µ⌫p
µ
kp

⌫
k

q̂ · pk

[Strominger & Zhiboedov, hep-th/1411.5745]



Soft Charges & Degenerate Vacua

31 31

In what sense does the soft charge implement an infinitesimal symmetry transformation?

Action on vacuum state:

QS(✓,�)|⌦i = |⌦0i

• 𝑄" carries no energy
⇒𝑄" maps vacuum states to vacuum states
⇒𝑄" implements symmetry transformation on the vacuum

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717;

Choi, Akhoury, hep-th/1712.04551]

QS(✓,�) ⇠ � lim
!!0

!
h
a+ (!x̂) + a†� (!x̂)

i



Soft Charges & Degenerate Vacua

32 32

Ø Revisit Ward identity:

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717; Choi, Akhoury, hep-th/1712.04551]

hout|[Q,S]|ini = 0, Q(x̂) = QH(x̂) +QS(x̂)

Ø Label vacuum states by eigenvalue under 𝑄*

QS(x̂)|↵i = ↵(x̂)|↵i

Ø Consider scattering states composed of  finite-energy particles, built from these vacuum states

|out;↵i ⌘ a†(p1)a
†(p2) · · · |↵i

Ø Finite energy particles do not affect action of  the soft charge

QS(x̂)|out;↵i = ↵(x̂)|out;↵i
QS(x̂) ⇠ lim

!!0
!
⇥
a(!x̂) + a†(!x̂)

⇤

[a(~p), a†(~p0)] ⇠ p0�(3)(~p� ~p0)



Soft Charges & Degenerate Vacua

33 33

Ø Consider the Ward identity between the following scattering states: 

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717; Choi, Akhoury, hep-th/1712.04551]

hout;↵out|[QH ,S]|in;↵ini = �hout;↵out|[QS ,S]|in;↵ini

𝑄" acts non-trivially on 
finite-energy particles

𝑄( acts non-trivially on 
vacuum states

⇓ ⇓

✓ nX

k=1

Sk(x̂) + ↵out(x̂)� ↵in(x̂)

◆
hout;↵out|S|in;↵ini = 0

�
↵in(x̂)� ↵out(x̂)

�
hout;↵out|S|in;↵ini

✓ nX

k=1

Sk(x̂)

◆
hout;↵out|S|in;↵ini

⇒



Soft Charges & Degenerate Vacua

34 34[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717; Choi, Akhoury, hep-th/1712.04551]

✓ nX

k=1

Sk(x̂) + ↵out(x̂)� ↵in(x̂)

◆
hout;↵out|S|in;↵ini = 0

Solution:

and/orhout;↵out|S|in;↵ini = 0 ↵in(x̂)� ↵out(x̂) =
nX

k=1

Sk(x̂)

⇒ A degeneracy of  vacuum states is necessary for non-trivial scattering!
Ø Assuming a unique vacuum state, symmetry constraint implies all S-matrix elements vanish.

Ø Allowing for vacuum transitions, shift between `in’ and `out’ vacua is determined by the soft factor.

Ø Do standard scattering states account for this degeneracy?



Infrared Divergences

35 35

Ø Recall the story of  infrared divergences due to exchange of  soft virtual graviton.

Ø Consider contribution from virtual graviton exchange between external lines.

[Weinberg 1965]



Infrared Divergences

36 36

Ø To approximate contribution to loop integral from 𝑞 ≈ 0 region, Taylor-expand integrand about 𝑞 = 0:

[Weinberg 1965]

+ …

Ø Leading contribution contains logarithmic divergence from 𝑞 ≈ 0 region of  integration.

Ø Logarithmic divergence factorizes.

Ø Vertex rule is soft factor from soft graviton theorem. 

=

Z
d4q

(2⇡)4




2

pµ1p
⌫
1

p1 · q�i✏

� �i 12 (⌘µ⇢⌘⌫�+⌘µ�⌘⌫⇢�⌘µ⌫⌘⇢�)

q2 � i✏


�

2

p⇢2p
�
2

p2 · q+i✏

�
⇥



Multiple Soft Exchanges?

37 37[Weinberg 1965]



Multiple Soft Emissions

38 38[Weinberg 1965]

pµp⌫

p · q1
p⇢p�

p · (q1 + q2)
+

pµp⌫

p · q2
p⇢p�

p · (q1 + q2)
=

pµp⌫

p · q1
p⇢p�

p · q2

⇒ Contributions from multiple soft exchanges are multiplicative.



All Soft Exchanges

39 39

Ø An efficient way to sum all soft exchanges is to note that Wilson lines operators 
reproduce the sum over soft emissions/absorptions.

hµ⌫(x) =


2

Z
d3~q

(2⇡)3
1

2q0

X

↵=±

�
"⇤↵µ⌫a↵(~q)e

iq·x � "↵µ⌫a
†
↵(~q)e

�iq·x�

exp


i

Z 1

0
d⌧ pµp⌫hµ⌫(p⌧)

�
= exp

"


2

Z
d3~q

(2⇡)3
1

2q0
pµp⌫

p · q
X

↵=±

�
"⇤↵µ⌫a↵(~q)� "↵µ⌫a

†
↵(~q)

�
#

[Naculich & Schnitzer, hep-th/1101.1524; White, hep-th/1103.2981]



Factorization of Virtual IR Divergences
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Ø The 𝒮-matrix factorizes into piece that contains all IR divergences and a piece that is IR-safe (IR-finite).

[Weinberg 1965]

A(p1, · · · , pn) = hW1 · · ·Wni�IR,⇤ A⇤(p1, · · · , pn)

hW1 · · ·Wni�IR,⇤

= exp

2

41

2

X

k,`

Z ⇤

�IR

d4q

(2⇡)4




2

pµkp
⌫
k

pk · q � i✏

� �i 12 (⌘µ⇢⌘⌫�+⌘µ�⌘⌫⇢�⌘µ⌫⌘⇢�)

q2 � i✏


�

2

p⇢`p
�
`

p` · q + i✏

�3

5

Wk = exp


i

Z 1

0
d⌧ pµkp

⌫
khµ⌫(pk⌧)

�



Factorization of Virtual IR Divergences
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Ø Taking the infrared cutoff  𝜆IR → 0,

[Weinberg 1965]

hW1 · · ·Wni�IR,⇤

= exp

2

41

2

X

k,`

Z ⇤

�IR

d4q

(2⇡)4




2

pµkp
⌫
k

pk · q � i✏

� �i 12 (⌘µ⇢⌘⌫�+⌘µ�⌘⌫⇢�⌘µ⌫⌘⇢�)

q2 � i✏


�

2

p⇢`p
�
`

p` · q + i✏

�3

5

=

✓
�IR

⇤

◆A

⇒ Virtual IR divergences cause all exclusive scattering amplitudes vanish.

ØIs this same vanishing of  scattering amplitudes when the vacuum is taken to be unique?

hW1 · · ·Wni�IR,⇤
�IR!0! 0



Dressing by Coherent Clouds of Soft Gravitons
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Ø First, consider how to change the soft charge carried by the vacuum.

Ø Can be achieved by finding an operator satisfying:

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717; Choi, Akhoury, hep-th/1712.04551]

[QS(x̂),W↵] = ↵(x̂)W↵

QS(x̂)W↵|↵0i = (↵+ ↵0)W↵|↵0i⇒

⇒ W↵|↵0i / |↵+ ↵0i



Dressing by Coherent Clouds of Soft Gravitons

43 43

Ø To find 𝒲+, write as:

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717; Choi, Akhoury, hep-th/1712.04551]

[QS(x̂),W↵] = ↵(x̂)W↵

Since 𝐶 is conjugate to 𝑄, it is 
natural to interpret it as a 

Goldstone boson.

W↵ = exp


i

Z
d2x̂ ↵(x̂)C(x̂)

�

[QS(x̂), C(x̂0)] = �i�(2)(x̂, x̂0)

[QS [f ], C(x̂)] ⇠ �if(x̂) ⇠ �i�fC(x̂)



Dressing by Coherent Clouds of Soft Gravitons
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Ø To find an expression for 𝐶, recall the soft charge:

Ø Can verify from standard commutation relations:

⇒

QS(x̂) ⇠ lim
!!0

!
⇥
a(!x̂) + a†(!x̂)

⇤

⇥
a(~p), a†(~p0)

⇤
= 2p0(2⇡)3�(3)(~p� ~p0)

⇥
a(!x̂), a†(!0x̂0)

⇤
⇠ �(! � !0)

!
�(2)(x̂, x̂0)⇔

f(! = 0, x̂) = 1C(x̂) ⇠ i

Z 1

0
d! f(!, x̂)

⇥
a(!x̂)� a†(!x̂)

⇤

[QS(x̂), C(x̂0)] ⇠ �i lim
!!0

!

Z 1

0
d!0f(!0, x̂)

⇥
a(!x̂), a†(!0x̂0)

⇤

⇠ �i lim
!!0

!

Z 1

0
d!0f(!0, x̂)

�(! � !0)

!
�(2)(x̂, x̂0)

⇠ �if(0, x̂)�(2)(x̂, x̂0)



Dressing by Coherent Clouds of Soft Gravitons
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Ø Can change the value of  the soft charge by applying 

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717; Choi, Akhoury, hep-th/1712.04551]

f(! = 0, x̂) = 1

Ø Recall constraint required:

↵in(x̂)� ↵out(x̂) =
nX

k=1

Sk(x̂)

Ø Satisfy constraint by applying 𝒲+ with 𝛼 = −Σ 𝑆' to “out” state.

W↵ = exp


i

Z
d2x̂ ↵(x̂)C(x̂)

�

C(x̂) ⇠ i

Z 1

0
d! f(!, x̂)

⇥
a(!x̂)� a†(!x̂)

⇤



Dressing by Coherent Clouds of Soft Gravitons
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Ø Evaluating the dressing:

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717; Choi, Akhoury, hep-th/1712.04551]

f(! = 0, x̂) = 1 Sk(x̂) =


2

"µ⌫p
µ
kp

⌫
k

pk · q

f=1
= W †

k

W↵

����
↵=�

P
k Sk

= exp


i

Z
d2x̂ ↵(x̂)C(x̂)

�

= exp

"
�

2

Z
d3~q

(2⇡)3
f(~q)

2q0
pµp⌫

p · q
X

↵=±

�
"⇤↵µ⌫a↵(~q)� "↵µ⌫a

†
↵(~q)

�
#

⇒Contribution from a soft virtual graviton emitted/absorbed from an external line is precisely cancelled by 
emission/absorption from dressing.

⇒Amplitudes which satisfy the constraint are infrared finite!

C(x̂) ⇠ i

Z 1

0
d! f(!, x̂)

⇥
a(!x̂)� a†(!x̂)

⇤



Infrared Divergences & Vacuum Degeneracy
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ØInfrared divergences which set amplitudes to zero are a consequence of  violating the 
constraint due to symmetry.

ØPhysically, the dressings needed to satisfy the constraints represent the gravitational 
radiation emitted during non-trivial scattering.

ØIn quantum scattering process, the soft sector is required by symmetry to agree with the 
classical result.

[Kapec, Perry, Raclariu, Strominger, hep-th/1703.05448; 
Choi, Kol, Akhoury, hep-th/1708.05717; Choi, Akhoury, hep-th/1712.04551]



Summary

1. Soft Theorems (for Scattering Amplitudes)
• Universal behavior of  low-frequency radiation captured by exact 

relations between scattering amplitudes.

2. Soft Theorems = Ward Identities
• Universal behavior in the IR is equivalent to universal behavior 

due to symmetry.

3. Asymptotic Symmetries
• Identification of  symmetries implied by soft theorems from the 

action of  the hard charge.

4. IR Divergences & Vacuum Degeneracy
• Soft charge implements symmetry transformation on vacuum.
• IR divergences are the consequence of  scattering states that 

violate the symmetry constraint.

Soft Theorems

Infrared
Triangle

Memory Asymptotic
Symmetries
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Thank You!
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