Towards gravitational-wave models informed by scattering

collaborators: Alessandra Buonanno, Andrea Antonelli, Chris Kavanagh, Jan Plefka, Justin Vines, Gustav Jakobsen, Gustav Mogull, Mohamed Khaiel, Santh Muddu

Jan Steinhoff
Albert Einstein Institute (Potsdam)

April 29th, 2021

Gravitational scattering, inspiral, and radiation @GGI
Gravitational waves (GWs)

Cosmology

- **Neutrino-star matter**

- **Testing gravity**

Black-hole population & formation

- **Truncated**
- **Broken power law**
- **Power law + Peak**
- **Multi Peak**

- **arXiv:2010.14533**

This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation.
Accuracy problems ahead

Results become insufficient when 2.

Pürrer, Haster, arXiv:1912.10055

semi-analytic

NR

2022-24

2030's

need better predictions soon

analytic & numeric

Network SNR ρ (signal-to-noise ratio)
Binary parameter space & GW predictions

Applicability of GW prediction methods:

Post-Newtonian (PN) \(\frac{v^2}{c^2} \sim \frac{GM}{c^2 r} \ll 1 \)

Small Mass Ratio (SMR) \(\nu = \frac{m_1 m_2}{M^2} \ll 1 \)

Numerical Relativity (NR)

Limited by computational resources
another dimension: eccentricity

PM: post-Minkowskian
\[\frac{GM}{c^2 r} \ll 1 \]

Recent eccentric (EOB) waveform works by:
- Albañez, Nagar, Bernuzzi, Reisswig, Breschi, Albertini, Gamba, Bonino, Liu, Cao, Zhu, Khalil, Buonanno, Vines

PM:
- improve bound-orbit waveforms with eccentricity
- search for HE scattering BHs

fictitious!
Informing the Hamiltonian/potential with HPM

4PM from Bern, Barrau-Murcillo, Roizman, Ruf, Shen, Solou, Zeng
2101.07194

Looks promising even for circular orbits \(B \)

Full waveform model requires:
- Hamiltonian/potential
- Radiation reaction force
- Waveform "wires"

Credit: Mohammed Khalil

=> Want all from PM8
Black holes as (point) particles

Full theory

IR projection

Effective theory

Worldline \(x^\mu(\tau) \)

\[\Rightarrow \text{effective-field theory point-of-view} \]

[Goldberger, Rothstein, ...]

Black holes \(\approx \) higher-spin massive particles

[eg. Arkani-Hamed, Huang, O'Connell (2019)]

[adopted from arXiv:1906.08161]
Scattering particles vs. scattering waves

\[\chi(x) \]

\(\alpha \): Scattering angle

\(\Psi(x) \) is an amplitude for eikonal approximation

Conductive interference

Wavefronts energy \(E \)

Wavefronts energy \(E + \Delta E \)

John A. Wheeler

\[M: \text{scattering amplitude} \]
Connecting amplitudes and classical physics

- Matching Hamiltonians to amplitudes, cKonal phase, Lippmann-Schwinger eq...
 Rothstein, Nall, Cheung, Salam, Bern, Roiban, Suen, Luna, Zeng, Kosmopoulos,
 di Vecchia, Heissenberg, Russo, Veneziano, Porrà-Martínez, Ruf, Zeng,
 Bjerrum-Bohr, Cristoffoli, Damgaard, Vanhove, ...

- Expectation values from amplitudes [Kosower, Maybee, O'Connell, Vines]

- Here: directly connecting amplitudes to "1st quantization" of massive particles
 [Majumdar, Sefkof, FS2010, 1499;
 Jakobsen, 2010.12688 PRL]

⇒ "worldline quantum field theory" (WQFT)

Related work: [Goldberger, Ridgway, I, Källin, Porto, Liu, Yang]...
Use Feynman-Schwinger rep. of dressed massive propagator $G(x, x')$

$$(\nabla^\mu \nabla^\nu + m^2 + \frac{g}{2} R) G(x, x') = \sqrt{-g} S(x-x')$$

$g = \frac{c}{2m}$

$\mathcal{G}_i(x, x') \sim \int_0^s e^{ism^2} \int_{x(0)=x}^{x(s)=x'} Dx \cdot \exp \left[-i \int_0^s ds \left(\frac{1}{4} g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu + (\frac{g}{2} - \frac{1}{4}) R \right) \right]$
Classical Limit in WQFT & the eikonal

standard approach: massive propagator \(\frac{1}{p^2 + m^2/\hbar^2} \)

2nd quantized

Diagrams have all powers in \(\hbar \)

\(\Rightarrow \) classical limit \(\hbar \to 0 \) subtle

WQFT: expand around straight-line motion

\(\Rightarrow \) \(\hbar \)-counting of diagrams, \(\hbar \to 0 \) limit straightforward

\(\Rightarrow \) form factor

\[\lambda(x') = 0 + \varphi + \frac{1}{\hbar} \]

straight-line motion

deflection

in WQFT & \(\hbar \to 0 \)
Eikonal

\[\text{FT to } \text{b-space of } \tau \]

\[t \rightarrow 0 \]

\[= \]

\[= \text{const} \times \exp \left(\frac{\tau}{\tau_+ \tau_-} + \sum \ldots \right) \]

exponentiates 8

eikonal \[X \]

\[\sim WQFT \text{ free energy } = e^{iX} \text{ for } t \rightarrow 0 \]

property: \[\Delta p_{\chi} = -\frac{\partial X}{\partial b^x} \]

(deflection)

\[\nabla \text{ observables encoded in } X \]

also:

Relation to bound orbits possible 8

[\text{Kalin, Porto (2020)}]
Radiation in the WQFT

\[<\hat{h}^{+x}> = \text{inv. Fourier trafo} \]

\[\text{leading order} \]

Feynman diagrams \rightarrow Feynman integrals

\rightarrow integrals involve "anisotropic" propagators

\[\frac{1}{\mathbf{p} \cdot \mathbf{M} \cdot \mathbf{p}} \]

\rightarrow corresponds to boosted Coulomb field

\rightarrow matrix

\rightarrow still solvable

\rightarrow reproduce [Kovacs, Thorne (1977)] "efficiently"

beyond small-angle scattering?
WIP with Saketh Mudda, Justin Vines, Alessandra D'Urso

- reconsider "the classical" approach (no amplitudes, no WQFT)
- linear theory for starters \(\uparrow \) QED
- split off self-interactions from the start
- iteratively compute deflected worldline

"classical" method (off-shell recursion?) seems very efficient

\[\begin{array}{c}
\text{amplitude analog?}
\end{array} \]

(Radiation reaction can be computed in WQFT \(\uparrow \) see papers)

\(\Rightarrow \text{from waveform!} \)
Spin & WQFT

WIP with Jakobsen, Mogull, Plefka

EFT with spin λ^μ_A and spins up on worldline

m would need to integrate out λ^μ_A in WQFT

m better method?

$\phi^\mu(\tau)$ on worldline \Rightarrow $S^\mu = -2i \overline{\psi} \Gamma^\mu \psi$

\Rightarrow Susy!?
quadrupole coupling: $\frac{1}{8\pi m} \mu \nu \rho \sigma \sigma \sigma^\rho \sigma^\nu + \frac{c^{-1}}{2m} E \mu \nu \sigma^\nu \sigma^\nu$

black hole SUSY!

non-BH breaks SUSY!

higher orders? SUSY \rightarrow unitarity/quantum consistency? other symmetries?

eikonal \rightarrow generates observables $\Delta \rho, \Delta Y, \Delta S$
	e.g. [Maybee, O’Connell, Vines]

[Bern, Luna, Roiban, Shen, Zeng] [Kosmopoulos, Luna]

leading order radiation \rightarrow no new integrals except more complicated numerators
Looking for structure: mass-dependence of classical scattering

\[\text{Eikonal} = \frac{1}{m_1 m_2} + \frac{2}{m_2^2 m_1} + \frac{2}{m_1^2 m_2} + \frac{2}{m_1 m_2^2} + \frac{2}{m_1^2 m_2^2} + \cdots \]

- Leading order (LO)
- Next-to-leading order (NLO)
- \(\cdots \)

\[\text{LO \& NLO follows from test-bodies (\& symmetrizing in masses)} \]

\[\Rightarrow \text{NNLO \& N^3LO} \]

1st correction in mass ratio (self-force)

\[\text{Tutti Frutti} \]
N^3LO PN spin-orbit (SO) from self-force

[Antonelli, Khalil, ... 2003.11391]

\[q = \frac{m_1}{m_2} \]

\textbf{PN binding energy E_b vs N_R}

\begin{itemize}
 \item Naively a 3-loop calculation
 \item Follows from known results for self-force without solving any integrals
 \item Extension to aligned-spin S_1S_2 case possible
\end{itemize}

[Antonelli, Khalil, ... 2010.02018]

see also [Levi, Melrod, von Hippel, 2003.02827+07890]
Scattering amplitudes involving black holes?

- of fundamental interest

What is the "best" method for black hole interactions?

- classical
- Feynman rules/EFT
- amplitudes

Graviton (grav. waves)

- a synergy?
Conclusions

- gravitational wave models informed by scattering?

Building blocks:

- potential → eikonal (Radial action)
- radiation reaction → eikonal
- waveform (source multipoles) → ?

Lots of progress!

- connect classical & quantum physics
- exchange of ideas
- consolidation of methods & abstractions