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Use a particle-physicist approach to derive classical observables relevant

to gravitational binaries see Parra-Martinez's lectures and Bern's and Kosower's talk

e Model the celestial bodies as “elementary” particles with known
couplings to gravity (massless fields in general)

e Use quantum perturbative amplitudes to describe the large-distance
scattering and take the classical PM limit

e Analytically continue the results from open to closed orbits

see Porto’s talk

In the eikonal approach it is possible to implement this programme by
focusing on gauge invariant quantities

Classical physics is obtained by resumming an infinite set of
contributions which leads to exponentiation

It is a general approach applicable to all perturbative gravitational
theories (GR, supergravity, string theory; shockwaves, spin ...)



2104.03256, 2101.05772, 2008.12743:
N =8, mi» #0, 3PM, also results in GR

1911.11716, 1908.05603:
N = 8, my > = 0, 3PM

1904.02667:
GR, my # 0, general d, 2PM

1807.04588:
N =8, m — oo, m =0, 2PM

in (various) collaboration with: P. Di Vecchia, C. Heissenberg,
A. Koemans Collado, A. Luna, S. G. Naculich, S. Thomas, G. Veneziano,
C. D. White



The elastic scattering



The setup

Consider the 2 — 2 scattering with p? = p; =—m?, p3 = p3 =—m3

Tree amplitude
(also disconnected),

<«——p; Tree amplitude Pa ——»

A spacetime picture of the scattering Diagrammatic picture

Key classical quantities:

The centre-of-mass energy E, E2=s=—(p1 + p2)2=(m? + m2 +2m1my0)
The angular momentum J = p by, p=|p;|, Ep = mmavo2 —1

_ — (X
The momentum transferred @ = p1 + ps, |Q| = 2psin (5)




One particle exchange

Let us start from the 1-particle exchange

g ﬁ BN=8 = 4m2mio?
q AO _ 87GB
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2

q is quantum and the dots contain analytic terms as g — 0

In terms of classical quantity b ~ 1i/q

= “dP2q A(s,q?)
As, b) = / oty AT e

In D=4 —2¢ — 4 we have
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No well defined classical limit?!

iAY=8 =



Two particle exc e

Consider the two particle exchange. The non-analytic contributions are

2 —— 3 2 3
2y _ a(s) | aP(s) | aP(s)
o o + Ais,¢%) = e + b + @ oo
& B with ¢1 + g2 = ¢
11— 4 1 4

This captures the whole A = 8 result

(1) From a{") we have O (&) term: iAV (s, b) = 1(iAp)2. Then
resummlng the Ieadlng contributions (as i — 0) we expect
1+iAy+ I.A = e (eikonal exponentiation)

(1) a{? yield a new contribution O (%) (which is O(e) in N = 8)
(1 a§1123) yields a long-range, but quantum terms O(h"~3)

Terms with negative powers of /i exponentiate

for Ag: Kabat, Ortiz; Akhoury, Saotome, Sterman; Parra-Martinez's lecture



The eikonal

The semi-classical limit requires that long range part of A takes the form

1+ iA(s, b) = (1 + 2iA(s, b)) e#28(s:b)

where § is O(h°) and A encodes the quantum terms O(h™) with m > 0
Sk and Ay, k > 0, encode contributions of order G¥*1 (PM expansion)

N =8in D = 4: we have 25 = — Iog(b)“G’:’:i\/#‘72 01 =0

-1 Caron-Huot, Zahraee

GR in D = 4: we have 2§y = — Iog(b)w and

Vo2—1
28 — 3w GEmima(mitmy) 502—1
1= 4b Vor-1

Ignoring the quantum terms the inverse FT reads

,'«A(S,Qz) _ /dD—2b (e%Zé(s,b) _ 1) e%b-Q
4pE

. . . O Re25(s,b
and a stationary phase approximation yields Q“z—% and so y




Connection to bound orbits

The derivatives of the eikonal give standard observables

0 Re2d Scatt. angle _8Re26
9E s e ==

Time delay AT =

An analytic continuation to ¢ < 1 describes bound states (E < m1 + m2).
This implies Vo2 — 1 — iv/1 — 02, b — +ib so as to have J — +J

Kalin, Porto
By using the eikonal 5 after analytic continuation, we can introduce the
periastron advance K and the period P

O Re 2 1 rORe2
OF —(J—= =N, K—1_§ 2 +(J—= =J)

P =

From &1 we can derive Eqgs. (347) for K and n = 22 of Blanchet's
review at all orders in € and first subleading order in jg = é—zm



The 3-PM eikonal in N/ =8

The 2-loop integrand in A/ = 8 is known in terms of scalar integrals

Extract the first non-analytic terms in the small g expansion

Sec] gl ol
Ao(s,0°) = fopt + A+ 4

Go to b-space and solve for d>. By using also dp 1 and A1, we get DHRV

radiation reaction T —a
,
16m2m32G3s° 16m2m2o1G3
(252) — 1Mo 1My

P (02=1) (071 cosh™! Parra-Martinez, Ruf, Zeng: 2005.04236

o
—

(
¥— A consequence of analyticity
16m3m3G* 4 1 9 o(a2—2 1.—1 1 Y Y
Tﬁﬁ{ ( ﬁ cosh™ (o )) « and crossing ~ DHRV: 2104.03256
Confirmed independently by
— (log(4(0? — 1)) — 3log(wb%e®)) [(r + 22*=2) cogh™ Yo )] Bjerrum-Bohr, Damgaard,
(02 1) Planté, Vanhove

+(0?=1) [1 .o 72@ (cosh ()% +

o(0?-2) le(l P ) 2 } PN limit v — 0, (bv) fixed
G4 —
(02-1)2

(62-1)2 02— 1=v%(1—v?)" ~o?,

s—o o1 cosh™ (o) ~ v

P 16G3(mimyo)? - . .
In the UR limit (o > 1), Re(2d2) — % which is universall
Amati, Ciafaloni, Veneziano; Ademollo, Bellini, Ciafaloni; DNRVW 1911.11716; Bern, Ita, Parra-Martinez, Ruf; DHRV: 2008.12743



A comment on the integrals

The integrals depend on one scale and can be translated into a set of
differential equations for a basis of soft master integrals

, Parra-Martinez, Ruf, Zeng. Tools: LiteRed, Fire6, epsilon

The full soft contribution g — 0 has been included, i.e. no separation in
potential gravitons (near region) and radiation gravitons (far region)

see also Herrmann, Parra-Martinez, Ruf, Zeng

The key step is the evaluation of the 0 — 1 boundary conditions

One element of the double-box basis of integrals is

ordinary region: ¢35 ~ O(7°%)

392
Juz =€¢* T b

As 7 — 0 we have two regions

. singular region: 12 ~ O(70), t3 ~ O(772)

T=vo?2-1+0 (,‘37) propagator squared

The “singular static” contributions is crucial to restore crossing symmetry.
It will play a useful role also in the cut version of these integrals



Radiative effects




The 3-particle cut

Why do we have Im(20,) # 07 It is related to the 3-particle cut

|
|

~ I ke —s | —— —ky p3 —>
|

As(p1,p2, k1 ko, k) k‘> : i Az (p3, pa, —k1, —ka, —k)

|

-« D1 ki —» : - —k Py —>
|
|

Unitarity implies
dPk dPk; dPk
[Im 2A,], C:/ Monl Wow)
pe ) (2m)P (27)P (27)
210(k°) 5(k?) 2m0(k?) 6 (ki + m3) 2mO(k3) (k3 + m3) |As|?

(2m)P0(p1 + p2 + ki + ko + k)

In b-space we have [Im Zz} = Im(26,): so this is a shortcut to the
3pc
derivation of the imaginary part! Amati, Ciafaloni, Veneziano
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Inelastic amplitudes (3-particle

cut)

A unified GR and N = 8 expression for the 2 — 3 classical amplitude

Goldberger, Ridgway; Luna, Nicholson, O'Connell, White; Mogull, Plefka, Steinhoff

" E . PM _p. M . PN _ . N
AMN — (SWG)%{B(P,APQ PZkquflgplkPZ PokPY)

M pN kP (M ,N) M N kP, (M ,N) i o
8PP |:P1 PNER2p(MpY) pMPY PP 2PM:PZ(”qf”—sz:Pl(”qy):|
+85 1% > - — —
2 i aia;
M pN M v N N VN Leading term in the Weinber
g - PR NG o (PR PG gt | Leading tem ’
(P1k)2q3 (P2k)2q3 (Prk)eZ (Pak) g2 2 limit k < g;

N =8 setup: P;, K; are 10D momenta, ¢ and k 4D
Py = (p1;0,0,0,0,0,m), P2=0
Py = (p2;0,0,0,0,m2,0), 1—’; =0

P =
P=

GR setup: all vectors are 4D
(p1;0,0,0,0,0,0), PZ=p?}
(p20,0,0,0,0,0), P§=p3=—m3

—m3

This provides explicit integrands for the discontinuity

| AN =812 AMN(PL, Py, Ky, Ko k) nurnins ASS (Pa,Ps,—Ki,—Ka,—k)

|AZ 2= ALY (p1,p2 ki, k2, k) nupnwfﬁnwnpa} AL (p3,pa,ka, ks, —k)

The phase-space integrals can be performed by recycling the loop

integrals

Anastasiou, Melnikov; Herrmann, Parra-Martinez, Ruf, Zeng
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The 3-PM eikonal in GR

The unitarity approach leads to Im(24;) in GR (and reproduces the
N = 8 result). By combining it with previous results we have

radiation reaction
(agrees with Damour’s result)

25§gr) 4G3?fm2 { (202-1)%(8—502) (1402 +25)

6(c2-1)2 3vVo2—1 i
—a ‘ : 7 Bern, Cheung, Roiban,
12 241 1 (202-1)2(202—3) A Shen, Solon, Zeng
- 3 ) 4 cosh™ 1o |22 1 4 o +212la +3
2myma(02—-1)2 2(c2-1)2 o=
probe limit

V\
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A consequence of analyticity
and crossing
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1 2 0(3—202) 40516044902 +3 the universal UR terms
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+( ( )) [(0271)% (202-1) 02( 1;) % , 12) —4

o1 o (880°—2400"+2400>-97) (8
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Radiation Reaction from Soft Theorems

The radiation-reaction contribution is fully determined by Weinberg's
leading term AY in the soft expansion DHRV: 210105772

In b-space, the soft limit takes the following form

AW — _; sB  (@b) DBy PPy \ _ DYOURYbE | phbY+psbt
A = YSamyma b2\/0'2 (kb) (p1k)? (p2k)? (p1k) + (p2k)
v =-p{'+q"/2, Py =-Dy—q"/2
Use this to calculate [Im A2:| = Im(26,)
3pc

e The integral over w = |k| yields the 1/e divergence

e The integral over the angles is identical to the one appearing in
Damour’s linear-response approach

Exploit soft-theorems more systematically: do subleading terms play an
interesting role? Apply them at 4PM and beyond? BMS group?
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Radiated energy

One can use As to derive other quantities, just by inserting the
appropriate generator in the integrand. For the emitted energy

A2 = kAl

The phase-space integrals can again be performed by using the same
technology discussed previously

However, we have access to differential quantities as well. A simple

example is the Zero-Frequency-Limit of the energy spectrum
3,202

32G°mymj

— 4he(Im245) = e Smarr

dErad .
dw (w=0)= elm) [

Also the angular distribution can be derived with the same approach

14



Waveforms

One can also consider directly the waveforms (in the CoM frame)

Instead of focusing on |As|?, perform the FT to b-space of As

-~ =, D—2 —ibA
Asi(b, k) = /(dzﬂ.)DAZ S As.i(P1, P2, ki, ko, k)
= 1(g1 — @») is a (D — 2)-vector; the other momenta (except K)
are fixed by the onshell/conservation conditions
As ;= AMNEMN for the physical polarizations i = +, x (in the

N = 8 case one has also other massless particles: dilaton, ...)

One extra FT yields the result in terms of the retarded time u =1t —r
rather than the frequency w

_ R "dw .~ .
o (u bR = [ G20 As (b )

A unified approach for A" = 8 and pure GR

15



Waveforms: an example

In DHRV 2104.03256 we give the N = 8 dilaton waveform as an example

The extension to GR is tedious but straightforward

Our result for the x polarisation in GR is Alert: perliminary
~ 37 . .
Asx =i /K (PP@) B me smeeibk/zKl (bﬁz‘k‘) 4o Sl[\ge—1bk/2K1 (bcl\k\) Bold vectors are and b

) 282 Ve ve (D-2)-dimensional

~—

+8 / da '3 (1-29) <i(l3€o)(b\/7\k|)K1 (blk|VF) = (2 = 5)(keo)bKo (bk|VF)

. . 1
+ [4(p1p2)[1Ew sinf — < sinf ((m”mz%@f*m‘a) + mf;mé cos())} / dz ci%(1*21)bl(0(b|k\\/7)}

0

) : k .
KVF = k(e -0) + o+ B -0)),  Ka= 200, Ke=_2d0s, |k =|wsnd
el = (0, —sing,cos¢,0), e = (0,cos0cos @, cosOsing, —sinb),  k* = w(l,sinf cos ¢,sin O sin ¢, cos f)

This result is written in the center of mass frame

The FT to u-space is straightforward and then the x-integral is simple

We are in the process of comparing with Jakobsen, Mogull, Plefka, Steinhoff; Mougiakakos, Riva, Vernizzi
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Conclusions

The eikonal provides a conceptually simple approach to gravitational
binaries: it leads directly to classical, observable quantities starting from
a full quantum framework

The state of the art is the full 3PM analysis

It can be extended to different situations of experimental (spin) or
theoretical (susy, string theory) interest

What next?

e Derive the 4PM eikonal (N = 8 is again the perfect laboratory)

e Clarify the exponentiation of the radiative part: promote § to a
Hermitean operator, extend the analysis of the waveforms . ..

e Consider more complicated objects: here string theory can (again)
be a useful guide to analyse spin, tidal effects, ...
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