FLAVOR PHYSICS: STATUS AND PROSPECTS

JURE ZUPAN U. OF CINCINNATI

1

GGI TH Colloquium ("GGI Tea Breaks") May 5 2021

FLAVOR PHYSICS IN ONE SLIDE

- baryon asymmetry implies more CP violation than in the SM
- flavor measurements a way to probe such required new CPV sectors
 - high energy scales and / or small couplings
- probe also other puzzles: dark matter, strong CP problem,...

MANY EXPERIMENTS...

MANY MEASUREMENTS...

- PDG lists $O(10^4)$ observables
 - branching ratios, angular distributions, CP violating asymmetries,
- focus of this talk:
 - sensitivity to new physics

4

OUTLINE

- why flavor physics?
 - heavy new physics
 - light new physics
- experimental anomalies
- what next?
 - Belle II, LHCb upgrade, etc

PROBING HEAVY NEW PHYSICS

FROM FLAVOR PHYSICS TO HEAVY NEW PHYSICS

- SM@tree level: no Flavor Changing Neutral Currents
 - all FCNC processes loop suppressed
 - e.g., meson mixing
- can be modified by NP
- NP contribs. scale as

 depends on couplings and NP masses

7

LARGE SCALES PROBED

Physics Briefing Book, 1910.11775

CKM UNITARITY

 a test: CKM matrix is unitary in the Standard Model

$$\frac{-g}{\sqrt{2}}(\overline{u_L}, \overline{c_L}, \overline{t_L})\gamma^{\mu} W^+_{\mu} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.},$$

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 V_{ub}

b

 \mathcal{U}

THE PLAYERS

- B-factories
 - Belle (1999-2010): ~ 1.5 x 10⁹ B mesons
 - Babar (1999-2008): ~ 0.9 x 10⁹ B mesons
- (super)*B*-factories
 - LHCb(2010-2030?): ~ up to 10¹¹ (useful) *B*'s
 - Belle-II (2018- 2024?): ~ 8 x 10¹⁰ B mesons

THE PLAYERS

, May 5 2021

May 5 2021

m, May 5 2021

LOW ENERGY PRECISION BOUNDS

UTFit 0707.0636, 1411.7233 for latest charm see also Bazavov et al, 1706.04622

THE (MID-TERM) FUTURE

Physics Briefing Book, 1910.11775

• just from LHCb:

THE (MID-TERM) FUTURE

Physics Briefing Book, 1910.11775

• just from LHCb:

THE (MID-TERM) FUTURE

Physics Briefing Book, 1910.11775

• just from LHCb:

THE MID-TERM FUTURE

Physics Briefing Book, 1910.11775

PROBING LIGHT NEW PHYSICS

SEARCHING FOR LIGHT NEW PHYSICS

- if NP particle is light, can be produced on shell
- search for rare decays $q_j \rightarrow q_i + X_{\text{NP}}$, $\ell_j \rightarrow \ell_i + X_{\text{NP}}$

FLAVOR VIOLATING PNGBS

- if NP has a spontaneously broken global U(1) ⇒ light (pseudo)Nambu-Goldsone boson
 - interactions with the SM start at dim 5

$$\mathcal{L}_{\text{eff}} = \frac{\alpha_s}{8\pi} \frac{a}{f_a} G\tilde{G} + \frac{E}{N} \frac{\alpha_{\text{em}}}{8\pi} \frac{a}{f_a} F\tilde{F} + \frac{\partial_\mu a}{2f_a} \bar{f}_i \gamma^\mu (C_{f_i f_j}^V + C_{f_i f_j}^A \gamma_5) f_j$$

- in general the couplings can be flavor violating
 - since dim 5, FCNCs probe very high scales
 - even above astrophysics bounds
- concrete examples: FV QCD axion, axiflavon, majoron,...

Calibbi, Redigolo, Ziegler, JZ, 2006.04795

Martin Camalich, Pospelov, Vuong, Ziegler, JZ, 2002.04623

BOUNDS ON FLAVOR VIOLATING QCD AXION

J. Zupan Flavor Physics

EXPERIMENTAL ANOMALIES

NEWS FROM THE LAST TWO MONTHS

- R_K went from 2.5σ to 3.1σ LHCb 1903.09252, 2103.11769
 - the first single measurement in *B* anomalies to cross the "evidence" threshold
- $(g-2)_{\mu}$ went from 3.7σ to 4.2σ

The Muon g–2 Collaboration , 2104.03281

figure credit: J. Butterworth GGI TH Colloquim, May 5 2021

IF NEW PHYSICS...

- the two quark level transitions that show $\sim 4\sigma$ deviations from the SM
 - explanable with NP in V A quark currents

IF NEW PHYSICS...

• $(g-2)_{\mu}$ showing 4.2σ deviation from the SM

• in SMEFT from dim6 operator

$$\mathcal{L} \supset -\frac{\sqrt{2}e\,v}{(4\pi\Lambda_{ij})^2}\,\bar{\ell}_{\mathrm{L}}^i\sigma^{\mu\nu}\ell_{\mathrm{R}}^jF_{\mu\nu} + \mathrm{h.c.} \;,$$

 $(g-2)_{\mu} \Rightarrow \Lambda_{22} \sim 15 \,\mathrm{TeV}$

Greljo, Stangl, Thomsen, 2103.13991

 note: any flavor violation needs to be highly suppressed

$$\mu \to e\gamma \Rightarrow \Lambda_{21} \gtrsim 3500 \,\mathrm{TeV}$$
OUTLINE FOR THE REST OF THE TALK...

- overview of anomalies
 - exp+attempted explanations

•
$$(g-2)_{\mu}$$

- *b*→*c*τυ
- grand picture?

A DEVIATION?

• the value of $(g - 2)_{\mu}$ from g-2 coll.

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-10}$

 the SM theory error dominated by hadronic uncert.

QED Electroweak HVP (e^+e^- , LO + NLO + NNLO) HLbL (phenomenology + lattice + NLO) Total SM Value

116 584 718.931(104) 153.6(1.0) 6845(40) 92(18) 116 591 810(43)

The muon g-2 theory initiative, 2006.04822 GGI TH Colloquim, May 5 2021

HADRONIC VACUUM POLARIZATION

- HVP the dominant uncertainty
 - a tension between determination using lattice QCD and from R-ratio

IF NEW PHYSICS...

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-10}$$

- NP models of two types
- chirality flip on SM fermion leg
 - NP need to be light, example: Z' from $L_{\mu} - L_{\tau}$
- chirality flip can be on the NP fermion leg
 - NP can be much heavier
 - example: minimal models with DM

$$\frac{e}{8\pi^2}(\bar{\mu}\sigma^{\mu\nu}\mu)F_{\mu\nu}$$

IF NEW PHYSICS...

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 251(59) \times 10^{-10}$$

- NP models of two types
- chirality flip on SM fermion leg
 - NP need to be light, example: Z' from $L_{\mu} - L_{\tau}$
- chirality flip can be on the NP fermion leg
 - NP can be much heavier
 - example: minimal models with DM

$$\frac{e}{8\pi^2}(\bar{\mu}\sigma^{\mu\nu}\mu)F_{\mu\nu}$$

IF NEW PHYSICS...

UPSHOT

- $b \rightarrow sll$ flavor anomaly
 - theoretically clean, $\sim 5\sigma$ excess
 - consistent with many additional obs.
 that require hadronic inputs
 - relatively high NP scale ⇒ less constrained by other probes

UPSHOT

• $b \rightarrow sll$ flavor anomaly

• theoretically clean, $\sim 5\sigma$ excess

- consistent with many additional obs. that require hadronic inputs
- relatively high NP scale ⇒ less constrained by other probes

EXPERIMENTAL SITUATION

• $b \rightarrow sll$: generated at 1-loop in the SM

- in the SM $b \rightarrow see$ the same as $b \rightarrow s\mu\mu$
 - Lepton Flavor Universality in the SM

$h \rightarrow sll$: EXPERIMENT

two bins

• three clean observables: R_K and R_{K^*}

$b \rightarrow sll$: EXPERIMENT

PREFERENCE FOR **NP** IN MUONS?

• $Br(B_s \rightarrow \mu^+ \mu^-)$ precise SM theory prediction

Geng et al., 2103.12738

FIT TO CLEAN OBSERVABLES

Geng et al., 2103.12738

GGI III Colloquim, May 5 2021

WHAT KIND OF NP?

- from now on will assume that NP in $b \rightarrow s \mu \mu$
- what is the NP scale?
 - the Wilson coeffs. in previous slides

$$V_{tb}V_{ts}^*\frac{\alpha_{\rm em}}{4\pi v^2}C_I = \frac{C_I}{(36\,{\rm TeV})^2}$$

 $C_{I^{NP}} \sim O(1)$

- types of NP
 - tree level (heavy or light)
 - loop level

TREE LEVEL

41

- two distinct types:
- mediated by a Z'
 - SU(2)_L singlet
 or triplet

Altmannshofer, Straub, 1308.1501; Altmannshofer, Gori, Pospelov, Yavin, 1403.1269; Greljo, Isidori, Marzocca, 1506.01705; +many refs. J. Zupan Flavor Physics

- leptoquark
 - spin 0 or 1

see, e.g., Hiller, Nisandzic, 1704.05444; Hiller, Schmaltz, 1411.4773; +many refs GGI TH Colloquim, May 5 2021

GENERAL CONSIDERATIONS ABOUT Z'

• nontrivial constraint from *B_s* mixing

 $\frac{g_{bsZ'}}{m_{Z'}} \lesssim \frac{0.01}{2.5 \text{ TeV}}$

- if coupling to μ_L then a related signal in $b \rightarrow svv$
- constraints from neutrino trident production

Altmannshofer, Gori, Pospelov, Yavin, 1406.2332; 1403.1269

Altmannshofer, Straub, 1308.1501; 1411.3161

LEPTOQUARKS

LOOP LEVEL With direct searches

- three distinct options
- Z' w/ loop to bs

Kamenik, Soreq, JZ, 1704.06005

• Z' w / loop

Bélanger, Delaunay, 1603.03333

 box w / NP fields

Gripaios, Nardecchia, Renner, 1509.05020; Bauer, Neubert, 1511.01900; Becirevic, Sumensari, 1704.05835

J. Zupan Flavor Physics

44

GGI TH Colloquim, May 5 2021

UPSHOT

- $b \rightarrow c \tau v$ flavor anomaly
 - theoretically clean, $\sim 4\sigma$ excess
 - NP effect large: *O*(20%) of SM tree level
 - NP interpr. often in conflict with other constraints

EXPERIMENTAL SITUATION

- seen in several experiments
- theory well under control Bernlochner, Ligeti, Papucci, Robinson, 1703.05330

Fajfer, Kamenik, Nisandzic, 1203.2654

for theory predictions see, e.g.,

Bailey et al, 1206.4992

$$R(D^{(*)}) = \frac{\Gamma(\overline{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\overline{B} \to D^{(*)}l\bar{\nu})}, \qquad l = \mu, e$$

GGI TH Colloquim, May 5 2021

MODELS WITH SM NEUTRINO

Freytsis, Ligeti, Ruderman, 1506.08896 Faroughy, Greljo, Kamenik, 1609.07138

- big effect, needs to be tree level
- two types of exchanges
 - color singlet (W', H⁺)
 - color octet (leptoquarks)

NEW PHYSICS INTERPRETATIONS

- the most obvious candidates ruled out
 - charged Higgs: total B_c lifetime, $b \rightarrow c\tau v q^2$ distributions, searches in $pp \rightarrow \tau \tau$

- W': related Z' ruled out from $pp \rightarrow \tau \tau$
- left with leptoquarks, some also ruled out

GRAND VIEW

COMBINED NP EXPLANATIONS

- all anomalies or a subset?
- $R_{K^{(*)}}$ and $R_{D^{(*)}}$
 - vector leptoquark $U_1 \sim (3,1,2/3)$ Cornella et al., 2103.16558 + many refs.
 - UV realization: 4321 model?
 - 2 scalar leptoquarks $S_3 \sim (\bar{3}, 3, 1/3), S_1 \sim (\bar{3}, 1, 1/3)$
 - UV realization: composite Higgs? Crivellin, Muller, Ota, 1703.09226 +many refs.
- $R_{K^{(*)}}$ and $(g-2)_{\mu}$
 - 2 scalar leptoquarks $S_3 \sim (\bar{3}, 3, 1/3), S_1 \sim (\bar{3}, 1, 1/3)$ Greljo et al, 2103.13991
 - from simplified DM models in the loop Arcadi, Calibbi, Fedele, Mescia, 2104.03228
- $R_{K^{(*)}}$ and $R_{D^{(*)}}$ and $(g 2)_{\mu}$

What LQ scenario?

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \ \& \ R_{K^{(*)}}$
$S_1 = (\bar{3}, 1, 1/3)$	\checkmark	×	×
$R_2 = (3, 2, 7/6)$	\checkmark	✓*	×
$S_3 = (\bar{3}, 3, 1/3)$	×	\checkmark	×
$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark	\checkmark
$U_3 = (3, 3, 2/3)$	×	\checkmark	×

from a talk by D. Becirevic at EW Moriond 2021

J. Zupan Flavor Physics

52

GGI TH Colloquim, May 5 2021

figure credits, talk by Fuentes Moriond 2021

Cornella et al., 2103.16558+many refs

VECTOR LEPTOQUARK U_1 FOR $R_{K^{(*)}}$ AND $R_{D^{(*)}}$

- effective Lagrangian for $U_1 \sim (3,1,2/3)$ vector leptoquark
- $\mathscr{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_L^{i\alpha} (\bar{q}_L^i \gamma_\mu \mathscr{C}_L^\alpha) + \beta_R^{i\alpha} (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \mathrm{h.c.}$

• $U(2)^3$ MFV flavor structure assumed

Barbieri et al., 1105.2296 Kagan, Perez, Volansky, JZ, 0903.1794

figure credits, talk by Fuentes Moriond 2021

VECTOR LEPTOQUARK U_1 FOR $R_{K^{(*)}}$ AND $R_{D^{(*)}}$

• effective Lagrangian for $U_1 \sim (3,1,2/3)$ vector leptoquark

figure credits, talk by Fuentes Moriond 2021

VECTOR LEPTOQUARK U_1 FOR $R_{K^{(*)}}$ AND $R_{D^{(*)}}$

• effective Lagrangian for $U_1 \sim (3.1.2/3)$ vector leptoquark

4321 MODEL

Pati, Salam, Phys. Rev. D10 (1974) 275

- cannot be flavor universal: $K_L \rightarrow \mu e$ would bound $M_U > 100 \text{ TeV}$
- 3rd generation gauged under SU(4)
- additional states: G', Z'

J. Zupan Flavor Physics

GGI TH Colloquim, May 5 2021

THE FUTURE

- many related modes / observables in $b \rightarrow c \tau v$ and $b \rightarrow s \mu \mu$
 - $\Lambda_b \rightarrow \Lambda_c \tau v, B_C \rightarrow J/\psi \tau v, B_S \rightarrow D_s^* \tau v, B_s \rightarrow \phi ll, b \rightarrow sll$ inclusive, LFU in angular obs., ...
- a rule of thumb: Belle 2 50x statistics of Belle
 - corresponds to ~reach in Λ_{NP} of 450=2.7x
 - like going from 13TeV LHC to 35TeV LHC
- similar for LHCb (Phase 2 Upgrade 100x stat.)
- Muon g-2/EDM experiment at J-PARC
- many of the heavier states could be produced at high p_T
 - ATLAS, CMS, 100 TeV pp, muon collider,

CONCLUSIONS

- FCNCs very sensitive probes of new physics
- growing tensions in $(g 2)_{\mu}$, $R_{K^{(*)}}$
 - evidence of new physics?
BACKUP SLIDES

SIMPLIFIED DM MODELS FOR $R_{K^{(*)}}$ AND $(g-2)_{\mu}$

- $b \rightarrow s\mu\mu$ and $(g 2)_{\mu}$ both from loops
- finite number of simplified models, if DM candidate required

Label	Φ_q/Ψ_q	Φ_ℓ/Ψ_ℓ	Ψ/Φ	Φ_ℓ'/Ψ_ℓ'	Ψ'/Φ'
$\mathcal{F}_{\mathrm{Ia}}/\mathcal{S}_{\mathrm{Ia}}$	(3, 2, 1/6)	(1, 2, -1/2)	(1 , 1 ,0)	(1, 1, -1)	_
$\mathcal{F}_{\mathrm{Ib}}/\mathcal{S}_{\mathrm{Ib}}$	$({f 3},{f 2},1/6)$	$({f 1},{f 2},-1/2)$	(1 , 1 ,0)	-	$({f 1},{f 2},-1/2)$
$\mathcal{F}_{ m Ic}/\mathcal{S}_{ m Ic}$	$({f 3},{f 2},7/6)$	(1, 2, 1/2)	$({f 1},{f 1},-1)$	(1 , 1 ,0)	-
$\mathcal{F}_{\mathrm{IIa}}/\mathcal{S}_{\mathrm{IIa}}$	$({\bf 3},{f 1},2/3)$	(1 , 1 ,0)	(1, 2, -1/2)	(1, 2, -1/2)	_
$\mathcal{F}_{\mathrm{IIb}}/\mathcal{S}_{\mathrm{IIb}}$	$({f 3},{f 1},2/3)$	(1 , 1 ,0)	(1, 2, -1/2)	-	(1, 1, -1)
$\mathcal{F}_{ ext{IIc}}/\mathcal{S}_{ ext{IIc}}$	$({f 3},{f 1},-1/3)$	$({f 1},{f 1},-1)$	(1, 2, 1/2)	-	(1 , 1 ,0)
$\mathcal{F}_{\mathrm{Va}}/\mathcal{S}_{\mathrm{Va}}$	(3, 3, 2/3)	(1 , 1 ,0)	(1, 2, -1/2)	(1, 2, -1/2)	_
$\mathcal{F}_{\mathrm{Vb}}/\mathcal{S}_{\mathrm{Vb}}$	$({\bf 3},{\bf 3},2/3)$	(1 , 1 ,0)	$({f 1},{f 2},-1/2)$	-	(1, 1, -1)
$\mathcal{F}_{ m Vc}/\mathcal{S}_{ m Vc}$	(3, 3, -1/3)	(1, 1, -1)	(1, 2, 1/2)	_	(1 , 1 ,0)

GGI TH Colloquim, May 5 2021

SIMPLIFIED DM MODELS **FOR** $R_{K^{(*)}}$ **AND** $(g-2)_{\mu}$

- $b \rightarrow s\mu\mu$ and (a 2) both from loops
- finite numbe simplified m candidate re-

				ψM
Label	Φ_q/Ψ_q	Φ_ℓ/Ψ_ℓ	Ψ/Φ	
$\mathcal{F}_{\mathrm{Ia}}/\mathcal{S}_{\mathrm{Ia}}$	$({\bf 3},{f 2},1/6)$	(1, 2, -1/2)	$({f 1},{f 1},0)$	
$\mathcal{F}_{\mathrm{Ib}}/\mathcal{S}_{\mathrm{Ib}}$	$({f 3},{f 2},1/6)$	$({f 1},{f 2},-1/2)$	(1 , 1 ,0)	
$\mathcal{F}_{ m Ic}/\mathcal{S}_{ m Ic}$	$({f 3},{f 2},7/6)$	(1, 2, 1/2)	(1, 1, -1)	
$\mathcal{F}_{\mathrm{IIa}}/\mathcal{S}_{\mathrm{IIa}}$	$({f 3},{f 1},2/3)$	(1 , 1 ,0)	(1, 2, -1/2)	
$\mathcal{F}_{\mathrm{IIb}}/\mathcal{S}_{\mathrm{IIb}}$	$({f 3},{f 1},2/3)$	(1 , 1 ,0)	(1, 2, -1/2)	
$\mathcal{F}_{ ext{IIc}}/\mathcal{S}_{ ext{IIc}}$	$({f 3},{f 1},-1/3)$	$({f 1},{f 1},-1)$	(1, 2, 1/2)	
$\mathcal{F}_{\mathrm{Va}}/\mathcal{S}_{\mathrm{Va}}$	$({\bf 3},{\bf 3},2/3)$	(1 , 1 ,0)	(1, 2, -1/2)	(1, 2, -
$\mathcal{F}_{\mathrm{Vb}}/\mathcal{S}_{\mathrm{Vb}}$	$({\bf 3},{\bf 3},2/3)$	(1 , 1 ,0)	(1, 2, -1/2)	
$\mathcal{F}_{ m Vc}/\mathcal{S}_{ m Vc}$	(3, 3, -1/3)	(1, 1, -1)	(1, 2, 1/2)	_

S_1 and S_3 leptoquarks $R_{K^{(*)}}$ and $R_{D^{(*)}}$ and $(g-2)_{\mu}$

- $R_{K^{(*)}}$ from tree-level S_3 exchange
- $(g 2)_{\mu}$ from muon-philic S_1 at 1 loop
- $R_{D^{(*)}}$ from tau-philic S_1 at tree-level
 - symmetry structure realizable in gauged L_μ L_τ (±1 charges for S₁'s)

Greljo et al, 2103.13991

EXPERIMENTAL PROGRESS

Physics Briefing Book, 1910.11775

• further orders of magnitude experimental progress expected in CLFV transitions

MODELS WITH RIGHT HANDED NEUTRINO

- experimentally *R*_{*D*}, *R*_{*D**} above SM
- N_R not part of a doublet
 - no interf. between NP and SM
 - avoids some constraints from charged leptons
 - scale lower

Robinson, Shakya, JZ, 1807.04753

J. Zupan Flavor Physics

63

SUSY?

- a_{μ} via chargino-sneutrino and neutralino-smuon loops
- bino-like neutralino is DM
- requires cancellations in DM direct detection xsec
 - "blind spot": *h* and *H* exch. with opposite signs
- can evade LHC constraints in the soft region

a_μ via chargino-sneutrino bino-like neutralino is DM.

Sl

- requires cancellations in DM direct detection xsec
 - "blind spot": *h* and *H* exch. with opposite sign
- can evade LHC constraints in the soft region

- from ratios: NP can be either in muons or electrons
 - in both cases $(\bar{s}b)_L$ ok
 - for electrons also $(\bar{s}b)_R(\bar{e}e)_R$ possible (from quadratic dep.)

combined signif. from "clean" observables >4σ Altmannshofer, Stangl, Straub, 1704.05435; D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano, 1704.05438; Capdevila, Crivellin, Descotes-Genon, Matias, Virto, 1704.05340; Hiller, Nisandzic, 1704.05444; Geng, Grinstein, Jager, Martin Camalich, Ren, Shi, 1704.05446; Chobanova, Hurth, Mahmoudi, Neshatpour, Santos, 1705.10730 J. Zupan Flavor Physics 66 GGI TH Colloquim, May 5 2021

GLOBAL FITS

- in principle much more info
 - $Br(B \rightarrow K^{(*)}\mu\mu), Br(B_s \rightarrow \phi\mu\mu),$ $Br(B \rightarrow X_s\mu\mu)$
 - angular obs. in $B^0 \rightarrow K^{*0}\mu\mu$, $B_s \rightarrow \phi\mu\mu$
- sensitive to hadronic inputs
 - require form factors predict. (QCD sum rules), charm loops, nonfactor. contribs.
- prefer NP in muons

GLOBAL

- in principle much more info
 - $Br(B \rightarrow K^{(*)}\mu\mu), Br(B_s \rightarrow \phi\mu\mu),$ $Br(B \rightarrow X_s\mu\mu)$
 - angular obs. in $B^0 \rightarrow K^{*0}\mu\mu$, $B_s \rightarrow \phi\mu\mu$
- sensitive to hadronic inputs
 - require form factors predict. (QCD sum rules), charm loops, nonfactor. contribs.
- prefer NP in muons

NP JUST IN MUONS?

 from global fits preference for also a nonzero universal coupling to both *e* and μ

What's in the fits?

Alguero talk at Moriond QCD 2021

$$C_{ie}^{\rm NP} = C_i^{\rm U}$$

246 obs (Global) + 22 obs (LFUV) from LHCb, Belle, ATLAS, CMS

$$C_{i\mu}^{\rm NP} = C_{i\mu}^{\rm V} + C_i^{\rm U}$$

GGI TH Colloquim, May 5 2021

LEPTOQUARKS

Hiller, Nisandzic, 1704.05444

3 options if a single LQ dominates

