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What is the gravitational-wave memory? 
example: nonlinear memory from binary black-hole mergers 

The	wave	no	longer	returns	to	the	zero-point	of	its	oscilla>on.	
This	growing-offset	is	called	the	memory.	

Gravita+onal-wave	signal	vs.	+me	

post-Newtonian 
analysis

numerical 
relativity

BH perturbation 
theory

soft theorem

non-linear 
gravitational 

memory

Theme of the workshop

All the results have analogous photon/electromagnetic contributions, which will not 
be discussed in this talk.
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Soft Graviton Theorem in D>4



• Here     are the polarisation and momentum of outgoing graviton.(ε, k)

• This expansion is valid only when the graviton energy     is small compare 
to the other finite energy particles’ momenta  .  

ω = | ⃗k |
{pa}

Γ(N+1)(ε, k; {pa, Σa}) = [ S(0) + S(1) + S(2) + ⋯] Γ(N)({pa, Σa})

For one soft graviton:

𝒪( 1
ω ) 𝒪(ω0)

Weinberg ; Cachazo, Strominger ; Sen ; …

— in D=4 tree level ,

— in D>4 for loop amplitude. 

What is Soft Graviton Theorem in terms of  S-matrices?

An amplitude with arbitrary number of finite energy particles (hard particles) with arbitrary 
mass and spin and arbitrary number of small energy gravitons (soft gravitons) is related 
to the amplitude without the soft gravitons, via expansion in powers of soft momenta.

𝒪(ω)
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← pa
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+ Γ̃ (N+1)

k

=

Suppose the theory is described by a  general coordinate invariant one particle irreducible (1PI) 
effective action.


    —— tree level amplitude computed from this give the full quantum result.


Above    and    can be evaluated by covariantizing the 1PI action in the soft graviton 
background if we assume      and    don’t contribute soft momenta in the denominator.

Γ(3) Γ̃ (N+1)

Γ(3) Γ̃ (N+1)
—— breaks down in D=4 due to loop infrared divergence 
when some massless particle running in the loop !!

⇠
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Example:

lµ ! 0 Z
d4l

(2⇡)4
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pa.l
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pb.l

1

l2

! Infrared divergent

Basic assumptions are taken to derive sub-leading soft theorem for generic 
theory of quantum gravity:

(I). Theory is background independent and described by an 1PI effective 
action.

(II). The vertices derived covarientizing the 1PI effective action with respect 
to soft graviton/photon background do not contribute any power of soft 
momenta in the denominator.

Sen’s covariantization approach

—— Breaks down in D=4 when massless particle runs in loop.

∼ ∫|l|≈|k|

d4l
(2π)4

1
pa ⋅ l

1
l2

1
pb ⋅ l

1
pa ⋅ (k + l)

∼
1

|k |



Single soft graviton theorem:

1.3 Subleading soft theorem for one external soft photon/graviton 29

Hence the subleading soft theorem for one soft particle turns out to be:
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From here, we can recover the single soft photon theorem upto subleading order after

setting the polarization tensor for graviton to zero. If the external finite energy particles

are charge eigenstates of U(1) charge generator Q i.e. Q✏i = qi✏i then the subleading soft

photon theorem takes the standard form of "Low’s subleading soft photon theorem" [45],
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In the above equation second line of r.h.s is the general structure of non-universal term

appearing in the subleading order of soft photon theorem. This non-universal term in soft

photon theorem has been explored in [97] for some particular examples of non-minimal

couplings in e↵ective field theories of QED..

Similarly by setting the polarization vector of photon to be zero in expression(1.3.35) we

recover "Cachazo-Strominger subleading soft graviton theorem" [7].
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Above in the subleading soft factor the full expression within curly bracket represents

transpose of total angular momentum of i’th finite energy particle,
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1.4 Sub-subleading soft graviton theorem and sublead-

ing multiple soft graviton theorem

In this section we explain what extra ingredients we need to prove the sub-subleading soft

graviton theorem and subleading multiple soft graviton theorem for a generic theory of

quantum gravity and then directly state the results.

1.4.1 Sub-subleading soft theorem for one external soft graviton

For proving sub-subleading soft graviton theorem we have to compute the same two dia-

grams in Fig.1.3 and 1.4 but now to one higher order in soft momentum expansion. For

this we need two extra ingredients [11] :

1. In the covariantization procedure of quadratic part of 1PI action, now we need to

include contribution of two new terms with eq.(1.1.17), which are quadratic in soft

momentum. One comes from covariantizing two derivatives operating on ��: co-

variantization of @µ@⌫�� gives additional term 1
2@(µ!ab

⌫) (⌃ab)� ���. Another new

contribution comes from covariantizing three derivatives operating on ��: covari-

antization of @µ@⌫@⇢�� gives additional term �@(⇢��µ⌫)@���.

S(0) S(1)

Weinberg ; Cachazo, Strominger ; Sen; Laddha, Sen ; …

1.4 Sub-subleading soft graviton theorem and subleading multiple soft graviton theorem 31

2. In the quadratic order in soft momentum we need to add a generic coupling term

contribute to �(3)(", k; p,�p � k) describing non-minimal interaction between two

finite energy particles and one soft graviton via Riemann tensor. We consider the

general form of the non-minimal action with specific soft graviton momentum k,
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where Rµ⌫⇢�(k) is the Fourier transform of linearised Riemann tensor given as,

Rµ⌫⇢�(k) = "µ⇢k⌫k� � "µ�k⌫k⇢ � "⌫⇢k�kµ + "⌫�kµk⇢ (1.4.40)

and B↵�,µ⌫⇢�(q) is a generic function of momentum, spin of finite energy particles.

Here B satisfies B↵�,µ⌫⇢�(q2) = B�↵,µ⌫⇢�(�q2 � k).

Including the above two new kind of contributions and following the steps described in

§1.2, the sub-subleading contribution turns out to be [11]:
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+

+𝒪(ω2)

Non-universal i.e. theory 
dependent piece

Not known whether fully 
factorizable for a generic theory !!



Q. For a  simple theory of scalars minimally coupled to gravity , can one expect soft factorization should 
hold to arbitrary order in soft momenta expansion even for tree level amplitudes? 


Demanding gauge invariance what information about -leading soft factor can be extracted?(sub)n

Hamada, Shiu -2018; Li, Lin, Zhang- 2018
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Demand gauge invariance:    kμ Γ(N+1)
μν = 0 = kν Γ(N+1)

μν

  Up to sub-subleading order one recovers the result for minimally coupled scalar hard particles.⇒

 At -leading order for  one finds :⇒ (sub)n n ≥ 3
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May not be expressible as some 
operator operating  on Γ(N)

R is antisymmetric under   and  
exchange.

μ ↔ αi ν ↔ αi



Soft Graviton Theorem in D=4



D=4 : Gravitational  S-matrix is infrared divergent as well as one assumption of the 
general covariantized prescription breaks down !

Soft theorem is the relation between two S-matrices. Even if they are individually IR divergent, 
can we remove same IR divergent piece from both the S-matrices?  And write down soft 
theorem in terms of infrared finite S-matrices?

self interaction 
of gravitons

Γ(N+1) = exp{−Kphase}exp{Kgr} Γ(N+1)
G

Γ(N) = exp{Kgr} Γ(N)
G

IR finite

We able to separate out the IR divergent piece and the IR finite piece using Grammer-Yennie 
technique originally developed for QED in  1973.

After cancelling the common IR divergent pieces from both side of the soft theorem relation:

Γ(N+1)
G = (S(0)

gr + S(1)
gr ) Γ(N)

G

Reduced to leading Eikonal factor in IR limit



Strategy

6 Soft graviton theorem in gravitational scattering

We now turn to the analysis of the soft graviton theorem in the scattering of scalar particles,

interacting via gravity, to one loop order. The action is taken to be

∫
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]
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Even though in this case we could take the scalar fields to be real, we have kept them complex

in order to extend the analysis to the case where the scalars have both electromagnetic and

gravitational interaction. As in §5, we shall postulate a relation of the form

Γ(n,1) =
{
S(0)
gr + S(1)
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}
Γ(n) , (6.2)

and try to determine the logarithmic terms in S(1)
gr by comparing the two sides up to one loop

order.

We shall carry out our computation in the de Donder gauge in which the propagator of a

graviton of momentum % is given by:

−
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2
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For our analysis we also need the vertices involving the graviton. The scalar-scalar-graviton

vertex, with the scalars carrying ingoing momenta p1, p2 and the graviton carrying ingoing

momentum −p1 − p2 and Lorentz index (µν), is given by

−iκ [p1µp2ν + p1νp2µ − ηµν(p1.p2 −m2)] , (6.4)

where κ =
√
8πG = 1 in our convention. The vertex involving two scalars carrying ingoing

momenta p1, p2, and two gravitons carrying ingoing momenta k1, k2 and Lorentz indices (αβ)

and (µν) is given by10
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.

(6.5)

10In writing this and other vertices we already include the symmetry factor related to exchange of identical
particles. Therefore if we were to use this vertex to compute tree level two graviton, two scalar amplitude, no
further symmetry factor is necessary.
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= −
i

ℓ2 − iϵ
1
2 [Kμν,ρσ

(a,b) + Gμν,ρσ
(ab) ]

Split the graviton propagator with momentum  flowing from particle-a to particle-b into two 
parts: call K-graviton and G-graviton.

ℓ

Loop diagram computed with K-graviton propagator  contains the full IR divergent factor 

 Loop diagrams with G-graviton propagators are IR finite.


For a virtual K-graviton insertion the following property should hold in off-shell :

⇒

such that :

⇑ = ! !
pc

!

− , + +−

k

!

= 0! !
⇑

Figure 4: Diagrammatic representations of (5.4) and (5.5). The arrow on the photon line
represents that the polarization of the photon is taken to be equal to the momentum entering
the vertex. The circle denotes a simple vertex −qc with the polarization of the incoming photon
stripped off.

where Γ(n)
G and Γ(n,1)

G are computed by replacing the internal photons by the G-photons in

Figs. 3 and 1 respectively and Γ(n,1)
self denotes the sum of diagrams in Fig. 2 for which we use

the full photon propagator. Therefore a relation of the form Γ(n,1) = SemΓ(n) takes the form

Γ(n,1)
tree + Γ(n,1)

G + Γ(n,1)
self = Sem

{
Γ(n)
tree + Γ(n)

G

}
. (5.8)

Now it is easy to see that Fig. 3 vanishes when we replace the internal photon by G-photon.

Therefore Γ(n)
G = 0, and we have:7

Γ(n)
tree + Γ(n)

G = Γ(n)
tree = iλ . (5.9)

If we write Sem = S(0)
em + S(1)

em where S(0)
em is the leading soft factor

∑n
a=1 qa ε.pa/k.pa and S(1)

em is

the subleading multiplicative factor containing logarithmic terms, then eq.(5.8) can be written

as
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qa
ε.pa
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+ iλS(1)
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to one loop order. Now Γ(n,1)
tree is equal to the first term on the right hand side up to terms

involving Taylor series expansion of the momentum conserving delta function in powers of k,

but the latter are subleading contributions without any logarithmic terms and can be ignored

in our analysis. Therefore (5.10) can be rewritten as:

Γ(n,1)
self + Γ(n,1)

G = iλS(1)
em . (5.11)

7Note that we are not explicitly writing the momentum conserving delta function, but are implicitly assuming
that both sides of (5.8) are multiplied by the appropriate delta functions. We also implicitly assume that the
delta function δ(

∑
a
pa + k) on the left hand side has been expanded in a power series in k.
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K-graviton

(Ideally)
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Figure 13: Diagrams where the external graviton attaches to the n-point vertex. The first
diagram vanishes if we take the external graviton polarization to be traceless. The second
diagram has no logarithmic terms.
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Figure 14: Diagrams where both ends of the internal graviton attach to the n-point vertex.
In dimensional regularization these diagrams vanish. Even if we use momentum cut-off, these
diagrams cannot have any contribution proportional to lnω−1 since the soft momentum k does
not flow through any loop.

be taken to be
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If one end of an internal graviton is attached to the n-scalar vertex and the other end is

attached to the a’th scalar leg as in Figs. 8, 12, with " flowing from the vertex towards the

a’th leg, we express the propagator as:
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K-G decomposition Result

Where,

×

Disclaimer: The full exponentialization of the Eikonal factor analysing all loop orders has not been 
proved yet rigorously with this construction, which existed for QED case.

We used this prescription at one loop order and derived sub-leading soft graviton theorem which 
turns out to be at order    in small  expansion.ln ω ω



+ self-energy kind of diagrams

—— to get the logarithmic terms we need to evaluate the following diagrams in the 
integration range                            :!  |lµ| ⌧ |pµa |, |p

µ
b |

a

b

a

b

a

b

a

b

l

k
k

l

k

l

k l + k

l

+
+
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where k̂ = −k/ω = (1, n̂). Again the classical results are valid universally. The quantum
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On the other hand if we want to consider the situation where we ignore the effect of gravita-

tional interaction between the particles during scattering (but still use gravitational interaction

to compute soft graviton emission process), we have to set the qc independent terms in the

coefficient of lnω−1 to zero.

2.2 Discussion of results

First we shall briefly outline how these results are derived; more details can be found in later

sections. The classical results (2.4) and (2.6) are the result of direct application of classical
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integration over loop momentum is restricted to the region larger than ω. We note however

that the full expression for Kgr has more terms – (6.25) already involves an approximation that
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At this stage the only remaining terms are the contributions to Γ(n,1)
3−graviton from regions of

loop momentum integration where the loop momentum is small compared to ω. These come

from the first two diagrams in Fig. 11. In the first diagram there are two relevant regions:

when $ is small and when k − $ is small, but they are related to each other by $ → k − $

and a ↔ b symmetry. In the second diagram the relevant region is when $ is small. The net

contribution from these regions may be approximated by
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with the understanding that the integration over $ runs in the region where the components

of $ are small compared to ω. The result may be expressed as
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where 1/R is an infrared lower cut-off on momentum integration and k̂ = −k/ω = (1, n̂).
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Re-writing the subleading soft graviton factor:
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significant contribution only from the region where the loop momentum is large compared

to ! and small compared to the momenta of finite energy particles. The net logarithmic

contributions from these diagrams is given by
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The total logarithmic terms in �(n,1)
G , �(n,1)

self , �(n,1)
residual and �(n,1)

3�graviton from the region of inte-

gration where the loop momentum is large compared to !, can be expressed as7
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where bS (1)
gr is the quantum subleading soft graviton operator
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, (3.3.23)

and
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(
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b

) Z
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. (3.3.24)

Kreg
gr is the analog of Kreg

em for gravitational scattering, namely it is the factor that appears

in the exponent of the soft factor in the scattering of n scalars, with the understanding

that the integration over loop momentum is restricted to the region larger than !. We

7It is natural to conjecture that this pattern continues to hold also for subsubleading soft graviton the-
orem, i.e. the universal part of the subsubleading contribution is given by the action of the subsubleading
soft graviton operator bS (2)

gr acting on exp[Kreg
gr ]. But we have not verified this by explicit computation.

where,
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i
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b, ηb=1

pb . k −
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∑
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pb . k ln( p2
b

(pb . n)2 )]
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note however that the full expression for Kgr has more terms – (3.3.24) already involves

an approximation that the loop momentum is small compared to the energies of external

lines since this is the region that generates ln!�1 terms. Explicit evaluation gives the
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At this stage the only remaining terms are the contributions to �(n,1)
3�graviton from regions of

loop momentum integration where the loop momentum is small compared to !. These

come from the first two diagrams in Fig. 3.11. In the first diagram there are two relevant

regions: when ` is small and when k � ` is small, but they are related to each other by

` ! k � ` and a $ b symmetry. In the second diagram the relevant region is when ` is

small. The net contribution from these regions may be approximated by
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with the understanding that the integration over ` runs in the region where the components

of ` are small compared to !. The result may be expressed as
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(3.3.27)

where 1/R is an infrared lower cut-o↵ on momentum integration and k̂ = �k/! = (1, n̂).

Adding (3.3.22) to (3.3.27) and dividing by i� we get the terms involving ln!�1 and ln R

in S (1)
gr :

S (1)
gr = bS (1)

gr Kreg
gr

and

 approximated  in 
the integration region 
Kgr

ω < < |ℓμ | < < |pa |



Key Observation

If we naively assume the validity of D>4 soft theorem for D=4 as well and keep the loop momentum in 
the regulated range of integration. We find : 
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G

In the regulated range of integration :

𝒪(ω ln ω) 𝒪(ln ω)

If we substitute the above expressions in the naive soft theorem relation and commute through the 
differential operators and expand in power of    we correctly recover the  soft factor.ω ln ω



Conjecture at Sub-subleading order  term𝒪(ω(ln ω)2)

This can be proved analysing two loop amplitudes using the same prescription developed for one loop.

We expect that with this understanding one can extract sub-subleading soft graviton factor using the

algorithm (5.1). Our expectation for the sub-subleading soft graviton factor is:
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where,

Kreg
gr =

i

2
(8πG)

M+N#

a=1

M+N#

b=1
b ∕=a

$
(pa.pb)

2 − 1

2
p2ap

2
b

% 1

ω

d4ℓ

(2π)4
1

ℓ2 − i*

1

(pa.ℓ+ i*) (pb.ℓ− i*)

≃ − i

2
(2G)

1

4π
(lnω)

M+N#

a=1

M+N#

b=1
b ∕=a

$
(pa.pb)

2 − 1
2p

2
ap

2
b

%

5
(pa.pb)2 − p2ap

2
b

;
δηaηb,1 −

i

2π
ln

.
pa.pb +

5
(pa.pb)2 − p2ap

2
b

pa.pb

5
(pa.pb)2 − p2ap

2
b

/<

(5.3)

and
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5.2 Structure of (sub)n-leading electromagnetic and gravitational waveforms in pres-
ence of both long range electromagnetic and gravitational forces

In this section we take care of both electromagnetic and gravitational long range forces between the

charged scattered objects outside the region R to give the structure of electromagnetic and gravitational

waveforms at late and early retarded time. The trajectories outside the region R satisfies,

ma
d2Xµ

a (σ)

dσ2
= qa Fµ

ν(Xa(σ))
dXν

a (σ)

dσ
− maΓ

µ
νρ(Xa(σ))

dXν
a (σ)

dσ

dXρ
a(σ)

dσ
(5.5)

Here we have to expand the asymptotic trajectories of scattered objects in the same way as in eq.(2.10),

considering q2 and G being the expansion parameters with equal weight.
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Generalising this idea to leading order(sub)n−
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+𝒪(ωn−1(ln ω)n−1)
We expect this part should also be universal and 
only depends on the momenta of scattered objects.

To derive this result and fix , we have to analyze n-loop amplitude.R(n)



0-loop (tree) …

1-loop …

2-loop …

n-loop …

ω−1 ω0 ω

ln ω ω0 ω ln ω ω ω2 ln ω

ω(ln ω)2 ω ln ω ω ω2(ln ω)2 ω2 ln ω

ωn−1(ln ω)n ωn−1(ln ω)n−1

Leading non-
analytic term

Soft expansion in   limitω → 0

Exact at that loop order, does not receive contribution from 
higher loops. Fixed from minimal coupling.

Spin dependent



Classical Limit of Soft Theorem



Classical  Limit  of  Soft  Theorem  iN D>4

Large number of soft gravitons need to emit to 
produce classical radiation

 Energy of scattered objects need to be large in 
unit of    Mpl

Total radiation energy has to be less than 
energy of each finite energy particles

Large impact parameter or probe scatterer limit

Laddha , Sen

replace orbital angular momenta 
by classical angular momenta
⇒

drop the contact terms in 
multiple soft factor.
⇒

Though later we shall show this can be relaxed if we consider 
flux of finite energy gravitational radiation as hard particle.



With radiation wavelength larger 
than characteristic length scale

} εαβẽαβ(ω, ⃗x ) = 𝒩Sgr(ε, ω ̂x)

𝒩 = ( ω
2πi | ⃗x | )

D − 2
2 1

2ω
eiω| ⃗x |

up to a undetermined phase:

Classical  Limit  of  Soft  Theorem  iN D>4

Large number of soft gravitons need to emit to 
produce classical radiation

 Energy of scattered objects need to be large in 
unit of    Mpl

Total radiation energy has to be less than 
energy of each finite energy particles

Large impact parameter or probe scatterer limit

Laddha , Sen

Though later we shall show this can be relaxed if we consider 
flux of finite energy gravitational radiation as hard particle.



Let us naively assume the result of classical limit of the soft theorem is also valid in  D=4.

εαβ(k) ∫
∞

−∞
dt eiωt eαβ(t, ⃗x ) ≡ εαβẽαβ(ω, ⃗x ) ≃

1
4πiR

eiωR+iψ Sgr(ε, k)

where


            is some undetermined phase,


            is the trace reversed metric fluctuation,


            with  being the distance of the detector from the scattering centre and 

                            being the unit vector along the detector from the scattering centre,


         

ψ

eαβ = hαβ −
1
2

ηαβhρ
ρ

⃗x = R ̂n R
̂n

kμ = ω(1, ̂n)

46 Classical limit of soft theorem

tively by

S em =
X

a

"µp
µ
a

pa.k
qa + i

X

a

qa
"µk⇢J⇢µa

pa.k
, (2.2.1)

and

S gr =
X
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"µ⌫p
µ
a p⌫a

pa.k
+ i
X

a

"µ⌫p⌫ak⇢J⇢µa
pa.k

. (2.2.2)

Here the sum over a runs over all the incoming and outgoing particles, and qa, pa and

Ja denote the charge, momentum and angular momentum of the a-th particle, counted

with positive sign for an ingoing particle and negative sign for an outgoing particle. S em

may also contain a non-universal term at the subleading order. For S-matrix elements

in quantum theory, Ja is a di↵erential operator involving derivatives with respect to the

external momenta. However in the classical limit in which the external finite energy

states are macroscopic, Ja represents the classical angular momenta carried by the external

particles. In this limit the soft factors describe the radiative part of the low frequency

electromagnetic and gravitational fields during a classical scattering [19] as described in

(2.1.18) and (2.1.27).

In applying (2.2.1), (2.2.2) to four dimensional theories, the complication arises from the

contribution to Jµ⌫a from the orbital angular momentum. They are computed from the form

of the asymptotic trajectories:

rµa(�) = ⌘a
1

ma
pµa � + cµa ln |�| + · · · , (2.2.3)

where ⌘a is positive for incoming particles and negative for outgoing particles, ma is the

mass of the a-th particle and the proper time � is large and negative for incoming particles

and large and positive for outgoing particles. The term proportional to ln |�| represents the

e↵ect of long range electromagnetic and/or gravitational interaction between the particles.

This gives, for large |�|,

Jµ⌫a ' rµa(�)p⌫a � r⌫a(�)pµa + spin = (cµa p⌫a � c⌫a pµa) ln |�| + · · · . (2.2.4)

where
classical angular momenta



In large  the classical angular momentum diverges:|σ |
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mass of the a-th particle and the proper time � is large and negative for incoming particles

and large and positive for outgoing particles. The term proportional to ln |�| represents the

e↵ect of long range electromagnetic and/or gravitational interaction between the particles.

This gives, for large |�|,
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But in D=4 the trajectory of the particle-a takes form:
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mass of the a-th particle and the proper time � is large and negative for incoming particles

and large and positive for outgoing particles. The term proportional to ln |�| represents the
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Effect of long range interaction

So naive substitution of classical angular momenta makes subleading soft factor divergent !



In large  the classical angular momentum diverges:|σ |
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where ⌘a is positive for incoming particles and negative for outgoing particles, ma is the

mass of the a-th particle and the proper time � is large and negative for incoming particles

and large and positive for outgoing particles. The term proportional to ln |�| represents the

e↵ect of long range electromagnetic and/or gravitational interaction between the particles.

This gives, for large |�|,

Jµ⌫a ' rµa(�)p⌫a � r⌫a(�)pµa + spin = (cµa p⌫a � c⌫a pµa) ln |�| + · · · . (2.2.4)

Effect of long range interaction

So naive substitution of classical angular momenta makes subleading soft factor divergent !

But we expect the radiative mode of low frequency gravitational waveform should be finite from 
physical ground.

And physically if we are interested to determine gravitational waveform with frequency  , then 
we expect the cut off for  to be in order of  .

ω
|σ | ω−1

Also the emitted graviton’s trajectory will receive logarithmic correction due to long range 
force of scattered object (back scattering effect).



Prescription:   Find corrected trajectory by solving geodesic equation and then replace 
 in the classical soft factor.ln |σ | → ln ω−1

2.2 Classical soft factor in D=4 51

On the other hand using (2.2.3) the left hand side is given by �c↵a/�2. This gives
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(2.2.24)

Substituting this into (2.2.5) and (2.2.6) we get,4 up to overall phases:
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and
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In this case we expect the wave-form of the gauge field / metric to also have an additional

phase factor reflecting the e↵ect of the gravitational drag on the soft particle due to the

other particles. For this let us characterize the asymptotic trajectory of the soft particle as

xµ(⌧) = nµ ⌧ + mµ ln |⌧| , (2.2.27)

4Even if the logarithmic correction to the trajectory is generated by gravitational interaction, the particles
can emit electromagnetic waves. This happens for example if we have a scattering of a charged particle and
a neutral particle.

Observation: icμ
a ln ω−1 =

∂Kcl
gr

∂paμ
integration is explicitly evaluated in [1],
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(3.31)

Performing an analogous analysis for the second term within the square bracket of eq.(3.29) we get,
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Kcl

gr (3.32)

where in the last line above we have approximated the integrand in the integration range L−1 >> |ℓµ| >>

ω under the sign ≃. Similarly in this integration range the third term within the square bracket of eq.(3.29)

contributes,
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Hence the order O(lnω) contribution from subleading order matter energy-momentum tensor becomes,

∆(1)
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Fourier transform of subleading order gravitational energy-momentum tensor follows from (D.13),
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where,

F
µν,αβ,ρσ

(k, ℓ)

= 2

)
1

2
ℓµ(k − ℓ)νηραησβ + (k − ℓ)µ(k − ℓ)νηραησβ − (k − ℓ)ν(k − ℓ)βηραησµ
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 We get      from     if we replace Feynman propagator by Retarded propagator   for graviton.Kcl
gr Kreg

gr Gr(ℓ)

From now on we are restoring ( ) factors8πG



Emitted soft graviton’s trajectory will also receives logarithmic correction due to long range 
gravitational force by other scattered objects, which generate time delay. 


So if we combine this time delay along with backscattering affect, the gravitational waveform at 
 turns out:𝒪(ln ω)

Δẽμν(ω, ⃗x = R ̂n) = (−i)
2G
R

exp{iωR − 2iG ln R ∑
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Kcl
phase = − 2iG ln ω ∑
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pb . kWhere,  is gettable if we evaluate   replacing Feynman propagator 

by retarded propagator for the graviton.

Kreg
phase

Hence boldly generalising this observations,  just by replacing the classical counterparts of   and    
we can predict the higher order gravitational waveforms from higher order soft factors.

Kgr Kphase

k = ω(1, ̂n)



Conjecture on spin dependent 
gravitational waveform

Extending our observations up to sub-subleading order we find:

via Riemann tensor as well as the three point 1PI vertex involving two hard particles and

a soft graviton. Above the angular momentum operator is given by:

!Jµν
a = pνa

∂

∂paµ
− pµa

∂

∂paν
+ !Σµν

a (3.2)

where !Σµν
a represents the quantum spin generator of Lorentz group for particle-a.

Now using the relation between quantum soft graviton theorem and classical gravita-

tional waveform up to sub-subleading order we can predict the gravitational waveform in

four spacetime dimension following [3, 4, 35] as:
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where Jµν
a is the classical angular momentum of particle-a given in terms of trajectory Xa

and classical spin Σa of particle-a through the following relation:

Jµν
a = Xµ

a p
ν
a −Xν

ap
µ
a + Σµν

a (3.4)

Now in four spacetime dimensions due to long range gravitational force the trajectory of the

particle receives logarithmic correction e.g. Ya(σ) in eq.(2.24) behaves like ln |σ| for large

σ [4, 35]. Now following the prescription of [4, 35] if we replace ln |σ| by − ln(ω + i%ηa) in

the classical angular momentum of eq.(3.3), it predicts the correct gravitational waveform,

which has been independently verified in [1, 6] up to sub-subleading order spin independent

part. Here once again using the same prescription, form eq.(3.3) we get,
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where the expression of Kcl
gr is given in eq.(2.35) which behaves as lnω for small ω. Now

expanding the exponential in small ω limit we find the following order O(ω lnω) contribution

of gravitational waveform at order G2
:

∆
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Expanding the above expression in   limit, we found the order   waveform at order   
which depends on spin of scattered objects.

ω → 0 ω ln ω 𝒪(G2)



via Riemann tensor as well as the three point 1PI vertex involving two hard particles and
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where the expression of Kcl
gr is given in eq.(2.35) which behaves as lnω for small ω. Now

expanding the exponential in small ω limit we find the following order O(ω lnω) contribution
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The above result agrees with the result in eq.(??). The above expression can be written
explicitly in terms of incoming and outgoing momenta in the following way:
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(3.7)

where kµ = ωnµ = ω(1, n̂). Now performing Fourier transform in ω variable and using the
results of appendix-C we find the following expressions for late and early time gravitational
waveforms:
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But this is not the full   contribution, it receives correction at order   . 𝒪(ω ln ω) G3



Classical Soft Graviton Theorem

A systematic study 


of 



Region  is chosen to be sufficiently large so that all non-trivial interactions take place inside 
region  and outside only long-range gravitational interaction exists.

ℛ
ℛ

Goal: Determine gravitational waveform in retarded time  for  . 

   Determine gravitational waveform with frequency  for .

u |u | > > L

⇒ ω ω < < L−1

Set up:  M number of objects coming in, undergoes complicated interaction within the region  and disperse 
to N number of final objects.

ℛ

Figure 1: A scattering process describing M number of particles are coming into region R, going through
unspecified interaction inside the region R and disperse to N number of particles. Outside the region R

only long range electromagnetic and/or gravitational interaction is present.

electromagnetic wave at distance R from the scattering center. Then in this setup we want to determine

the 1
R component of the electromagnetic waveform for retarded time u >> L. This also translates to

determining the radiative mode of gauge field with frequency ! in the range R
�1

<< ! << L
�1. As

discussed in [1, 20–22, 55] the Fourier transformation in time variable of the radiative mode of the gauge

field is related to the Fourier transform of current density determined in terms of the asymptotic trajectory

of scattered objects in the following way,

eAµ(!, R, n̂) '
1

4⇡R
e
i!R bJµ(k) (2.1)

where,

eAµ(!, ~x) =

Z
1

�1

dt e
i!t

Aµ(t, ~x) (2.2)

bJµ(k) =

Z
d
4
x e

�ik.x
Jµ(t, ~x) (2.3)

and ~x = Rn̂ with n̂ being the unit vector along the direction of detector from the scattering center.

Since L must be bigger than the size of the objects involves in the scattering process and we are

interested in determining electromagnetic waveform with wavelength larger than L, we can treat the

objects involved in the scattering process as particles. This statement is true for determining the leading

non-analytic contribution of (sub)n-leading electromagnetic waveform which turns out to be of order

O
�
!
n�1(ln!)n

�
in small ! expansion. But if we want to determine the order O

�
!
n�1(ln!)k

�
contribution

of (sub)n-leading electromagnetic waveform for k  n� 1, the point particle assumption breaks down.

8

} Related by 
Fourier transform



Define deviation of the metric from Minkowski metric as,

r1
r2

r
0
1r

0
2

R

Figure 1: A scattering process in which the particles interact strongly inside the region R via
some unspecified forces, but outside the region R the only force operative between the particles
is the long range gravitational force.

we take the initial and final momenta as given, but allow the interactions during the scattering

to be arbitrary. Therefore while solving the equations we need to evolve the initial matter

trajectories forward in time and the final matter trajectories backward in time, and compute

the net gravitational wave emitted during the scattering.

For simplicity, in this section we shall consider the situation where the particles are un-

charged so that there are no long range electromagnetic interactions between the asymptotic

particles. The e↵ect of such interactions will be incorporated in §4.4.

3.1 General set-up

We choose the origin of the space-time coordinate system to be somewhere within the region

where the scattering takes place and denote by R a large but finite region of space-time so that

the non-trivial part of the scattering occurs within the region R. In particular we shall choose

R to be su�ciently large so that outside the region R the only interaction that exists between

the particles is the long range gravitational interaction. This has been shown in Fig. 1. We

shall denote by L the linear size of R and analyze gravitational radiation at retarded time u

for |u| >> L.

We define:

hµ⌫ =
1

2
(gµ⌫ � ⌘µ⌫), eµ⌫ = hµ⌫ �

1

2
⌘µ⌫ ⌘

⇢�
h⇢� , hµ⌫ = eµ⌫ �

1

2
⌘µ⌫ ⌘

⇢�
e⇢� . (3.1)

We denote by Xa(�) for 1  a  n the outgoing particle trajectories parametrized by the

proper time � in the range 0  � < 1, with � = 0 labelling the point where the trajectory

11

Linearised Einstein equation in de Donder gauge:

exits the regionR. SimilarlyX
0
a(�) for 1  a  m will denote the incoming particle trajectories

parametrized by the proper time � in the range �1 < �  0, with � = 0 labelling the point

where the trajectory enters the region R. We now consider the Einstein’s action coupled to

these particles:

S =
1

16⇡G

Z
d
4
x

p
� det g R�

nX

a=1

Z 1

0

d�ma

⇢
�gµ⌫(X(�))
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a

d�

dX
⌫
a

d�

�1/2

�

mX

a=1

Z 0

�1
d�m

0
a

⇢
�gµ⌫(X

0(�))
dX

0µ
a

d�

dX
0⌫
a

d�

�1/2

. (3.2)

Note that we have included in the action the contribution only from part of the particle

trajectories that lie outside the region R. We shall argue later that this action is su�cient for

determining the gravitational wave-form at late and early time. We now derive the equations

of motion for eµ⌫ by extremizing the action (3.2) with respect to eµ⌫ . This takes the form:

p
� det g

✓
R

µ⌫
�

1

2
g
⇢�
R⇢� g

µ⌫

◆
= 8 ⇡GT

Xµ⌫
, (3.3)

where,

T
Xµ⌫ =

nX

a=1

ma

Z 1

0

d� �
(4)(x�Xa(�))

dX
µ
a

d�

dX
⌫
a

d�
+

mX

a=1

m
0
a

Z 0

�1
d� �

(4)(x�X
0
a(�))

dX
0µ
a

d�

dX
0⌫
a

d�
.

(3.4)

Note the factor of
p
� det g and the raised indices on the left hand side of (3.3) – this makes

the right hand side independent of the metric. After imposing the de Donder gauge:

⌘
µ⌫
@µh⌫� �

1

2
@� (⌘

⇢�
h⇢�) = 0 , ⌘

µ⌫
@µ e⌫� = 0 , (3.5)

and expanding the left hand side of (3.3) in power series in hµ⌫ , we can express the equations

of motion of the metric as:

⌘
↵µ

⌘
�⌫

⌘
⇢�
@⇢@�e↵� = �8 ⇡GT

µ⌫(x), T
µ⌫

⌘ T
Xµ⌫ + T

hµ⌫
, (3.6)

where T
hµ⌫ denotes the gravitational stress tensor, defined as what we obtain by taking all

e↵� dependent terms on the left hand side of (3.3), except the terms linear in e↵�, to the right

hand side and dividing it by 8⇡G. In all subsequent equations, the indices will be raised and

lowered by ⌘µ⌫ .
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— where  is the gravitational energy momentum tensor defined as:


      

Thμν

Thμν =
1

8πG [ − −g{Rμν −
1
2

Rgμν} − ηαμηβνηρσ∂ρ∂σeαβ]

          ẽμν(ω, ⃗x = R ̂n) = ∫ dx0eiωx0 eμν(x0, ⃗x ) ≃
2G
R

eiωR ̂Tμν(k)

Radiative mode of gravitational waveform:

where            with     .̂Tμν(k) = ∫ d4y e−ik.y Tμν(y) kμ = ω(1, ̂n)



In several literatures including [2–6] the following relation between radiative mode of grav-

itational waveform and Fourier transform of total energy-momentum tensor has be derived

in four spacetime dimensions:

"eµν(ω, R, n̂) ≃ 2G

R
eiωR !Tµν(k) (2.2)

where under ≃ sign we are neglecting the terms with higher power in R−1
. In the relation

above $x = Rn̂, k = ω(1, n̂) ≡ ωn and the gravitational radiation is considered outgoing.

The expressions of "eµν and !Tµν
are given by,

"eµν(ω, $x) =

. ∞

−∞
dt eiωt eµν(t, $x) (2.3)

!Tµν(k) =

.
d4x e−ik.x Tµν(x) + boundary terms at ∞ (2.4)

where Tµν(x) is the total(matter+gravitational) energy-momentum tensor which appears

in the RHS of linearised Einstein equation. In the above relation the Fourier transform of

energy-momentum tensor is defined inside the region |$x| << R or equivalently we may need

to add appropriate boundary terms at ∞ to make the integral well defined[3–6].

2.1 General setup and strategy

Consider the incoming particles have masses {m′
a}, velocities {v′a}, momenta {p′a = m′

av
′
a}

and spins {Σ′
a} at asymptotic past for a = 1, 2, · · · ,M and the outgoing particles have

masses {ma}, velocities {va}, momenta {pa = mava} and spins {Σa} at asymptotic future

for a = 1, 2, · · · , N . Let X ′
a(σ) denotes the trajectory of the incoming particles in the affine

parameter range −∞ < σ ≤ 0 for a = 1, 2, · · · ,M and Xa(σ) denotes the trajectory of the

outgoing particles in the affine parameter range 0 ≤ σ < ∞ for a = 1, 2, · · · , N . Now to

treat incoming and outgoing particles uniformly, we treat the incoming particles as some

extra outgoing particles under the following identifications:

mN+a = m′
a , vµN+a = −v′µa , pµN+a = −p′µa , Σµν

N+a = −Σ
′µν
a , Xµ

N+a(σ) = X
′µ
a (−σ)

for a = 1, 2, · · · ,M and 0 ≤ σ < ∞ (2.5)

The trajectories of the scattered object satisfy the following two boundary conditions,

Xµ
a (σ = 0) = rµa ,

dXµ
a (σ)

dσ
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σ→∞

= vµa for a = 1, 2, · · · ,M +N . (2.6)

where ra is the coordinate on the boundary of region R, where the trajectory of a’th particle

intersects. Now outside the region R, the movement of the scattered objects can be well

captured by the following matter energy-momentum tensor[5, 7–16],
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The matter energy-momentum tensor outside the region   has the following derivative expansion:ℛ

Above we considered all the incoming particles as some extra outgoing particles under 
proper identifications of  , , … under   .


The “ … ”  terms carries the information about multiple moments of the compact 
objects as well as tidal response, which involves two or more derivative on the delta 
function. 


                              

Xa(σ) Σa(σ) σ → − σ

Goldberger, Rothstein ; …

More derivative on delta function generates more power of soft momenta in the Fourier 
transform, So if we are interested to determine the leading non-analytic piece at each 
iterative order, we can only keep the first term.



5.3 Comments on gravitational tail memory for spinning object scattering
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where Σa represents the spin of object-a and ”· · · ” contains terms having two or more derivatives operating

on the delta function. The terms inside ”· · · ” carry the information about the internal structure of the

scattered objects. For the spinning objects the geodesic equation is modified in the following way [80–82],
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where
D
dσ denotes covariant derivative along the world line. In the second equation above, we can substitute

the leading large σ behaviour for Christoffel connection which goes like Γµ
νρ ∼ 1

σ2 for large σ. In this

background solution of second equation gives Σµν ∼ Σµν
0 + O(σ−1

) with Σµν
0 being the constant spin.

But with this large σ behaviour, the RHS of the first equation goes as O(σ−3
). So to get the leading
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This in some sense gives conservation relation between different spin components,

Σµν − vµvρΣ
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+ vνvρΣ
µρ

= constant (5.20)

So, to analyze the leading order spin dependence of matter energy-momentum tensor we can treat the

spins of scattered objects {Σa} to be constant. Now at the leading order considering the trajectory of
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Using the relation (3.2), we find that the leading spin dependent contribution to 0eµν(ω, R, n̂) appear at

order O(ω0
) , which does not contribute to memory.
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Geodesic equation and Spin evolution outside region   :ℛ

The right hand side of the geodesic equation involves Riemann tensor or derivative over Spin along 
the trajectory, which turns out to be insignificant if we are interested to determine the leading non-
analytic term at each iterative order or even the leading spin dependent non-analytic piece.

+      …
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Σμν
a (σ)

σ→∞
= Σμν

a

Boundary conditions:

,



Strategy

In  unit the dimensionless parameters are:         ,    ,  , …c = 1 GMω GΣω2 GMrω2

So we develop an iterative procedure considering    as an iterative parameter and solve iteratively 


Einstein equation to get corrected metric 


                              And


Geodesic equation to get corrected trajectory


G

Finally at each order in   expansion of   extract the non-analytic terms in  limit.G ̂Tμν(k) ω → 0



Now we have to solve Einstein equation and geodesic equation9 iteratively to determine gravitational

waveform in terms of the scattering data.
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where T
Xµ⌫ is the matter energy-momentum tensor given by10,
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In de Donder gauge ⌘
⇢µ
@⇢eµ⌫ = 0, the Einstein eq.(3.8) takes the following form,
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where T
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Here we are following the unit convention c = 1 and in this unit GM! is a dimensionless quantity,

where ! is frequency of soft gravitational radiation and M is the parameter representing masses of

scattered objects11. So expansion in power of ! is same as expansion in power of gravitational constant

G. Let us expand the Fourier transform of total energy momentum tensor in a power series expansion of

G,

bTµ⌫(k) = �(0)
bTµ⌫(k) + �(1)

bTµ⌫(k) + �(2)
bTµ⌫(k) + · · · (3.13)

where �(r)
bTµ⌫(k) is of order (G)r in gravitational constant expansion. Similarly the correction to the

straight line trajectory has an expansion in power of G,

Y
µ
a (�) = �(1)Y

µ
a (�) + �(2)Y

µ
a (�) + �(3)Y

µ
a (�) + · · · (3.14)

where �(r)Y
µ
a (�) is of order (G)r in gravitational constant expansion. This implies that the trace reversed

metric fluctuation has the following expansion in power of G if we use (3.11),

eµ⌫(x) = �(0)eµ⌫(x) + �(1)eµ⌫(x) + �(2)eµ⌫(x) + �(3)eµ⌫(x) + · · · (3.15)

9If the scattered objects have some internal structure and spin the geodesic equation will modify accordingly, but as we
discuss in §5.3, they do not a↵ect our result to the order we are working in.

10The matter energy-momentum tensor written here is for non-spinning point like objects. Presence of spin and internal
structure will modify the TX , but as we discuss in §5.3, internal structure and spin don’t a↵ect our results to the order we
are working in.

11Actually there could be some other parameters in the theory e.g. impact parameter ⇠ |ra � rb| ⇠ L , Spin ⌃a, internal
structure of the objects in terms of multipole moments etc. So using combination of those and ! one can form some
dimensionless parameters, but we expect that those will not a↵ect the leading non-analytic (sub)n-leading gravitational
waveform in ! expansion.
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Now we have to solve Einstein equation and geodesic equation9 iteratively to determine gravitational

waveform in terms of the scattering data.
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Here we are following the unit convention c = 1 and in this unit GM! is a dimensionless quantity,

where ! is frequency of soft gravitational radiation and M is the parameter representing masses of

scattered objects11. So expansion in power of ! is same as expansion in power of gravitational constant

G. Let us expand the Fourier transform of total energy momentum tensor in a power series expansion of

G,
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discuss in §5.3, they do not a↵ect our result to the order we are working in.

10The matter energy-momentum tensor written here is for non-spinning point like objects. Presence of spin and internal
structure will modify the TX , but as we discuss in §5.3, internal structure and spin don’t a↵ect our results to the order we
are working in.
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Now we have to solve Einstein equation and geodesic equation9 iteratively to determine gravitational

waveform in terms of the scattering data.
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Here we are following the unit convention c = 1 and in this unit GM! is a dimensionless quantity,

where ! is frequency of soft gravitational radiation and M is the parameter representing masses of

scattered objects11. So expansion in power of ! is same as expansion in power of gravitational constant

G. Let us expand the Fourier transform of total energy momentum tensor in a power series expansion of

G,
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discuss in §5.3, they do not a↵ect our result to the order we are working in.

10The matter energy-momentum tensor written here is for non-spinning point like objects. Presence of spin and internal
structure will modify the TX , but as we discuss in §5.3, internal structure and spin don’t a↵ect our results to the order we
are working in.

11Actually there could be some other parameters in the theory e.g. impact parameter ⇠ |ra � rb| ⇠ L , Spin ⌃a, internal
structure of the objects in terms of multipole moments etc. So using combination of those and ! one can form some
dimensionless parameters, but we expect that those will not a↵ect the leading non-analytic (sub)n-leading gravitational
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Δ(r)Ya(σ) ∼ Gr

Δ(r) ̂Tμν(k) ∼ Gr

Δ(r)eμν(x) ∼ Gr+1

where
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This implies �(r)eµ⌫(x) is of order (G)r+1 in gravitational constant expansion. Analogous to the analysis

of electromagnetic waveform case here we expect that the leading non-analytic contribution of �(n)
bTµ⌫(k)

should be of order !
n�1(ln!)n in small ! expansion and for extracting gravitational waveform at this

order we can treat the scattered objects as non-spinning point particles12.

Fourier transform of matter energy momentum tensor in terms of corrected trajectory takes the

following form,
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The gravitational energy-momentum tensor at order (G)r have the following kind of dependence on

{�(s)eµ⌫},

�(r)T
hµ⌫(x) ⇠

1
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h
@@(�(0)e)

r+1 + @@{(�(0)e)
r�1�(1)e} + · · ·+ @@{(�(0)e)(�(r�1)e)}

i
(3.18)

where @@ above is just showing that each term in gravitational energy-momentum tensor has two deriva-

tives on metric fluctuation13 and the various {�(s)e} dependence is fixed from the requirement of�(r)T
hµ⌫(x)

should be of order (G)r. For r = 1 and r = 2 the expressions for energy-momentum tensor are explicitly

given in appendix-D.

Though our final goal is to determine the sub-subleading gravitational waveform at order O(!(ln!)2),

to set up the stage we will go through the derivation of subleading order gravitational waveform briefly

following [1] as some of the subleading order results are needed for the analysis of sub-subleading order

energy-momentum tensor.

12This is along the same line of thought as discussed in [55, 61–74]. We justify this claim in §5.3
13Here we are considering the theory of gravity is general relativity without any higher derivative corrections. If one

includes higher derivative corrections to the Einstein-Hilbert action, those contribute to terms in the gravitational energy-
momentum tensor having four or more derivatives acting on the metric fluctuations. One can explicitly show that these
higher derivative terms will not contribute to the order O(!n�1(ln!)n) in the analysis of �(n)

bThµ⌫(k).
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Start at zeroth iterative order with:    and     .eμν(x) = 0 Xμ
a (σ) = rμ

a + vμ
a σ

Consider corrected asymptotic trajectory:    Xμ
a (σ) = rμ

a + vμ
a σ + Yμ

a (σ)



where

�(r)eµ⌫(x) = �8⇡G

Z
d
4
`

(2⇡)4
Gr(`) e

i`.x �(r)
bTµ⌫(`). (3.16)

This implies �(r)eµ⌫(x) is of order (G)r+1 in gravitational constant expansion. Analogous to the analysis

of electromagnetic waveform case here we expect that the leading non-analytic contribution of �(n)
bTµ⌫(k)

should be of order !
n�1(ln!)n in small ! expansion and for extracting gravitational waveform at this

order we can treat the scattered objects as non-spinning point particles12.

Fourier transform of matter energy momentum tensor in terms of corrected trajectory takes the

following form,

bTXµ⌫(k) =

Z
d
4
x e

�ik.x
T
Xµ⌫(x)

=
M+NX

a=1

ma

Z
1

0
d� e

�ik·Xa(�) dX
µ
a (�)

d�

dX
⌫
a (�)

d�

=
M+NX

a=1

mae
�ik.ra

Z
1

0
d� e

�ik·va�
1X

w=0

1

w!

(
� ik ·

1X

s=1

�(s)Ya(�)

)w

⇥

(
v
µ
a +

1X

t=1

d�(t)Y
µ
a (�)

d�

) (
v
⌫
a +

1X

u=1

d�(u)Y
⌫
a (�)

d�

)

⌘

1X

r=0

�(r)
bTXµ⌫(k) (3.17)

The gravitational energy-momentum tensor at order (G)r have the following kind of dependence on
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where @@ above is just showing that each term in gravitational energy-momentum tensor has two deriva-

tives on metric fluctuation13 and the various {�(s)e} dependence is fixed from the requirement of�(r)T
hµ⌫(x)

should be of order (G)r. For r = 1 and r = 2 the expressions for energy-momentum tensor are explicitly

given in appendix-D.

Though our final goal is to determine the sub-subleading gravitational waveform at order O(!(ln!)2),

to set up the stage we will go through the derivation of subleading order gravitational waveform briefly

following [1] as some of the subleading order results are needed for the analysis of sub-subleading order

energy-momentum tensor.

12This is along the same line of thought as discussed in [55, 61–74]. We justify this claim in §5.3
13Here we are considering the theory of gravity is general relativity without any higher derivative corrections. If one

includes higher derivative corrections to the Einstein-Hilbert action, those contribute to terms in the gravitational energy-
momentum tensor having four or more derivatives acting on the metric fluctuations. One can explicitly show that these
higher derivative terms will not contribute to the order O(!n�1(ln!)n) in the analysis of �(n)

bThµ⌫(k).
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Matter energy-momentum tensor:

Gravitational energy-momentum tensor:

Goal : Extract  coefficient from the analysis of  and  , which is the leading 

           non-analytic term in   limit.

𝒪(ωr−1(ln ω)r) Δ(r) ̂TXμν(k) Δ(r) ̂Thμν(k)
ω → 0

+ 𝒪(∂∂∂∂)



Important Observations

If we are interested to evaluate the leading non-analytic part of gravitational waveform at n’th 
iterative order   , which goes like   in   limit:𝒪(Gn+1) ωn−1(ln ω)n ω → 0

It is enough to consider the scattered objects as non-spinning point particles


and Fourier transform of energy-momentum tensor has to be only evaluated 
outside the region .ℛ

The leading spin dependent non-analytic term appears at order : 𝒪(G2 ω ln ω)

It is enough to consider the scattered objects as structureless spinning point particles


and at first iterative order the Fourier transform of energy-momentum tensor has to be 
evaluated both outside and inside the region . In the next iterative order only 
outside.

ℛ



Gravitational Tail Memories



0-loop (tree)


…

1-loop


…

2-loop


…

n-loop


…

ω−1 ω0 ω

ln ω ω0 ω ln ω ω ω2 ln ω

ω(ln ω)2 ω ln ω ω ω2(ln ω)2 ω2 ln ω

ωn−1(ln ω)n ωn−1(ln ω)n−1

Results of this column are exact at that order in  expansion.G

Spin dependent

Fourier transform in   of the gravitational waveforms produce gravitational memory at large retarded 
time ( )

ω
u → ± ∞

𝒪(G2)

𝒪(G)

𝒪(G3)

𝒪(Gn+1)

θ(u) δ′￼(u)δ(u)

δ(u) δ′￼(u)

δ′￼(u)

u−1 u−2 u−3

u−2 ln u u−2 u−3 ln u u−3

u−n(ln u)n−1 u−n(ln u)n−2



3.2 Derivation of leading order gravitational waveform

Fourier transform of the leading order matter energy-momentum tensor from eq.(3.17) takes form,
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Similar to §2.2, from the convergence of the integral at σ = ∞ for both ingoing and outgoing particles

we need to replace ω → (ω + iηa*) where ηa = ±1 for particle-a being outgoing/ingoing. This implies

the following replacement in the exponential k · va → (k · va − i*) which we will use from now on. The

gravitational energy momentum tensor at this order vanishes. Now using the relation (3.2) for the leading

energy-momentum tensor and performing Fourier transformation in ω variable we get the expected DC

gravitational memory [1, 23–33],
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(3.20)

Now from the leading order energy momentum tensor in eq.(3.19), the leading order metric fluctuation

takes the form,
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The leading order Christoffel connection produced due to the asymptotic straight line trajectory of particle

b is given by,
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3.3 Derivation of subleading order gravitational waveform

For the leading order metric fluctuation in eq.(3.22), leading correction to the straight line trajectory of

particle-a satisfies the following geodesic equation as follows from eq.(3.9),

d2∆(1)Y
µ
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a (3.24)
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at order O(lnω),
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Now to determine the radiative mode of subleading order gravitational waveform at late and early time we

use the relation (3.2) at subleading order and then perform Fourier transformation in ω variable. Finally

using the results of integrations from eq.(C.10) and (C.11) for n = 1 we get [1],
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where retarded time u = t−R+ 2G lnR
N-
b=1

pb · n.

3.4 Derivation of sub-subleading order gravitational waveform

Here in this section we derive the order O(ω(lnω)2) coefficient of the sub-subleading gravitational wave-

form. This turns out to be the leading non-analytic contribution at this order in small ω expansion.

3.4.1 Analysis of sub-subleading matter energy-momentum tensor

The expression for sub-subleading order energy-momentum tensor follows from eq.(3.17),

∆(2)
!TXµν

(k) =

M+N#

a=1

mae
−ik.ra

1 ∞

0
dσ e−i(k·va−i')σ

×
"
1

2

$
− ik ·∆(1)Ya(σ)

%2
vµav

ν
a +

$
− ik ·∆(1)Ya(σ)

%
vµa

d∆(1)Y
ν
a (σ)

dσ

+

$
− ik ·∆(1)Ya(σ)

%
vνa

d∆(1)Y
µ
a (σ)

dσ
+

d∆(1)Y
µ
a (σ)

dσ

d∆(1)Y
ν
a (σ)

dσ

+

$
− ik ·∆(2)Ya(σ)

%
vµav

ν
a + vµa

d∆(2)Y
ν
a (σ)

dσ
+ vνa

d∆(2)Y
µ
a (σ)

dσ

(
(3.44)

28

Gravitational DC Memory

Leading gravitational tail Memory

at order O(lnω),
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3.4.3 Sub-subleading order gravitational waveform

Now using the relation in eq.(3.2), the sub-subleading order gravitational waveform in frequency space

becomes,
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In the LHS of the above expression we have included a phase factor exp{−2iG
N-
a=1

pa.k lnR} which cor-

responds to the time delay due to gravitational drag force on the emitted gravitational wave as derived

in [17]. The expansion of this extra phase factor up to order ω2
has already appeared in the expres-

sion (3.71). Now performing Fourier transformation in ω variable and using the integration results of

eq.(C.11)(C.10)(C.16) we get the following late and early time sub-subleading gravitational waveforms,
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and
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where u = t − R + 2G lnR
N-
b=1

pb · n is the retarded time. This proves the conjecture made in [1]. For a

scattering event with massless external particles this result has been tested in [76,77].

4 Sub-subleading soft photon theorem from two loop amplitudes

Here in this section we briefly discuss how we can derive sub-subleading soft photon theorem by analyzing

two loop amplitudes in a theory of scalar QED following the analysis of [17]. This will solve two purposes:

one purpose is to show the connection between classical computation and Feynman diagrammatics and

the other is to find out extra quantum contribution in sub-subleading soft photon factor. Consider a

theory of U(1) gauge filed Aµ(x) and M +N number of complex scalar fields {φa} with masses {ma} and

charges {qa} for a = 1, 2, · · · ,M +N satisfying
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a=1

qa = 0. The relevant part of the action needed for

our analysis:
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Though in four spacetime dimensions S-matrix for this theory is IR divergent, still we can factor out the

same IR-divergent piece from the S-matrix with external photon and S-matrix without external photon

and can derive the soft photon factor relating the IR finite parts of the two S-matrices [17]. Let Γ(M+N,1)
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where u = t − R + 2G lnR
N-
b=1

pb · n is the retarded time. This proves the conjecture made in [1]. For a

scattering event with massless external particles this result has been tested in [76,77].

4 Sub-subleading soft photon theorem from two loop amplitudes
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one purpose is to show the connection between classical computation and Feynman diagrammatics and
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theory of U(1) gauge filed Aµ(x) and M +N number of complex scalar fields {φa} with masses {ma} and
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at order O(lnω),
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Now to determine the radiative mode of subleading order gravitational waveform at late and early time we

use the relation (3.2) at subleading order and then perform Fourier transformation in ω variable. Finally
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∆(1)e
µν
(t, R, n̂) =

2G

R

1

u

$
2G

N#

b=1

pb · n
%. N#

a=1

pµapνa
pa.n

−
M#

a=1

p′µa p′νa
p′a.n

=

−4G2

R

1

u

N#

a=1

N#

b=1
b ∕=a

pa.pb
[(pa.pb)2 − p2ap

2
b ]
3/2

$
3

2
p2ap

2
b − (pa.pb)

2
%

×pµanρ

pa.n

$
pνap

ρ
b − pρap

ν
b

%
for u → +∞ (3.42)

∆(1)e
µν
(t, R, n̂) =

4G2

R

1

u

M#

a=1

M#

b=1
b ∕=a

p′a.p
′
b

[(p′a.p
′
b)

2 − p′2a p
′2
b ]

3/2

$
3

2
p′2a p

′2
b − (p′a.p

′
b)

2
%

×p′µa nρ

p′a.n

$
p′νa p

′ρ
b − p′ρa p

′ν
b

%
for u → −∞ (3.43)

where retarded time u = t−R+ 2G lnR
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b=1

pb · n.

3.4 Derivation of sub-subleading order gravitational waveform

Here in this section we derive the order O(ω(lnω)2) coefficient of the sub-subleading gravitational wave-

form. This turns out to be the leading non-analytic contribution at this order in small ω expansion.

3.4.1 Analysis of sub-subleading matter energy-momentum tensor

The expression for sub-subleading order energy-momentum tensor follows from eq.(3.17),
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The above result agrees with the result in eq.(??). The above expression can be written
explicitly in terms of incoming and outgoing momenta in the following way:
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where kµ = ωnµ = ω(1, n̂). Now performing Fourier transform in ω variable and using the
results of appendix-C we find the following expressions for late and early time gravitational
waveforms:
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for u → −∞ (3.9)

At this stage the order O(u−2) gravitational tail memory seems to be non-universal even at

order G2
, as the result depends not only on the asymptotic data i.e. incoming and outgoing

momenta and spins of scattered objects but also depends on the choice of the region R

through ra. But say once we fix a particular time slice after the scattering happens which

fixes the boundary of region R and after that time only long range gravitational interaction

will be important. In our notation that boundary corresponds to σ = 0 for the particle’s

trajectory i.e. Xa(σ = 0) = ra. Now if we want to change our definition of region R to a

different time slice say σ = σ0, it would not affect our result above as under this choice ra
will be shifted by ra+

pa
ma

σ0 and that would not affect (rαa p
β
a−rβapαa ) combination. Hence this

property of the result suggests that it is possible to write the result in terms of asymptotic

data only. As an evidence, consider a special case of 2 → 2 scattering event where object-1

is very heavy and object-2 is a probe and they are scattering with large impact parameter.

Now for this process if we choose the scattering centre at the origin of object-1, then r1 = 0

and r2 is the impact parameter which is determinable in terms of asymptotic scattering

data.
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scattering event with massless external particles this result has been tested in [76,77].

4 Sub-subleading soft photon theorem from two loop amplitudes

Here in this section we briefly discuss how we can derive sub-subleading soft photon theorem by analyzing

two loop amplitudes in a theory of scalar QED following the analysis of [17]. This will solve two purposes:

one purpose is to show the connection between classical computation and Feynman diagrammatics and

the other is to find out extra quantum contribution in sub-subleading soft photon factor. Consider a
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Though in four spacetime dimensions S-matrix for this theory is IR divergent, still we can factor out the

same IR-divergent piece from the S-matrix with external photon and S-matrix without external photon

and can derive the soft photon factor relating the IR finite parts of the two S-matrices [17]. Let Γ(M+N,1)
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This is the result written as a 
conjecture from classical limit of 
soft theorem. After a tedious 
computation we are getting some 
unwanted extra terms, currently we 
are struggling to fix them!!!



core collapse supernova Hyper-velocity star Neutron star merger

For the above mentioned astrophysical scattering events, the gravitational strain due to order  tail term 

turns out:  , which is in the edge of the resolution of current GW detectors. 

u−1

ΔL
L

∼ 10−22

On the other hand for binary blackhole merger process the order  ,    tail terms 
vanishes.

u−1 u−2 ln u

Observation of (non-vanishing or vanishing) gravitational tail memory will be a test of general relativity.
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