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All the results have analogous photon/electromagnetic contributions, which will not
be discussed in this talk.



Based on the works

* arXiv: 1808.03288 with Ashoke Sen

* arXiv: 1912.06413 with Arnab Priya Saha and Ashoke Sen

* arXiv: 2008.0437/6

* “Spin dependent tail memory” will appear with Debodirna Ghosh.


https://arxiv.org/abs/1808.03288
https://arxiv.org/abs/1912.06413
https://arxiv.org/abs/2008.04376

Soft Graviton Theorem in D>4




What is Soft Graviton Theorem in terms of S-matrices?

An amplitude with arbitrary number of finite energy particles (hard particles) with arbitrary
mass and spin and arbitrary number of small energy gravitons (soft gravitons) is related
to the amplitude without the soft gravitons, via expansion in powers of soft momenta.

For one soft graviton: Weinberg ; Cachazo, Strominger ; Sen ; ...
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— In D=4 tree level ,
— in D>4 for loop amplitude.

e Here (&,k) are the polarisation and momentum of outgoing graviton.

e This expansion is valid only when the graviton energy @ = | k | is small compare
to the other finite energy particles’ momenta {p |} .



Suppose the theory is described by a general coordinate invariant one particle irreducible (1PI)
effective action.

tree level amplitude computed from this give the full quantum resuilt.

Above T'® and T V*D can be evaluated by covariantizing the 1P| action in the soft graviton
background if we assume G and T VD don't contribute soft momenta in the denominator.

Example: —— Breaks down in D=4 when massless particle runs in loop.
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Single soft graviton theorem:
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Non-universal i.e. theory
dependent piece
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Weinberg ; Cachazo, Strominger ; Sen; Laddha, Sen; ...
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Not known whether fully
factorizable for a generic theory !




Q. For a simple theory of scalars minimally coupled to gravity , can one expect soft factorization should

hold to arbitrary order in soft momenta expansion even for tree level amplitudes?

Demanding gauge invariance what information about (sub)"-leading soft factor can be extracted?

Hamada, Shiu -2018; Li, Lin, Zhang- 2018
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. : N+1) _ _ N+1
Demand gauge invariance: k* F/(w ) = 0 = k¥ F/(w )
= Up to sub-subleading order one recovers the result for minimally coupled scalar hard particles.

= At (sub)"-leading order for n > 3 one finds :
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Soft Graviton Theorem in D=4



D=4 : Gravitational S-matrix is infrared divergent as well as one assumption of the
general covariantized prescription breaks down !

Soft theorem is the relation between two S-matrices. Even if they are individually IR divergent,
can we remove same IR divergent piece from both the S-matrices? And write down soft
theorem in terms of infrared finite S-matrices?

self interaction IR finite
of gravitons

N) _ (N)
T = exp{—Kppse Yexp{ K, } TOHD Y = 3K Tg

Reduced to leading Eikonal factor in IR limit

We able to separate out the IR divergent piece and the IR finite piece using Grammer-Yennie
technique originally developed for QED in 1973.

After cancelling the common IR divergent pieces from both side of the soft theorem relation:
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Split the graviton propagator with momentum £ flowing from particle-a to particle-b into two

parts: call K-graviton and G-graviton.
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such that :

Strategy
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* Loop diagram computed with K-graviton propagator contains the full IR divergent factor

= Loop diagrams with G-graviton propagators are IR finite.

* For a virtual K-graviton insertion the following property should hold in off-shell :
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K-G decomposition Result
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Where,
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* Disclaimer: The full exponentialization of the Eikonal factor analysing all loop orders has not been
proved yet rigorously with this construction, which existed for QED case.

* We used this prescription at one loop order and derived sub-leading soft graviton theorem which
turns out to be at order In @ in small @ expansion.



For scalar coupled to gravity at one loop order we need to analyze the following set of diagrams:
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All the diagrams contribute to In @ in the integration region where loop momentum is larger than . In the
integration region where loop momentum is smaller than @ the last two kind of diagrams contribute to In w also.




Coefficient of In w in subleading soft graviton theorem

c=1,81G =1
S (e, k; {p,}) =
e g,uup Pbv-Pa P P B
8” za: ; {(pb-pa)? — mEmi }3/2 (PP = Popt) 20 pa)” = Smym;
Nanp=1
i Euv Py Dy
_Tﬂb,nzzlpb.k Z Hpa.k

a

Dq Pq
- Pa-k U " Opav apau ) bta \/(pa pb) papb

1 5,ul/pa,pa mb
- X ]‘C 111 x
812 Ea: pa Z (pb k)

where 1, = + 1 if particle-a is outgoing and 1, = — 1 if particle-a is ingoing.

| Z EupDlk, <( , 0 , 0 Z { (Pa-Pv)* — 5Pab} | I (pa.pb + v/ (Pa-pp)? pﬁp%)



Kg,, approximated in

Re-writing the subleading soft graviton factor: the integration region
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Key Observation

If we naively assume the validity of D>4 soft theorem for D=4 as well and keep the loop momentum in
the regulated range of integration. We find :
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In the regulated range of integration :
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If we substitute the above expressions in the naive soft theorem relation and commute through the
differential operators and expand in power of @ we correctly recover the In w soft factor.



Conjecture at Sub-subleading order O(w(In w)?) term
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This can be proved analysing two loop amplitudes using the same prescription developed for one loop.



Generalising this idea to (sub)"—leading order
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We expect this part should also be universal and

only depends on the momenta of scattered objects.

To derive this result and fix R, we have to analyze n-loop amplitude.




Leading non-

analytic term

Soft expansion in @ — 0 limit

ﬁ
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Exact at that loop order, does not receive contribution from
higher loops. Fixed from minimal coupling.




Classical Limit of Soft Theorem



CLASSICAL LIMIT OF SOFT THEOREM IN D>4

' Large number of soft gravitons need to emit to
produce classical radiation

Total radiation energy has to be less than |
| energy of each finite energy particles ;

Though later we shall show this can be relaxed if we consider
flux of finite energy gravitational radiation as hard particle.

Laddha , Sen

—replace orbital angular momenta
by classical angular momenta

, Energy of scattered objects need to be large in
unit of M, ‘

, Large impact parameter or probe scatterer limit |

=drop the contact terms in
multiple soft factor.




CLASSICAL LIMIT OF SOFT THEOREM IN D>4

, Energy of scattered objects need to be large in
' unit of M,

i Total radiation energy has to be less than |
energy of each finite energy particles ;

, Large impact parameter or probe scatterer limit |

Though later we shall show this can be relaxed if we consider
flux of finite energy gravitational radiation as hard particle.

Large number of soft grawtons need to emlt to
' _produce classical radiation |

Laddha , Sen

With radiation wavelength larger
than characteristic length scale

up to a undetermined phase:

e’e s, xX)=NS S, (€, wX)




Let us naively assume the result of classical limit of the soft theorem is also valid in D=4.
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where

 I1s some undetermined phase,

1
Cop = Nopp — Enaﬁhg is the trace reversed metric fluctuation,

—

X = Rn with R being the distance of the detector from the scattering centre and
71 being the unit vector along the detector from the scattering centre,

k" = w(1,n)



1
But in D=4 the trajectory of the particle-a takes form: r,(0) =1, m—pg o+c Injo|+---

Effect of long range interaction

In large | 0| the classical angular momentum diverges:

S = ri(o)p, — ri(o)p,, + spin = (cp, — c.pl) Injo| + - - -

So naive substitution of classical angular momenta makes subleading soft factor divergent !



1
But in D=4 the trajectory of the particle-a takes form: r,(0) =1, m—pg o+c Inlo|+---

Effect of long range interaction

In large | 0| the classical angular momentum diverges:

S = ri(o)p, — ri(o)p,, + spin = (cp, — c.pl) Injo| + - - -

So naive substitution of classical angular momenta makes subleading soft factor divergent !

* But we expect the radiative mode of low frequency gravitational waveform should be finite from
physical ground.

* And physically if we are interested to determine gravitational waveform with frequency @ , then
we expect the cut off for || to be in order of @~ .

* Also the emitted graviton’s trajectory will receive logarithmic correction due to long range
force of scattered object (back scattering effect).



Prescription: Find corrected trajectory by solving geodesic equation and then replace

—1 .

In|o| = Inw™ " in the classical soft factor.
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* We get Kgf,l, from K;g if we replace Feynman propagator by Retarded propagator G (£) for graviton.



Emitted soft graviton’s trajectory will also receives logarithmic correction due to long range
gravitational force by other scattered objects, which generate time delay.

So if we combine this time delay along with backscattering affect, the gravitational waveform at

O(In w) turns out:

~ — a L 2G . .
Aet(w, X = Rn) = (—l)? exp{za)R — 2iGInR Z pb.k}

b,ﬂb=1
N N pH
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Where, Klf,iase = —2iG lhw Z p,.k  is gettable if we evaluate K;wae replacing Feynman propagator
b.p=1 by retarded propagator for the graviton.

Hence boldly generalising this observations, just by replacing the classical counterparts of Kg,, and Kphase

we can predict the higher order gravitational waveforms from higher order soft factors.



Conjecture on spin dependent

gravitational waveform

Extending our observations up to sub-subleading order we find:

e (w, T)
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Expanding the above expression in @ — 0 limit, we found the order @ In @ waveform at order O(G?)
which depends on spin of scattered objects.



N N
wilnw) —~ — . 2 . . .
AEG;) ) e (w,r) = (—1) 2G exp {sz — 21IGIn R g pb.k} — 2G In{w + ie} E Pk

R
b:]_ o b:1

o Z pa ( 1/) —TV) 0 _I_Z,COLI/)>
a=1
; MAN
koko 0 0 l
-5 Pa Kgy X (TEPZ — TPy + ZZ“)
Z {( " OPap 319@”) 7/

alpa

0 O
+ (pZ I 4 7 )K o X (T’Qpa — riph + ZPM) }

But this is not the full O(w In @) contribution, it receives correction at order G~ .



A systematic study

of

Classical Soft Graviton Theorem



Set up: M number of objects coming in, undergoes complicated interaction within the region &% and disperse
to N number of final objects.

P
P L

< — >

Region &£ is chosen to be sufficiently large so that all non-trivial interactions take place inside
region & and outside only long-range gravitational interaction exists.

Goal: Determine gravitational waveform in retarded time u for |u| > > L. lored b
elate Y

= Determine gravitational waveform with frequency o for v < < L=,



Define deviation of the metric from Minkowski metric as,

1 1

hu’/ B 5(%” o 77#1/)7 Cuv = hW B 577#” npahm

Linearised Einstein equation in de Donder gauge:
N nPv n"°0,0,eq53 = —8TGTH (x), TH = TXKw 4 Thuv

— where T is the gravitational energy momentum tensor defined as:

1 7T 1 7
huv __ . — 17,78 uv \ o, pr,,po
=G LTV g{R 58 } 1NN 0 0

Radiative mode of gravitational waveform:

where TH (k) = | d*y e T*(y)  with k* = w(1,h).




The matter energy-momentum tensor outside the region £ has the following derivative expansion:

M+N " o0 I o B
a IX5(0) dXE(0)
TXP(z) = Z /o do | myg . - 5 (2 — Xq4(0)) -

| () ¥57(g) 9,6 (2 — Xo(0)) + -+

* Above we considered all the incoming particles as some extra outgoing particles under
proper identifications of X (o), 2 (o), ...underc —- — o .

*The “ ..." terms carries the information about multiple moments of the compact
objects as well as tidal response, which involves two or more derivative on the delta
function.

* More derivative on delta function generates more power of soft momenta in the Fourier
transform, So if we are interested to determine the leading non-analytic piece at each
iterative order, we can only keep the first term.



Geodesic equation and Spin evolution outside region % :

d? X+

do?
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* The right hand side of t
the trajectory, which tu

do do do

ne geodesic equation involves Riemann tensor or derivative over Spin along

'ns out to be insignificant if we are interested to determine the leading non-

analytic term at each iterative order or even the leading spin dependent non-analytic piece.

Boundary conditions:

O —> 0O Oo—> Q0



Strategy

In ¢ = 1 unit the dimensionless parametersare: GMw , GXw? , GMrw? .

So we develop an iterative procedure considering G as an iterative parameter and solve iteratively

Einstein equation to get corrected metric

And

Geodesic equation to get corrected trajectory

* Finally at each order in G expansion of T#*(k) extract the non-analytic terms in @ — O limit.



Start at zeroth iterative order with: ¢, (x) =0 and X; (o) = 1] + Vo .

Consider corrected asymptotic trajectory: X' (o) =r/ +vic+ Y (o)
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Matter energy-momentum tensor: TXw () = /dzlaj e~ ikx Xy ()
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Gravitational energy-momentum tensor:
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A(T)T H (QZ‘) ~ 87TG
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Goal : Extract O(w"~!(In w)") coefficient from the analysis of A T\X””(k) and A, ?h’“’(k) , Which is the leading

non-analytic term in @ — 0 limit.



Important Observations

* |f we are interested to evaluate the leading non-analytic part of gravitational waveform at n’th
iterative order O(G™*'), which goes like " '(Inw)"* in @ — 0 limit:

It is enough to consider the scattered objects as non-spinning point particles

and Fourier transform of energy-momentum tensor has to be only evaluated

outside the region £.

* The leading spin dependent non-analytic term appears at order O(G? @ In w):

It is enough to consider the scattered objects as structureless spinning point particles

and at first iterative order the Fourier transform of energy-momentum tensor has to be

evaluated both outside and inside the region &£. In the next iterative order only
outside.



Gravitational Tail Memories




Fourier transform in @ of the gravitational waveforms produce gravitational memory at large retarded

time (u = = o0)
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Results of this column are exact at that order in G expansion.




Gravitational DC Memory
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Spin dependent tail memory
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Neutron star merger

core collapse supernova Hyper-velocity star

For the above mentioned astrophysical scattering events, the gravitational strain due to order 1~ tail term

AL
turns out: — ~ 10722 , Which is in the edge of the resolution of current GW detectors.

L

1

On the other hand for binary blackhole merger process the order 1, u?lnu tail terms

vanishes.

Observation of (non-vanishing or vanishing) gravitational tail memory will be a test of general relativity.






