Gravitational Memory in Numerical Relativity

- Computing Memory Effects,
- Correcting Waveforms,
- And the importance of BMS Frames

Keefe Mitman

Conference on Gravitational Scattering, Inspiral and Radiation (virtual) Galileo Galilei Institute, May 6, 2021

What we are currently seeing...

GW150914

What we are currently seeing...

GW150914

What we should be seeing...

3/33

What is gravitational memory?

Early Work:

- Zel'dovich and Polnarev (1974).
- Braginsky and Thorne (1987).
 - Christodoulou (1991).
 - Thorne (1992).

Ordinary (linear) Memory:

Massive objects traveling to asymptotic infinity as $t \to \infty$

$$\Delta h_{ij} = \Delta \sum_{A=1}^{N} \frac{4M_A}{r\sqrt{1 - v_A^2}} \left(\frac{v_A^i v_A^j}{1 - v_A \cos(\theta_A)}\right)^{11}.$$

mm

What is gravitational memory?

Early Work:

- Zel'dovich and Polnarev (1974).
- Braginsky and Thorne (1987).
- Christodoulou (1991).
- Thorne (1992).

Ordinary (linear) Memory:

Massive objects traveling to asymptotic infinity as $t \to \infty$

$$\Delta h_{ij} = \Delta \sum_{A=1}^{N} \frac{4M_A}{r\sqrt{1 - v_A^2}} \left(\frac{v_A^i v_A^j}{1 - v_A \cos\left(\theta_A\right)}\right)^{TT}$$

Null (non-linear) Memory:

Null radiation traveling to asymptotic infinity as $r, t \rightarrow \infty$ at fixed $u \equiv t - r$

$$\Delta h_{ij} = \frac{4}{r} \int \frac{dE}{d\Omega'} \left(\frac{\xi^{i'} \xi^{j'}}{1 - \cos\left(\theta'\right)} \right)^{\text{TT}} d\Omega$$

where ξ' is a unit vector from the source to $d\Omega'$.

The BMS Group

BMS Group = Lorentz Group \rtimes supertranslations

BMS Group = Lorentz Group \rtimes supertranslations

Extended BMS Group = $LCKV(S^2) \rtimes$ supertranslations Generalized BMS Group = $Diff(S^2) \rtimes$ supertranslations

The BMS Balance Laws

Bondi-Sachs Metric:

$$ds^{2} = -\left(1 - \frac{2m}{r} + \mathcal{O}\left(\frac{1}{r^{2}}\right)\right) du^{2} - 2\left(1 + \mathcal{O}\left(\frac{1}{r^{2}}\right)\right) dudr$$
$$+ r^{2}\left(q_{AB} + \frac{1}{r}C_{AB} + \mathcal{O}\left(\frac{1}{r^{2}}\right)\right) \left(d\theta^{A} - \mathcal{U}^{A}du\right) \left(d\theta^{B} - \mathcal{U}^{B}du\right)$$

where

$$\mathcal{U}^{A} = -\frac{1}{2r^{2}}D_{B}C^{AB} + \frac{1}{r^{3}}\left[-\frac{2}{3}N^{A} + \frac{1}{16}D^{A}\left(C_{BC}C^{BC}\right) + \frac{1}{2}C^{AB}D^{C}C_{BC}\right] + \mathcal{O}\left(\frac{1}{r^{4}}\right)$$

The BMS Balance Laws

Bondi-Sachs Metric:

$$\operatorname{Re}\left[h\right]\left(u,\theta,\phi\right) = \begin{pmatrix} \operatorname{Bondi} \ \operatorname{Mass} \ \operatorname{Charge} \\ + \\ \operatorname{Energy} \ \operatorname{Flux} \end{pmatrix}$$

$$\operatorname{Im} \left[h\right] \left(u, \theta, \phi\right) = \frac{d}{du} \begin{pmatrix} \operatorname{Angular Momentum Charge} \\ + \\ \operatorname{Angular Momentum Flux} \end{pmatrix}$$

Keefe Mitman — Introduction, Computing Memory Effects, Correcting Waveforms, BMS Frames, Detectability

The BMS Balance Laws (for memory)

$$\Delta \operatorname{Im} \left[h\right] \left(\theta, \phi\right) = \Delta \frac{d}{du} \begin{pmatrix} \operatorname{Angular} & \operatorname{Momentum} & \operatorname{Charge} \\ + \\ \operatorname{Angular} & \operatorname{Momentum} & \operatorname{Flux} \end{pmatrix} \rightarrow \begin{pmatrix} \operatorname{Ordinary} \\ \operatorname{Magnetic} & \operatorname{Memory} \\ \\ \operatorname{Magnetic} & \operatorname{Memory} \end{pmatrix}$$

What we know about memory

Gravitational memory = the relative displacement of (initially comoving) observers induced by the passage of gravitational radiation

$$\begin{split} \Delta \xi^{\alpha}(u_1, u_0) &= \Delta K^{\alpha}{}_{\beta}(u_1, u_0) \, \xi^{\beta}(u_0) \\ &+ (u_1 - u_0) \, \Delta H^{\alpha}{}_{\beta} \, \dot{\xi}^{\beta}(u_0) + \cdots \end{split}$$

 $\Delta K^{\alpha}{}_{\beta} \rightarrow \text{usual displacement memory}$ $superton \Delta H^{\alpha}{}_{\beta} \rightarrow \text{sub-leading displacement memory}$

- spin memory (magnetic)
- center-of-mass memory (electric)

supertranslations

super Lorentz transformations

Charge-Flux breakdown of the strain

 $h = \left(J_m + J_{\mathscr{C}}\right) + \left(J_{\hat{N}} + J_{\mathscr{J}}\right) \quad \text{[from the BMS balance laws]}$ where

Keefe Mitman — Introduction, Computing Memory Effects, Correcting Waveforms, BMS Frames, Detectability

Waveform Extraction (extrapolation)

- Obtain metric data on finite-radius world tubes Γ from a BBH evolution
- 2. Interpolate between points on the various world tubes
- 3. Extrapolate to $r \to \infty$

Waveform Extraction (extrapolation)

- Obtain metric data on finite-radius world tubes Γ from a BBH evolution
- 2. Interpolate between points on the various world tubes
- 3. Extrapolate to $r \to \infty$

Never solve Einstein's equations!

Cauchy-characteristic Extraction (CCE)

- Obtain metric data on a finite-radius world tube Γ from a BBH evolution
- 2. Choose initial data for the null hyper surface Σ_u
- 3. Evolve Σ_u forward in time
- 4. Get better waveforms!(and Weyl scalars!)

Dominant Displacement Memory Mode

Dominant sub-leading Displacement Memory Mode

Dominant Displacement Memory Mode

Correcting the Extrapolated Waveforms

$$J_{m} \equiv \frac{1}{2}\bar{\partial}^{2}\mathfrak{D}^{-1}m \longrightarrow Mass Charge$$

$$(J_{\mathcal{B}}) \equiv \frac{1}{2}\bar{\partial}^{2}\mathfrak{D}^{-1}\left[\frac{1}{4}\int_{-\infty}^{u}|\dot{h}|^{2}du\right] \longrightarrow Energy Flux$$

$$J_{\hat{N}} \equiv \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\bar{\partial}\left(\partial_{u}\hat{N}\right)\right] \longrightarrow Angular Momentum Charge$$

$$(J_{\mathcal{J}}) \equiv \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\partial\left(3h\bar{\partial}\dot{h}-3\dot{h}\bar{\partial}\bar{h}+\dot{h}\bar{\partial}h-\bar{h}\bar{\partial}\dot{h}\right)\right] \rightarrow Angular Momentum Flux$$

$$u_{\mathcal{J}} = \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\partial\left(3h\bar{\partial}\dot{h}-3\dot{h}\bar{\partial}\bar{h}+\dot{h}\bar{\partial}h-\bar{h}\bar{\partial}\dot{h}\right)\right] \rightarrow u_{\mathcal{J}} = \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\partial\left(3h\bar{\partial}\bar{h}-3\dot{h}\bar{\partial}\bar{h}+\dot{h}\bar{\partial}h-\bar{h}\bar{\partial}\dot{h}\right)\right] = u_{\mathcal{J}} = \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\partial\left(3h\bar{\partial}\bar{h}-3\dot{h}\bar{\partial}\bar{h}+\dot{h}\bar{\partial}h-\bar{h}\bar{\partial}\dot{h}\right)\right] = u_{\mathcal{J}} = \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\partial\left(3h\bar{\partial}\bar{h}-3\dot{h}\bar{\partial}\bar{h}+\dot{h}\bar{\partial}h-\bar{h}\bar{\partial}\bar{h}\right)\right] = u_{\mathcal{J}} = \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\partial\left(3h\bar{\partial}\bar{h}-3\dot{h}\bar{\partial}\bar{h}+\dot{h}\bar{\partial}\bar{h}-\dot{h}\bar{\partial}\bar{h}\right] = u_{\mathcal{J}} = \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\partial\left(3h\bar{\partial}\bar{h}-3\dot{h}\bar{h}-\dot{h}\bar{h}\bar{h}\right] = u_{\mathcal{J}} = \frac{1}{2}i\bar{\partial}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\partial\left(3h\bar{h}-3h\bar{h}-3\dot{h}\bar{h}-\dot{h}\bar{h}\bar{h}\right] = u_{\mathcal{J}} = u_$$

Correcting the Extrapolated Waveforms

$$J_{m} \equiv \frac{1}{2}\bar{\delta}^{2}\mathfrak{D}^{-1}m \longrightarrow Mass Charge$$

$$J_{\mathcal{B}} \equiv \frac{1}{2}\bar{\delta}^{2}\mathfrak{D}^{-1}\left[\frac{1}{4}\int_{-\infty}^{u}|\dot{h}|^{2}du\right] \longrightarrow Energy Flux$$

$$J_{\hat{N}} \equiv \frac{1}{2}i\bar{\delta}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\bar{\delta}\left(\partial_{u}\hat{N}\right)\right] \longrightarrow Angular Momentum Charge$$

$$J_{\mathcal{J}} \equiv \frac{1}{2}i\bar{\delta}^{2}\mathfrak{D}^{-1}D^{-2}\mathrm{Im}\left[\frac{1}{8}\delta\left(3h\bar{\delta}\dot{h}-3h\bar{\delta}\bar{h}+\dot{h}\bar{\delta}h-\bar{h}\bar{\delta}\dot{h}\right)\right] \rightarrow Angular Momentum Flux$$
Extrapolation missing the flux terms?
• Just compute these and add them on!

Correcting Waveforms without Memory

Correcting Waveforms without Memory

 $h = (J_m + J_{\mathscr{C}}) + (J_{\hat{N}} + J_{\mathscr{J}})$ can also serve as a consistency check!

Waveforms should satisfy the constraint

$$h - J = 0$$
, where $J \equiv (J_m + J_{\mathscr{C}}) + (J_{\hat{N}} + J_{\mathscr{J}})$

Violation of BMS Balance Laws by NR Waveforms

The Importance of BMS Frames

What is a BMS Frame?

- LIGO assumes their waveforms are in the center-of-mass frame
- So, map waveforms to the center-of-mass frame using the Poincaré center-of-mass charge:

$$\vec{G} \equiv \frac{1}{\gamma M_B} \frac{1}{4\pi} \int_{S^2} \operatorname{Re} \left[\left(\bar{\eth} \vec{r} \right) \left(\hat{N} + u \eth m \right) \right] \, d\Omega$$

What is a BMS Frame?

- LIGO assumes their waveforms are in the center-of-mass frame
- So, map waveforms to the center-of-mass frame using the Poincaré center-of-mass charge:

$$\vec{G} \equiv \frac{1}{\gamma M_B} \frac{1}{4\pi} \int_{S^2} \operatorname{Re} \left[\left(\bar{\eth} \vec{r} \right) \left(\hat{N} + u \eth m \right) \right] \, d\Omega$$

What about the supertranslation freedom?

Fixing the Supertranslation Freedom

Fix the supertranslation freedom with a supertranslation charge

• Extend the Bondi four-momentum via the Moreschi supermomentum: $\Psi^{M} \equiv \Psi_{2} + \sigma \dot{\bar{\sigma}} + \delta^{2} \bar{\sigma}$

When this function only has a temporal component, call the BMS frame the "nice section" or the "super rest frame"

Fixing the Supertranslation Freedom

Fix the supertranslation freedom with a supertranslation charge

• Extend the Bondi four-momentum via the Moreschi supermomentum: $\Psi^{M} \equiv \Psi_{2} + \sigma \dot{\bar{\sigma}} + \partial^{2} \bar{\sigma}$

When this function only has a temporal component, call the BMS frame the "nice section" or the "super rest frame"

Note, Ψ^{M} can never be made exactly zero:

$$\Delta \Psi^{\mathbf{M}} \equiv \int_{u_1}^{u_2} \dot{\Psi}^{\mathbf{M}}(u) \, du = \int_{u_1}^{u_2} \left[\left(\dot{\Psi}_2 + \left[\sigma \ddot{\sigma} + \delta^2 \dot{\sigma} \right] \right) + |\dot{\sigma}|^2 \right] du = \int_{u_1}^{u_2} |\dot{\sigma}|^2 \, du$$

Vanishes due to the Bianchi identities

Choices for the super rest frame

- 1. Mapping to the super rest frame using \mathcal{I}^- data
 - Equivalent to mapping to the "PN BMS frame"
 - i.e., what PN waveforms are in
 - What LIGO and other detectors expect

- 2. Mapping to the super rest frame using \mathcal{I}^+ data
 - Essential for performing quasinormal mode (QNM) analyses

Benefits of mapping \mathscr{I}^- to the super rest frame

Combining NR and PN Waveforms

Benefits of mapping \mathscr{I}^+ to the super rest frame

Keefe Mitman — Introduction, Computing Memory Effects, Correcting Waveforms, BMS Frames, Detectability

Example Memory Values

Detectability of Gravitational Memory

It won't be easy!

- Can we even detect memory with an interferometer?
- LIGO SNRs for an idealized GW150914 event:
 - Displacement: ~ 2
 - sub-leading: ~ 0.05
- Will rely on "stacking" events
 - Need to break a memory sign degeneracy
 - Need ~ $\mathcal{O}(2000)$ events

Summary

- Can now produce waveforms with memory
- Waveforms without memory can be corrected
- Waveform accuracy can be tested using the BMS balance laws
- Fixing the BMS frame (via the super rest frame) is critical for modeling and analysis
- Detectability estimates improve with NR waveforms

<u>Phys. Rev. D 102, 104007 (2020)</u>, (arXiv: 2007.11562), K. Mitman, *et al.*

<u>Phys. Rev. D 103, 024031 (2021)</u>, (arXiv: 2011.01309), K. Mitman, *et al*.

"Fixing the BMS Frame of Numerical Relativity Waveforms" (on arXiv later this week), K. Mitman, *et al.*