Integrals for post-Minkowskian classical dynamics
Mao Zeng, University of Oxford

Motivation: amplitudes approach to two-body dynamics in general relativity.
Eikonal method, NR EFT, KMOC formalism, analytic continuation...

Post-Newtonian expansion: small-velocity limit. Integration methods mature.
(simple numbers, pi, zeta values etc.)
- 4PN / 5-loop known, rapid progress at even higher orders.

Post-Minkowskian expansion: exact velocity dependence. Nontrival functions:
polylogarithms, elliptic integrals etc.

Integrand construction: talk by Radu Roibian Also: talks by Carlo Heissenberg, Ludovic Planté

NEW RESULTS FOR CONSERVATIVE DYNAMICS
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[adapted from Mikhail Solon's slide]

Connection between PN and PM integration methods: differential equations
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PN boundary condition PM: function in velocity Ultra-relativistic limit

(Taylor series in v)

Tools: (1) expansion by regions. Beneke, Smirnov
- exchanged graviton momentum ~ h/R < my, mo

' ‘ Physically, iterated exchange builds
up classical momentum exchange.

R T?Nﬂ/R (c.f. eikonal approximation,

and e.o.m. in NR EFT)
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(2) Integration-by-parts reduction. Complicated integrals reduced to simpler ones
like scalar integrals.  chetyrkin; Laporta...

—

With numerators from e.qg. Feynman rules
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Rational functions of s,t, my, mo

. . . Kotikov; Bern, Dixon, Kosower;
(3) Differential equations, based on IBP. Gehrmann, Remmidi: Henn...

(4) Reverse unitarity: cutting rules on steroids. Re-use loop integral techniques
for phase space integrals.  apastasiou, Melnikov...
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- Allows us to reuse methods for loop integrals, e.g. IBP, differential equations.



Asymptotic expansion of Feynman integrals
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No brainer: Taylor expansion in |q]| / |p|-

But how do you treat [ ? It may be comparable with |q]|, or |p|, or in between.

as o Series in smell /?/ To all evders,
[Beneke, Smirnov, '98]
Method of regions: the full integral*is a sum over two contributions.

(1) soft region |q|, |l| <K |p‘ Contains non-analytic behavior, e.g. /92, Iog (-92).
Taylor expansion in small |g|/|p|, |l|/|p|, then integrate over ALL .
2.3, I/((!+f>‘)2,m,zj =1/ [2p0+0*]) = V(;F,,Q) +

|q! < |l| ~ |p| (will fine-tune the expansion strategy later)

(2) hard region Gives Taylor series in 9% Contact interaction in position space.

Taylor expansion in small |¢|/|p|, then integrate over ALL [.
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Missing OVERLAP contributions; vanishes as scaleless integrals in dim. reg.,
in Beneke & Smirnov's expansion prescription.

Later: for velocity expansion, will use alternative principal value / symmetrization prescription
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Aside :

Rigorous justification for asymptotic expansions is intricate. For example, consider
the soft region,

L/ CU+p Y =mt] = 1/ [2000+07]) = 1/(2p2) 4-us

But |/| < |p1| does NOT nessesarily imply 12 <« 2p; - 1! For example, the latter may

become small if p; is purely timelike while [ is purely spacelike.

This may be a tiny part of integration volume, but the denominator diverges here...
Massive-massless scattering: special region avoided by contour deformation

[Akhoury, Saotome, Sterman, 1308.5204v 3]
Fully massive generalization?

Symmetric parametrization for soft region
[Glauber; Polkinghorne; Neill & Rothstein]
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\ dependence fixed by mass dimension

The only nontrivial parameter which the master integrals depend on.
Used to be S/¢. mp/t mzz/-[: .

Function of 3 variables — Function of 1 variable. Enormous reduction in complexity.



One-loop integrals in soft expansion
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Higher orders in the expansion: will have e.qg. . /%11776 yators

Recall that the more complicated integrals evarporate after IBP reduction.

All masters at one loop
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The entire one-loop 4-scalar amplitude is a linear combination of these integrals.

Evaluating soft integrals: (1) velocity expansion

Further series expansion around small-velocity limit. [Parra-Martinez, Ruf, MZ, '20].
Initially done in opposite order of expansions, in [Cheung, Bern, Roiban, Solon, Shen, MZ, '19].

Most well established for conservative dynamics.



Again sum over expansions in several regions. At one and two loops, conservative dynamics
comes from only the potential region, in a suitable definition of potential region.

Intuition: exchange of gravitons dominated by spatial momenta, of order || ~ |¢| ~ h/R.

Energy component suppressed & ~ v|f| ~vlg|. @< . @
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How about the triangle integal? It's a bit more complicated.
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The integral has no dependence on v (though IBP reduction coefficients do), making it strange to
talk about the potential region.

Nevertheless, we use a symmetrization prescription, averaging over |9 « [0
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If using Beneke & Smrinov's prescription,
this is a scaleless integral set to zero; the
triangle integral would be fully captured
by quantum soft region.

Our symmetrization prescription coincides with
CONSERVATIVE dynamics at1 and 2 loops.

2uy -1 = 20° with u; = (1,0)

Oneloop: lll(l07f)\\/12ql(lo,§f)7 qO:O

ﬁ’mmf‘f‘r}zé over (" and ¢5°, aliminates Contour amk;jui’f)’.

Two loops: 10 19 19 N %(—2m’)3 19 19 19

1
~ —g(—Qm')?’

%/mmrfr,‘ze over [, ZZD, and (30) eliminates Contour D\mb;jm'f)’.



Three loops
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Energy integrals become well defined after summing over diagrams; can still assign
symmetry factors to individual diagrams after velocity expansion & IBP.

Evaluating soft integrals: (2) differential equations

In simple case, can promote velocity series to exact functions.

Generally method: differential equations. Well established in loop integration literature.
Recently imported into post-Minkowskian gravity.

First version: [Cheung, Bern, Roiban, Ruf, Solon, MZ, '19]
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Simplified version: soft expansion first, obtain DEs with only nontrivial dependece on v.

Parra-Martinez, Ruf, MZ, '20. Application in worldline PM EFT: Porto, Kalin, '20.
Solutions with soft boundary conditions: Di Vecchia, Heissenberg, Russo, Veneziano, '21,

Herrmann, Parra-Martinez, Ruf, MZ, '21.
Further development in soft DEs: Bjerrum-Bohr, Damgaard, Plante, Vanhove, '21

General structure of DEs: start with master integrals, grouped in a column vector I.

Derivatives 8f/8u reduced to original set of masters, with rational (in Mandelstams)

coefficients.
ol -
— = M-1T.

ov
\ singularity sturcture determines function space.



Example:
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If working in soft region without truncation to potential region, RHS is a v-indep. constant,
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purely from potential region 6 40

Box + crossed box = const. in both potential region and full soft region. Can we see this
at the level of differential equaitons?

See also [Bjerrum-Bohr, Damgaard, Plante, Vanhove, '21].
Combining in Feynman parametrization: Cristofoli, Damgaard, Di Vecchia, Heissenberg, '20]
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Two-loop case

H integral: known even before expansion, as a function of
H s,t,m1,ma. [Bianchi, Leoni, '16; Kreer, Weinzierl, '21]

H + H in potential region:

DEs for unexpanded integrals, then take small-t limit in
[Cheung, Bern, Roiban, Shen, Solon, Mz, '19]

T

All master integrals contained in these
diagrams and contact sub-diagrams

Calcuated from simplified DEs (along w/ all other 2-loop diagrams) in soft expansion:
[Parra-Martinez, Ruf, MZ, '20]

Soft integrals without further expansion into potential region:

[Di Vecchia, Heissenberg, Russo, Veneziano, '21; Herrmann, Parra-Martinez, Ruf, MZ, '21]

Boundary conditions for soft region

(1) single-scale integrals, i.e. no velocity dependence.
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symmetrization Iterated one-loop integrals one-loop X one-loop
trick reduces to

lower spacetime
dimension

(2) Regularity conditions:

Planar integrals have no singularities in the Euclidean region.
In practice, this means u-channel planar integrals are non-singular atany ¢ < c.

And when such integrals are multiplied by v = /92 — 1,

they have to vanish aty=1 (or y=-1 in terms of s-channel).




(3) Leading small-v behavior from potential region
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Phase space integrals for e.g. KMOC formalism

[Kosower, Maybee, O'Connell, 18]
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Momentum transfer << momentum spread of wavepacket
Just picks up relative phase ~ €9 — Fourier transform over q.

Unitarity relates phase space integrals to virtual / loop integrals.
Unitarity of S-matrix:

S=1+4+1T

SST=1 = 2ImT = —i(T —T") =TT"
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RHS is generally a sum over all s-channel Cutkosky cuts.



For example, in phi3 theory with a heavy scalar and a light scalar,
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LHS. Remaining 4 cuts are for RHS.

After stripping off factors of i from vertices & propagators, relations for scalar integrals:
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When a diagram has only one Cutskosky cut, instantly read off the phase space integral
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emitted graviton in radiation region. k ;) 7
Phase space volume vanishes near threshold. howan ' 7
Power counting predicts zero static limit.



Result for radaiated energy at 3rd-post-Minkowskian order

talk by Enrico Herrmann & Michael Ruf
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