
Integrals for post-Minkowskian classical dynamics

Motivation: amplitudes approach to two-body dynamics in general relativity.

Eikonal method, NR EFT, KMOC formalism, analytic continuation...

Post-Newtonian expansion: small-velocity limit. Integration methods mature.
(simple numbers, pi, zeta values etc.)
  -  4PN / 5-loop known, rapid progress at even higher orders.

Post-Minkowskian expansion: exact velocity dependence. Nontrival functions:
polylogarithms, elliptic integrals etc.

Tools: (1) expansion by regions.
                - exchanged graviton momentum ∼ �/R � m1,m2

v = 0 ∂/∂v v = 1

Connection between PN and PM integration methods: differential equations

PM: function in velocityPN boundary condition
(Taylor series in v)

Ultra-relativistic limit

Alternative direction?

Physically, iterated exchange builds
up classical momentum exchange.
(c.f. eikonal approximation,
 and e.o.m. in NR EFT)

Beneke, Smirnov

Mao Zeng, University of Oxford

Integrand construction: talk by Radu Roibian

Integration a key bottleneck.

Also: talks by Carlo Heissenberg, Ludovic Planté



Chetyrkin; Laporta...

(2) Integration-by-parts reduction. Complicated integrals reduced to simpler ones
      like scalar integrals.

With numerators from e.g. Feynman rules

s, t,m1,m2Rational functions of

(3) Differential equations, based on IBP.

(4) Reverse unitarity: cutting rules on steroids. Re-use loop integral techniques
     for phase space integrals.

Kotikov; Bern, Dixon, Kosower;
Gehrmann, Remmidi; Henn...

Anastasiou, Melnikov...

- Allows us to reuse methods for loop integrals, e.g. IBP, differential equations.



Asymptotic expansion of Feynman integrals

lim
|q|�|pi|

No brainer: Taylor expansion in |q| / |p|.

But how do you treat   ? It may be comparable with |q|, or |p|, or in between.l

|q| � |l| ∼ |p|.

(1) soft region

Taylor expansion in small then integrate over ALL|q|/|p|, |l|/|p|,
|q|, |l| � |p|.

l.

Method of regions: the full integral is a sum over two contributions.
[Beneke, Smirnov, '98]

(will fine-tune the expansion strategy later)

Contains non-analytic behavior, e.g.

Taylor expansion in small |q|/|p|, then integrate over ALL

(2) hard region Gives Taylor series in    . Contact interaction in position space.

l.

Later: for velocity expansion, will use alternative principal value / symmetrization prescription

Missing OVERLAP contributions; vanishes as scaleless integrals in dim. reg.,
in Beneke & Smirnov's expansion prescription.



But For example, the latter may

become small if 

|l| � |p1|
p1 is purely timelike while is purely spacelike.l

l2 � 2p1 · l !does NOT nessesarily imply

This may be a tiny part of integration volume, but the denominator diverges here...
Massive-massless scattering: special region avoided by contour deformation
[Akhoury, Saotome, Sterman, 1308.5204v3]
Fully massive generalization?

Symmetric parametrization for soft region

q

u1 · q = u2 · q = 0, u1 · u1 = u2 · u2 = 1,

u1 · u2 = y, q2 = −t

[Glauber; Polkinghorne; Neill & Rothstein]

dependence fixed by mass dimension

The only nontrivial parameter which the master integrals depend on.

Function of 3 variables ⟶ Function of 1 variable. Enormous reduction in complexity.

Rigorous justification for asymptotic expansions is intricate. For example, consider
the soft region,



Higher orders in the expansion: will have e.g.

squared linear
propagator

Recall that the more complicated integrals evarporate after IBP reduction.

a master
integral

All masters at one loop

bubble

Ibub =

linearized box linearized triangle
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Double line =
linear propagator

The entire one-loop 4-scalar amplitude is a linear combination of these integrals.

One-loop integrals in soft expansion

Ibox = Itri =

Initially done in opposite order of expansions, in 

Most well established for conservative dynamics.

Further series expansion around small-velocity limit.

Evaluating soft integrals: (1) velocity expansion

[Parra-Martinez, Ruf, MZ, '20].

[Cheung, Bern, Roiban, Solon, Shen, MZ, '19].



Again sum over expansions in several regions. At one and two loops, conservative dynamics
comes from only the potential region, in a suitable definition of potential region.

2u1 · l, −2u2 · l remain unexpanded

1

l2
=

1

−|�l |2
+ . . . ,

1

(q − l)2
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+ . . . ,

Specializing to frame u1 = (1, 0, 0, 0), u2 = (
�

1 + v2, 0, 0, v),

We have

well-defined contour integral in l0

�
d3�l

�
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(l0,�l ) ∼ (qv, q), q = (0, �q ).Linearized box integral in potential region: Taylor expansion:

Intuition: exchange of gravitons dominated by spatial momenta, of order |�� | ∼ |q| ∼ �/R.

�0 ∼ v|�� | ∼ v|q|.Energy component suppressed

�/R

q0

|�q |
|p|

|p|

�/R

|�q |
v �/R

�/R
q0 Further small-v expansionSmall-|q| expansion

v �/R

1/vLLeading
behavior (full dynamics)

conservative
dynamics

Ibox =

�/R



How about the triangle integal? It's a bit more complicated.

Itri =

The integral has no dependence on v (though IBP reduction coefficients do), making it strange to
talk about the potential region.
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Nevertheless, we use a symmetrization prescription, averaging over l0 ↔ −l0.

u1 = (1,�0 )2u1 · l = 2l0

l1 ≡ l = (l0,�l ) l2 ≡ q − l = (−l0, �q −�l ), q0 = 0

with

well known 3D
bubble integral

If using Beneke & Smrinov's prescription,
this is a scaleless integral set to zero; the
triangle integral would be fully captured
by quantum soft region.

One loop:

Two loops: l02l01 l03
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l02l01 l03 ∼ −1

3
(−2πi)3∼ 1

6
(−2πi)3

Our symmetrization prescription coincides with
CONSERVATIVE dynamics at 1 and 2 loops.



Three loops

l02 l03l01 l04 ∼ 1

24
(−2πi)3 ∼ 1

24
(−2πi)3

1

8
(−2πi)3

In simple case, can promote velocity series to exact functions.

Generally method: differential equations. Well established in loop integration literature.
Recently imported into post-Minkowskian gravity.

[Cheung, Bern, Roiban, Ruf, Solon, MZ, '19]First version:

Simplified version: soft expansion first, obtain DEs with only nontrivial dependece on v.

General structure of DEs: start with master integrals, grouped in a column vector �I .

∂�I /∂vDerivatives 

coefficients.

reduced to original set of masters, with rational (in Mandelstams)

∂�I

∂v
= M · �I .

singularity sturcture determines function space.

Energy integrals become well defined after summing over diagrams; can still assign
symmetry factors to individual diagrams after velocity expansion & IBP.

Evaluating soft integrals: (2) differential equations

Parra-Martinez, Ruf, MZ, '20.   Application in worldline PM EFT: Porto, Kalin, '20.
Solutions with soft boundary conditions: Di Vecchia, Heissenberg, Russo, Veneziano, '21,
Herrmann, Parra-Martinez, Ruf, MZ, '21.
Further development in soft DEs: Bjerrum-Bohr, Damgaard, Plante, Vanhove, '21



Example: 

Explains nontrivial magic cancellation at every higher order in v,
in direct expansion.

If working in soft region without truncation to potential region, RHS is a v-indep. constant,

leading order in v expansion
purely from potential region
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Box + crossed box = const. in both potential region and full soft region. Can we see this
at the level of differential equaitons?

See also [Bjerrum-Bohr, Damgaard, Plante, Vanhove, '21].
Combining in Feynman parametrization: Cristofoli, Damgaard, Di Vecchia, Heissenberg, '20]



[Bianchi, Leoni, '16; Kreer, Weinzierl, '21]s, t,m1,m2.

[Cheung, Bern, Roiban, Shen, Solon, MZ, '19]

H + H̄ in potential region:

DEs for unexpanded integrals, then take small-t limit in

H integral: known even before expansion, as a function of

[Di Vecchia, Heissenberg, Russo, Veneziano, '21; Herrmann, Parra-Martinez, Ruf, MZ, '21]

Calcuated from simplified DEs (along w/ all other 2-loop diagrams) in soft expansion:

All master integrals contained in these
diagrams and contact sub-diagrams

Iterated one-loop integrals one-loop × one-loopsymmetrization
trick reduces to
lower spacetime
dimension

[Parra-Martinez, Ruf, MZ, '20]

Soft integrals without further expansion into potential region:

Boundary conditions for soft region

(1) single-scale integrals, i.e. no velocity dependence.

Planar integrals have no singularities in the Euclidean region.
In practice, this means u-channel planar integrals are non-singular at any v < c.

v =
�

y2 − 1,And when such integrals are multiplied by

they have to vanish at y=1 (or y=-1 in terms of s-channel).

(2) Regularity conditions:

Two-loop case



(3) Leading small-v behavior from potential region

1

�2
π2

2
− 1

�

π3

12
+O(�0) . . .

leading term from potential region solving DE gives higher orders in v

Unitarity relates phase space integrals to virtual / loop integrals.

S = 1 + iT

SS† = 1 =⇒ 2 ImT = −i(T − T †) = TT †

Unitarity of S-matrix:

RHS is generally a sum over all s-channel Cutkosky cuts.

Phase space integrals for e.g. KMOC formalism



After stripping off factors of i from vertices & propagators, relations for scalar integrals:

When a diagram has only one Cutskosky cut, instantly read off the phase space integral

= 2 Im

Double box example again, but with a cut

emitted graviton in radiation region.
Phase space volume vanishes near threshold.
Power counting predicts zero static limit.

For example, in phi3 theory with a heavy scalar and a light scalar,

LHS. Remaining 4 cuts are for RHS.



Result for radaiated energy at 3rd-post-Minkowskian order

talk by Enrico Herrmann & Michael Ruf


