Grazing collisions and eccentric inspirals of black holes Ulrich Sperhake

DAMTP, University of Cambridge

Gravitational scattering, inspiral and radiation Galileo Galilei Institute, Firenze, 13 May 2021

Overview

- Introduction
- High-energy head-on collisions of black holes
- Grazing collisions of black holes
- Black-hole collisions in higher dimensions
- GW emission and recoil from unequal-mass eccentric BBHs
- Conclusions

1. Introduction and motivation

Black hole research areas

Astrophysics

Holography

BH properties

GW Physics

High-Energy Physics Fluid Analogies

Major goals in BH studies

- Model BHs in astrophysical environments: Kicks, Accretion etc.
- GW source modeling, template banks for LIGO, Virgo, KAGRA, LISA
- Model asymptotically AdS Black Holes
- Scattering threshold, GW emission in high-energy collisions
- Properties of BHs: Stability, Entropy, Ringdown etc.
- Probe environments of BHs: Scalar Fields, Modified Gravity

Methodology

- Analytic studies
- Perturbation theory, post-Newtonian, etc.

• Numerical Relativity: 3+1, BSSNOK, CCZ4 formulations etc.

2. High-energy head-on collisions of BHs

Does matter matter?

- Hoop conjecture ⇒ kinetic energy triggers BH formation
- Einstein + minimally coupled, massive complex scalar field
 "Boson stars" Pretorius & Choptuik '10

- BH formation threshold $\gamma_{\rm thr} = 2.9 \pm 10 \% \sim 1/3 \gamma_{\rm hoop}$
- Similar results for collisions of perfect fluid balls
 East & Pretorius '13, Rezzolla & Tanaki '13

Collisions of BHs in D=4

- Orbital hang-up:
- Campanelli et al, gr-qc/0604012
- Free paramerers:

Mass ratio $q = m_2/m_1$ Boost $\gamma = 1/\sqrt{1-v^2}$ Impact parameter b = L/PSpin (aligned only) *S*

• How are scattering threshold and radiated GW energy affected?

Collisions of BHs in D=4

- Orbital hang-up:
- Campanelli et al, gr-qc/0604012
- Free paramerers:

Mass ratio $q = m_2/m_1$ Boost $\gamma = 1/\sqrt{1-v^2}$ Impact parameter b = L/PSpin (aligned only) *S*

• How are scattering threshold and radiated GW energy affected?

Collisions of BHs in D=4

- Orbital hang-up:
- Campanelli et al, gr-qc/0604012
- Free paramerers:

Mass ratio $q = m_2/m_1$ Boost $\gamma = 1/\sqrt{1-v^2}$ Impact parameter b = L/PSpin (aligned only) *S*

• How are scattering threshold and radiated GW energy affected?

- For $v \rightarrow c$ kinetic energy dominates: Structure irrelevant
- Model particle collisions through BH collisions.

Determine energy loss in GWs

Sperhake et al, 0806.1738 Healy et al, 1506.06153

Sperhake et al, 1511.08209

q = 1	$E_{\rm rad}(c)/M = 12.7 \pm 1.5\%$
q = 1/2	$E_{\rm rad}(c)/M = 11.2 \pm 2.7\%$
q = 1/4	$E_{\rm rad}(c)/M = 11.6 \pm 3.0\%$
q = 1/10	$E_{\rm rad}(c)/M = 12.0 \pm 3.0\%$

3. Grazing collisions of BHs

D=4 grazing collisions: b = 0, $\vec{S} = 0$, $\gamma = 1.52$

- Radiated energy up to at least $\approx 35~\%~M$
- Immediate vs. Delayed vs. No merger

Sperhake et al, 0907.1252

Scattering threshold

• $b < b_{scat} \Rightarrow Merger$ $b > b_{scat} \Rightarrow Scattering$

• Numerical study: $b_{\text{scat}} = \frac{2.5 \pm 0.05}{v}M$ Shibata et al PRD 0810.4735

- Limit from Penrose construction: $b_{\rm scat} = 1.685~M$ Yoshino & Rychkov PRD hep-th/0503171
- Impact of structure of the colliding BHs?
 → Collide spinning BHs

Grazing collisions in D=4

- Spins: aligned, zero, anti aligned Sperhake et al PRL 1211.6114
- $b_{
 m scat}, E_{
 m rad}$: spin effects washed out as v
 ightarrow c

4. Black-hole collisions in D>4

Head-on collisions from rest: q = 1

(Thanks to Chris Moore)

Cook et al, 1709.10514

Head-on collisions from rest: $q \leq 1$

Cook et al, 1709.10514

Sperhake et al, 1909.02997

Scattering theshold in D=5

Okawa et al, 1105.3331

Super-Planckian regimes in BH collisions

Kretschmann scalar: exceeds AH value outside AH

Okawa et al, 1105.3331

Sperhake et al, 1909.02997

Gregory-Laflamme instability in D=7

 Collide 2 Myers-Perry BHs near threshold of merger

Andrade et al, 2011.03049

 Like GL in black strings
 Lehner & Pretorius, 1006.5960

5. Eccentric, unequal-mass BH binaries

Original Motivation: Black-hole kicks

- Anisotropic GW emission \Rightarrow recoil of remnant BH
 - Asymmetry through spin; super kick

González et al gr-qc/0702052, Campanelli et al gr-qc/0702133

Pretorius 0710.1338

Asymmetry through unequal masses
 González et al gr-qc/0610154

- Kick important for SMBH formation,
 BH populations, galaxy structure,...
- Eccentricity enhances super kicks US et al 1910.01598

Check the same for unequal-mass kicks

Setup

Non-spinning BH binaries with masses $M_1 \leq M_2$, $q := \frac{M_1}{M_2}$

• Vary D, p at const. binding energy $E_b = M_{ADM} - M_1 - M_2 = const$

Four sequences: sq2:3, sq1:2, lq1:2, sq1:3 With 3 mass ratios q = 2/3, q = 1/2, q = 1/3

 s = "short" (~ 3 orbits in qc limit), l = "long" (~ 6 Orbits) Long sequence lq1:2 to check for artefacts from short inspiral.
 No rigorous eccentricity estimate in GR Use 3PN (harmonic gauge) et Memmesheimer at al gr-qc/0407049

Results: sq2:3, sq1:3

Oscillatory dependence on eccentricity!

26

Results: sq1:2, lq1:2

Oscillatory dependence on eccentricity!

27

Summary of observations

Max kick at $e_t \sim 0.5$ Exceeds qc kick bysq2:3sq1:2lq1:2sq1:322 %22 %25 %12 %

- Oscillatory variation increases in frequency, magnitude for longer inspiral; high sensitivity for long inspirals?
 Fewer/less pronounced
 - Oscillations in $E_{\rm rad}, \ \chi_{\rm fin}$; Extrema not aligned.

- Oscillations in all partial recoils $v_{ ilde{\ell} \leq ilde{\ell}_0}$
- Higher-order terms $v_{\tilde{\ell}>2}$ systematically reduce kick

Interpretation

- Only "special" direction: apoapsis
- Goal: Measure BH infall direction relative to apoapsis
- Problem: neither rigorously defined. So approximate apoapsis $\approx x$ Axis; infall \sim kick direction (beaming!)
- Ideally expect 2π periodicity of $v_{\text{kick}}(\vartheta)$
- Must not forget apsidal precession (Mercury!), so only $\lesssim 2\pi$

29

First glimpse at waveform features

- Kick arises from overlap of multipoles!
- So expect features in $\psi_{\ell'm'}$ relative to $\psi_{\ell m}$
- Example: ψ_{33} versus ψ_{22} for:
- Better alignment for large kick
- Similar pattern for
 other v_{min} v_{max}
 configurations and
 other multipoles

lq1:2-p0537

lq1:2-p0567

Summary

- High-energy head-on collisions in D=4: $E_{\rm rad}/M$ up to 13%
- Grazing collisions in D=4: E_{rad}/M up to $\sim 50\%$ Inner structure of BHs washed out for large velocities Scattering threshold $b_{scat} = \frac{2.5 \pm 0.05}{v}M$
- GW emission in general weaker in higher dimensions
- Trans Planckian regions may occur outside horizons in D>4
- Max kick at $e_t \sim 0.5$; $\approx 12 25\%$ larger than qc result.
- Additional oscillations in $v_{kick}(e_t)$
- Oscillations stronger and more rapid in long inspirals.
 Suggests that kick and GW sensitively depend on e_t i.e.
 Infinitesimal de_t may cause finite change in v_{kick}, ψ_{lm}
 Kick variation due to angle of infall vs. apsidal direction

2. High-energy head-on collisions of BHs

v = 0.94 $\gamma = 2.93$

v = 0.94 $\gamma = 2.93$

4. Black-hole collisions in D>4

