Heavy Scattering Amplitudes

Rafael Aoude UCLouvain

GGI meeting on Gravitational scattering, inspiral and radiation 2021

UCLouvain

Based on

On-shell Heavy Particle Effective Theory RA, Kays Haddad and Andreas Helset JHEP 05 (2020) 051 [hep-th/2001.09164]

Tidal effects for spinning particles RA, Kays Haddad and Andreas Helset JHEP 03 (2021) 097 [hep-th/2012.05256]

Outline

Part 1

HQET and HBET from [Daamgard, Haddad, Helset] Massive spinor-helicity variables On-shell HPET variables and three-point amplitudes

Kerr black holes as heavy particles

Classical limits and spin-universality at tree-level

Hilbert series and tidal action construction

Scattering amplitudes for tidally deformed particles

Classical observables and eikonal phase

Use particle physics methods to calculate classical gravity

Here, we use Heavy-Quark Effective Theory

Heavy Quark Effective Theory

Limit of QCD describing heavy quark interacting with light degrees of freedom

heavy quark momenta

light d.o.f. carry momenta smaller than heavy quark mass

$$p^{\mu} = mv^{\mu} + k^{\mu}$$

where

$$v^2 = 1$$

 $|k^{\mu}| \sim \mathcal{O}(\Lambda_{\text{QCD}})$ where $\Lambda_{\text{QCD}} \ll m_Q$.

on-shell condition

$$v \cdot k = -\frac{k^2}{2m}$$

the residual momenta scales with hbar

Heavy Quark Effective Theory

Limit of QCD describing heavy quark interacting with light degrees of freedom

heavy quark momenta

light d.o.f. carry momenta smaller than heavy quark mass

$$p^{\mu} = mv^{\mu} + k^{\mu}$$

For the quark-fields

$$\psi(x) \to e^{-im_Q v \cdot x} \frac{1}{2}$$

QCD Lagrangian

 $|k^{\mu}| \sim \mathcal{O}(\Lambda_{\text{QCD}})$ where $\Lambda_{\text{QCD}} \ll m_Q$.

$$\frac{+v}{2}Q_v(x)$$

$$\bar{\psi}(i\mathcal{D} - m_Q)\psi \to i\bar{Q}_v v \cdot D\frac{1+\mathcal{V}}{2}Q_v$$

Heavy Black Hole Effective Theory

[Damgaard, Haddad, Helset, 19']

$$\bar{Q}$$

Propagators: spin-0 and spin-1/2

$$D_v^{s=0}(k) = \frac{i}{\hbar v \cdot k}$$

$$D_v^{s=\frac{1}{2}}(k) = \frac{i}{\hbar v \cdot k} \frac{1+\psi}{2}.$$

Explicit \hbar power-counting

Makes explicit the hbar dependence in loops

$$egin{aligned} &i\mathcal{M}_{ ext{bubble}}^{(2)}\sim rac{G^2}{\hbar^2}\hbar^4\int d^4ar{l}rac{1}{\hbar^2ar{l}^2}rac{1}{\hbar^2(ar{l}+ar{q})^2}+\mathcal{O}(\hbar^{-1})\ &=\mathcal{O}(\hbar^{-2}). \end{aligned}$$

$$\begin{split} i\mathcal{M}_{\text{triangle}}^{(2)} &\sim \frac{G^2}{\hbar^2} \hbar^4 \int d^4 \bar{l} \frac{1}{\hbar^2 \bar{l}^2} \frac{1}{\hbar^2 (\bar{l} + \bar{q})^2} \frac{1}{\hbar v \cdot (\bar{l} + \bar{k})} + \mathcal{O}(\hbar^{-2}) \\ &= \mathcal{O}(\hbar^{-3}). \end{split}$$

$$\begin{split} i\mathcal{M}_{(\text{crossed}-)\text{box}}^{(2)} &\sim \frac{G^2}{\hbar^2} \hbar^4 \int d^4 \bar{l} \frac{1}{\hbar^2 \bar{l}^2} \frac{1}{\hbar^2 (\bar{l} + \bar{q})^2} \frac{1}{\hbar v \cdot (\bar{l} + \bar{k}_1)} \frac{1}{\hbar v \cdot (\bar{l} + \bar{k}_2)} + \mathcal{O}(\hbar^{-3}) \\ &= \mathcal{O}(\hbar^{-4}). \end{split}$$

Long-range scattering of two heavy bodies

Long-range scattering has a similar scale hierarchy as HQET

The exchanged graviton momentum is much smaller than the mass of each object

Restoring hbar into the heavy momentum

$$p^{\mu} = m_Q v^{\mu} + \hbar \bar{k}^{\mu}.$$

[Damgaard, Haddad, Helset, 19']

Heavy Black-Hole Effective Theory (HBET) $p^{\mu} = m_Q v^{\mu} + \hbar \bar{k}^{\mu}$.

[Damgaard, Haddad, Helset, 19']

Using Lagrangians and Feynman Rules,

classical and leading quantum contributions at 1PM and 2PM for s \leq 1/2 were calculated.

Non-trivial job for higher spins...

On-shell Heavy Particle Effective Theory (HPET)

Massive spinor-helicity variables

[Arkani-Hamed, Huang, Huang. 17']

$$\begin{split} \det(p_{\alpha\dot{\beta}}) &= m^2 \to p_{\alpha\dot{\beta}} = \lambda^I_{\alpha}\tilde{\lambda}_{\dot{\beta}I} = \lambda^I_{\alpha}\epsilon_{IJ}\tilde{\lambda}^J_{\dot{\beta}} \\ \text{Rank 2 matrix} & \text{I,J are SU(2) li} \end{split}$$

Dirac spinors and polarization tensors [Ochirov 18']

$$u_{p}^{Aa} = \begin{pmatrix} \lambda_{p\alpha} \\ \tilde{\lambda}_{p\alpha} \\ \tilde{\lambda}_{p} \\ \tilde{\lambda}_{p\alpha} \\ \tilde{\lambda}_$$

e.g: minimal coupling
$$\mathcal{M}^{+|h|,s}_{\min}=(-1)^{2s+h}rac{g_0x^{+|h|}}{m^{2s}}\langle\mathbf{2}|$$

 $mx\langle q| = [q|p_1]$

 $\lambda^a_{\alpha} \leftrightarrow |p^a\rangle_{\alpha}$ $\tilde{\lambda}_{\dot{\beta}a} \leftrightarrow |p^a\rangle_{\alpha}$

(2) little group indices

Recover the massless variables in the highenergy limit

Bold notation = symmetrization over the LG indices

HPET spinor-helicity variables

Momentum associated

$$p_v = \begin{pmatrix} 0 & |p_v\rangle^I{}_I[p_v] \\ |p_v]_I{}^I\langle p_v| & 0 \end{pmatrix} = m_k p,$$

Explicit separation of spinless and spin effects at 3 points

$$\bar{u}_v u_v \sim \langle \mathbf{2}_v \mathbf{1}_v \rangle \sim [\mathbf{2}_v \mathbf{1}_v]$$

with
$$m_k \equiv \left(1 - \frac{k^2}{4m^2}\right)m$$

 $(\bar{u}_v \sigma_{\mu\nu} u_v) q^{\mu} \epsilon^{\nu}(q) \sim x \langle \mathbf{2}_v q \rangle \langle q \mathbf{1}_v \rangle \sim x^{-1} [\mathbf{2}_v q] [q \mathbf{1}_v]$

Massive spinor-helicity variables

[Arkani-Hamed, Huang, Huang. 17']

General 3-point amplitudes (any spin-s, helicity-h):

Positive helicity in the chiral basis

$$\mathcal{M}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \left[g_0 \langle \mathbf{21} \rangle^{2s} + g_1 \langle \mathbf{21} \rangle^{2s-1} \frac{x \langle \mathbf{2q} \rangle \langle q\mathbf{1} \rangle}{m} + \dots + g_{2s} \frac{(x \langle \mathbf{2q} \rangle \langle q\mathbf{1} \rangle)^{2s}}{m^{2s}} \right]$$

(similar for negative helicity)

Massive spinor-helicity variables

[Arkani-Hamed, Huang, Huang. 17']

General 3-point amplitudes (any spin-s, helicity-h):

Positive helicity in the chiral basis

$$\mathcal{M}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \left[g_0 \langle \mathbf{21} \rangle^{2s} + g_1 \langle \mathbf{21} \rangle^{2s-1} \frac{x \langle \mathbf{2q} \rangle \langle q\mathbf{1} \rangle}{m} + \dots + g_{2s} \frac{(x \langle \mathbf{2q} \rangle \langle q\mathbf{1} \rangle)^{2s}}{m^{2s}} \right]$$

Minimal coupling from high-energy limit:

$$\mathcal{M}_{\min}^{+|h|,s} = (-1)^{2s+h} \frac{g_0 x^{+|h|}}{m^{2s}} \langle \mathbf{21} \rangle^{2s},$$

(similar for negative helicity)

HPET spinor-helicity variables: Spin operator

Spin-Operator from the Pauli-Lubanski

$$S^{\mu} = -\frac{1}{2m} \epsilon^{\mu\nu\alpha\beta} p_{\nu} J_{\alpha\beta} \qquad \longrightarrow \qquad S^{\mu} = -$$

On-shell version

$$(S^{\mu})_{\alpha}^{\ \beta} = \frac{1}{4} \left[(\sigma^{\mu})_{\alpha\dot{\alpha}} v^{\dot{\alpha}\beta} - v_{\alpha\dot{\alpha}} (\bar{\sigma}^{\mu})^{\dot{\alpha}\beta} \right],$$

Spin vector defined in [Daamgard, Haddad, Helset]

$$S_v^{\mu} \equiv \frac{1}{2} \bar{u}_v(p_2) \gamma_5 \gamma^{\mu} u_v(p_1) \qquad \longrightarrow \qquad S_v^{\mu} =$$

[Aoude, Haddad, Helset, Jan 20']

 $-rac{1}{2}\epsilon^{\mu
ulphaeta}v_
u J_{lphaeta}$

At three-points

$$(q \cdot S)_{\alpha}^{\ \beta} = \frac{x}{2} |q\rangle \langle q|,$$

 $= \bar{u}_v(p_2) S^{\mu} u_v(p_1) = -2 \langle \mathbf{2}_v | S^{\mu} | \mathbf{1}_v \rangle = 2 [\mathbf{2}_v | S^{\mu} | \mathbf{1}_v].$

HPET spinor-helicity variables: Three-point

General massive 3-point in HPET variables (zero initial residual momentum) using the relations...

$$\langle \mathbf{21}
angle = \langle \mathbf{2}_v \mathbf{1}_v
angle + \frac{x}{2m} \langle \mathbf{2}_v q
angle \langle q \mathbf{1}_v
angle,$$

 $\mathbf{2}q
angle \langle q \mathbf{1}
angle = \langle \mathbf{2}_v q
angle \langle q \mathbf{1}_v
angle.$

We obtain

$$\mathcal{M}_{3}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \sum_{k=0}^{2s} g_{s,k}^{\mathrm{H}} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \left(\frac{x}{2m}\right)^{2s-k}$$
Purely spinless

[Aoude, Haddad, Helset, Jan 20']

Relation between the coeffs.

HPET spinor-helicity variables: Three-point

General massive 3-point in HPET variables (zero initial residual momentum) using the relations...

$$\langle \mathbf{21}
angle = \langle \mathbf{2}_v \mathbf{1}_v
angle + \frac{x}{2m} \langle \mathbf{2}_v q
angle \langle q \mathbf{1}_v
angle,$$

 $\langle \mathbf{2q}
angle \langle q \mathbf{1}
angle = \langle \mathbf{2}_v q
angle \langle q \mathbf{1}_v
angle.$

We obtain

$$\mathcal{M}_{3}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \sum_{k=0}^{2s} g_{s,k}^{\mathrm{H}} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \left(\frac{x}{2m}\right)^{2s-k}$$
Purely spinless

Minimal coupling

$$\mathcal{M}_{\text{HPET,min}}^{+|h|,s=\frac{1}{2}} = (-1)^{1+h} \frac{g_0 x^{|h|}}{m} \left[\langle \mathbf{2}_v \mathbf{1}_v \rangle + \frac{x}{2m} \langle \mathbf{2}_v q \rangle \right]$$

Relation between the coeffs.

 $\langle \langle q \mathbf{1}_v
angle
ight],$

Kerr Black Holes as heavy particles

Effective action for spinning gravitating bodies

$$S = \int d\sigma \left\{ -m\sqrt{u^2} - \frac{1}{2}S_{\mu\nu}\Omega^{\mu\nu} + L_{\rm SI}[u^{\mu}, S_{\mu\nu}, g_{\mu\nu}(x^{\mu})] \right\}$$

higher spin multipoles

$$L_{\rm SI} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \frac{C_{S^{2n}}}{m^{2n-1}} D_{\mu_{2n}} \dots D_{\mu_3} \frac{E_{\mu_1 \mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_{2n}}$$
$$+ \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{C_{S^{2n+1}}}{m^{2n}} D_{\mu_{2n+1}} \dots D_{\mu_3} \frac{B_{\mu_1 \mu_2}}{\sqrt{u^2}} S^{\mu_1} S^{\mu_2} \dots S^{\mu_{2n+1}}$$

Was matched to the 3-point amplitude

[Goldberger Rothstein, 06'] Porto 06', Levi Steinhoff 15', ...]

The WCs contain info about the internal structure of the body

for Kerr BHs

 $C_{S^k}^{\text{Kerr}} = 1 \text{ for all } k.$

[Chung, Huang, Kim, Lee, 19'] [Chung, Huang, Kim 19'] [Guevara, Ochirov, Vines, 19']

Kerr Black Holes as heavy particles

In the HPET variables (all incoming) ...

$$\mathcal{M}^{+2,s} = \sum_{a+b \leq s} \frac{\kappa m x^2}{2m^{2s}} C_{S^{a+b}} n^s_{a,b} \langle \mathbf{2}_{-v} \mathbf{1}_v \rangle^{s-a} \left(-x \frac{\langle \mathbf{2}_{-v} q \rangle \langle q \mathbf{1}_v \rangle}{2m} \right)^a [\mathbf{2}_{-v} \mathbf{1}_v]^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b, \qquad n^s_{a,b} \equiv \begin{pmatrix} s \\ a \end{pmatrix}^{s-b} \left(x^{-1} \frac{[\mathbf{2}_{-v} q][q \mathbf{1}_v]}{2m} \right)^b,$$

-1

= 1.

(s)

converting to the chiral basis

$$\mathcal{M}^{+2,s} = \frac{x^2}{m^{2s}} (-1)^{2s} \sum_{a+b \le 2s} \frac{\kappa m}{2} C_{S^{a+b}} n_{a,b}^s \langle \mathbf{2}_v \mathbf{1}_v \rangle^{2s-a-b} \left(\frac{x}{2m} \langle \mathbf{2}_v q \rangle \langle q \mathbf{1}_v \rangle \right)^{a+b}$$
Comparing with the general 3-pt HPET
$$\mathcal{M}_3^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \sum_{s}^{2s} g_{s,k}^{\mathrm{H}} \langle \mathbf{2}_v \mathbf{1}_v \rangle^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_v q \rangle \langle q \mathbf{1}_v \rangle \right)^k$$

$$\mathcal{M}_{3}^{+|h|,s} = (-1)^{2s+h} \frac{x^{|h|}}{m^{2s}} \sum_{k=0}^{2s} g_{s,k}^{\mathrm{H}} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \right)^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \right)^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \mathbf{1}_{v} \rangle^{2s-k} \right)^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{v} \rangle^{2s-k} \right)^{2s-k} \left(\frac{x}{2m} \langle \mathbf{2}_{$$

Focusing on the minimal coupling, and normalizing

$$egin{aligned} g_{s,k}^{\mathrm{H}} &= g_0 {2s \choose k} \ g_0 &= \kappa m/2, \end{aligned} \quad C_{S^k}^{\min} = {2s \choose k} \left[\sum_{j=0}^k {s \choose k-1}
ight]_{j=0}^k \left(s \choose k-1
ight)
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight)
ight]_{j=0}^k \left(s \choose k-1
ight)
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight)
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight)
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \choose k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \choose k-1
ight]_{j=0}^k \left(s \binom k
ight]_{j=0}^k \left(s \binom k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \binom k-1
ight) \left[s \binom k
ight]_{j=0}^k \left(s \binom k-1
ight]_$$

$$g_{s,k}^{\mathrm{H}} = \frac{\kappa m}{2} C_{S^k} \sum_{j=0}^k n_{k-j}^s$$

Minimal coupling in HPET, Precisely the multipoles of a Kerr BH

> (Obtained first up to O(1/s), then precisely with Hilbert space matching)

(no need for boost)

Why is the same spin-multipole?

Using traditional variables the spinor variables have both spin and spinless effects

$$\langle \mathbf{12} \rangle = -[\mathbf{12}] + \frac{1}{xm} [\mathbf{1q}][q\mathbf{2}]$$

While for HPET variables (for zero residual momenta) we have clear separation

$$\langle \mathbf{2}_v \mathbf{1}_v
angle = -[\mathbf{2}_v \mathbf{1}_v]$$

Although, the final and initial momenta differs by a null vector $p_2 = p_1 - q$ external states are associated with same momenta

and
$$[\mathbf{12}] = -\langle \mathbf{12} \rangle + \frac{x}{m} \langle \mathbf{1q} \rangle \langle q\mathbf{2} \rangle$$

$$\langle \mathbf{2}_v q \rangle \langle q \mathbf{1}_v \rangle = x^{-2} [\mathbf{2}_v q] [q \mathbf{1}_v]$$

$$p_{v,2} = \left(1 - \frac{q^2}{4m^2}\right) mv^{\mu} = mv^{\mu}.$$

Compton scattering

Using BCFW, with a shift on the massless legs. Same helicity case

$$\mathcal{M}(-\mathbf{1}^{s},\mathbf{2}^{s},q_{3}^{+2},q_{4}^{+2}) = \frac{1}{m^{2s}}\mathcal{M}(-\mathbf{1}^{0},\mathbf{2}^{0},q_{3}^{+2},q_{4}^{+2})\langle \mathbf{2}_{v}|^{2s}\exp\left[\frac{(q_{3}+q_{4})\cdot S}{m_{q_{3}+q_{4}}}\right]|\mathbf{1}_{v}\rangle^{2s},$$
$$\mathcal{M}(-\mathbf{1}^{0},\mathbf{2}^{0},q_{3}^{+2},q_{4}^{+2}) = \frac{\kappa^{2}}{8e^{4}}\frac{\langle 3|p_{1}|3]\langle 4|p_{1}|4]}{q_{3}\cdot q_{4}}\mathcal{A}(-\mathbf{1}^{0},\mathbf{2}^{0},q_{3}^{+1},q_{4}^{+1})^{2}.$$

Makes immediate the spin-exponentiation.

Clear separation between spinless and spin effects.

Extended to n-boson (same helicity)

Spin-universality

See also [Guevara, Ochirov, Vines 20'] [Chung, Huang, Kim, Lee, 19']

$$\begin{split} \mathcal{M}_{n+2}^{s} &= \frac{1}{m^{2s}} \mathcal{M}_{n+2}^{s=0} \langle \mathbf{2}_{v} |^{2s} \exp\left[\frac{1}{m_{q}} \frac{h}{|h|} \sum_{i=1}^{n} q_{i} \cdot S\right] |\mathbf{1}_{v} \rangle^{2s} \\ &= \frac{1}{m^{2s}} \mathcal{M}_{n+2}^{s=0} [\mathbf{2}_{v} |^{2s} \exp\left[\frac{1}{m_{q}} \frac{h}{|h|} \sum_{i=1}^{n} q_{i} \cdot S\right] |\mathbf{1}_{v} |^{2s}. \end{split}$$

Tidal effects for spinning particles

Tidal effects for spinning particles

[RA, Kays Haddad and Andreas Helset, Dec 20]

Hilbert series to enumerate all the number of each operator types

• On-shell amplitudes to guide

- Tidal spin-1/2 scattering amplitude at 2PM
- Classical observables

[based on previous spinless case by Haddad and Helset, 20']

and construct operator basis

Hilbert series to enumerate all the number of operators

The Hilbert series of 2 fermions-2 graviton

$$\mathcal{H}_{7+2n}^{C^{2}} = \lfloor n/2 + 1 \rfloor (C_{L}^{2} + C_{R}^{2}) (\psi\psi^{c} + \psi^{c\dagger}\psi^{\dagger}) D^{2n} + (n-1)C_{L}C_{R}(\psi\psi^{c} + \psi^{c\dagger}\psi^{\dagger}) D^{2n} + \frac{1}{2} (1 - (-1)^{n}) (C_{L}^{2}\psi\psi^{c} + C_{R}^{2}\psi^{c\dagger}\psi^{\dagger}) D^{2n},$$

$$\mathcal{H}_{6+2n}^{C^{2}} = \lfloor n/2 \rfloor (C_{L}^{2} + C_{R}^{2}) (\psi\psi^{\dagger} + \psi^{c}\psi^{c\dagger}) D^{2n-1} + (n-1)C_{L}C_{R}(\psi\psi^{\dagger} + \psi^{c}\psi^{c\dagger}) D^{2n-1}.$$

$$(2.7)$$

Number of operators of such type

No information on the Lorentz contraction

Need to construct a basis

Hilbert series to enumerate all the number of operators and construct operator basis

$$\sqrt{-g}\mathcal{L}_{\rm GR} = \sqrt{-g} \left[\bar{\psi}(ie^{\mu}_{\ a}\gamma^{a}D_{\mu} - m)\psi + \Delta\mathcal{L}_{\rm GR}^{\rm odd} + \Delta\mathcal{L}_{\rm GR}^{\rm even} \right],$$

Odd mass dimensions

$$\begin{split} \Delta \mathcal{L}_{\mathrm{GR}}^{\mathrm{odd}} &= \sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n/2 \rfloor} d_{1}^{(n,k)} \left(\bar{\psi} \overset{\leftrightarrow}{D}^{\alpha_{1}...\alpha_{2k}} \psi \right) \left(D_{\beta_{1}...\beta_{n-2k}} C^{\mu\nu\rho\sigma} \overset{\leftrightarrow}{D}_{\alpha_{1}...\alpha_{2k}} D^{\beta_{1}...\beta_{n-2k}} C_{\mu\nu\rho\sigma} \right) \\ &+ \sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n/2 \rfloor} d_{2}^{(n,k)} \left(\bar{\psi} \overset{\leftrightarrow}{D}^{\mu\nu\lambda\tau\alpha_{1}...\alpha_{2k}} \psi \right) \left(D_{\beta_{1}...\beta_{n-2k}} C_{\mu\rho\lambda\sigma} \overset{\leftrightarrow}{D}_{\alpha_{1}...\alpha_{2k}} D^{\beta_{1}...\beta_{n-2k}} C_{\nu\rho\tau\sigma} \right) \\ &+ \sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n/2 \rfloor} i d_{3}^{(n,k)} \left(\bar{\psi} \gamma_{5} \overset{\leftrightarrow}{D}^{\mu\nu\lambda\tau\alpha_{1}...\alpha_{2k+1}} \psi \right) \left(D_{\beta_{1}...\beta_{n-2k}} C_{\mu\rho\lambda\sigma} \overset{\leftrightarrow}{D}_{\alpha_{1}...\alpha_{2k+1}} D^{\beta_{1}...\beta_{n-2k}} \tilde{C}_{\nu\rho\tau\sigma} \right) \\ &+ \sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n/2 \rfloor} i d_{4}^{(n,k)} \left(\bar{\psi} \gamma_{5} \overset{\leftrightarrow}{D}^{\alpha_{1}...\alpha_{2k}} \psi \right) \left(D_{\beta_{1}...\beta_{n-2k}} C^{\mu\nu\rho\sigma} \overset{\leftrightarrow}{D}_{\alpha_{1}...\alpha_{2k}} D^{\beta_{1}...\beta_{n-2k}} \tilde{C}_{\mu\nu\rho\sigma} \right) \\ &+ \sum_{n=0}^{\infty} i e^{(n)} \left(\bar{\psi} \sigma^{\mu\nu} \overset{\leftrightarrow}{D}^{\rho\alpha_{1}...\alpha_{2n}} \psi \right) \left(C_{\mu\lambda\rho\tau} \overset{\leftrightarrow}{D}_{\sigma\alpha_{1}...\alpha_{2n}} C_{\nu} \overset{\vee}{\lambda\sigma\tau} \right). \end{split}$$

Hilbert series to enumerate all the number of operators and construct operator basis

$$\sqrt{-g}\mathcal{L}_{\rm GR} = \sqrt{-g} \left[\bar{\psi} (ie^{\mu}_{\ a}\gamma^{a}D_{\mu} - m)\psi + \Delta\mathcal{L}_{\rm GR}^{\rm odd} + \Delta\mathcal{L}_{\rm GR}^{\rm even} \right],$$

Even mass dimensions

$$\begin{split} \Delta \mathcal{L}_{\mathrm{GR}}^{\mathrm{even}} &= \sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n/2 \rfloor} i f_{1}^{(n,k)} \left(\bar{\psi} \gamma_{\mu} \overleftrightarrow{D}^{\nu \gamma \delta \alpha_{1} \dots \alpha_{2k}} \psi \right) \left(D_{\beta_{1} \dots \beta_{n-2k}} C^{\mu \rho \gamma \tau} \overleftrightarrow{D}_{\alpha_{1} \dots \alpha_{2k}} D^{\beta_{1} \dots \beta_{n-2k}} C_{\nu \rho \delta \tau} \right) \\ &+ \sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n/2 \rfloor} i f_{2}^{(n,k)} \left(\bar{\psi} \gamma_{\mu} \overleftrightarrow{D}^{\nu \gamma \alpha_{1} \dots \alpha_{2k}} \psi \right) \left(D_{\beta_{1} \dots \beta_{n-2k}} C^{\mu \rho \gamma \tau} \overleftrightarrow{D}_{\delta \alpha_{1} \dots \alpha_{2k}} D^{\beta_{1} \dots \beta_{n-2k}} C_{\nu \rho \delta \tau} \right) \\ &+ \sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n/2 \rfloor} f_{3}^{(n,k)} \left(\bar{\psi} \gamma_{5} \gamma_{\mu} \overleftrightarrow{D}^{\nu \gamma \delta \lambda \alpha_{1} \dots \alpha_{2k}} \psi \right) \left(D_{\beta_{1} \dots \beta_{n-2k}} C^{\mu \rho \gamma \tau} \overleftrightarrow{D}_{\lambda \alpha_{1} \dots \alpha_{2k}} D^{\beta_{1} \dots \beta_{n-2k}} \widetilde{C}_{\nu \rho \delta \tau} \right) \end{split}$$

 $-D_{\beta_{1..}}$

$$+\sum_{n=0}^{\infty}\sum_{k=0}^{\lfloor n/2 \rfloor} f_4^{(n,k)} \left(\bar{\psi}\gamma_5 \gamma_\mu \overset{\leftrightarrow}{D}{}^{\nu\lambda\alpha_1\dots\alpha_{2k}} \psi \right) \left(D_{\beta_1\dots\beta_{n-2k}} C^{\mu\rho\gamma\delta} \overset{\leftrightarrow}{D}_{\lambda\alpha_1\dots\alpha_{2k}} D^{\beta_1\dots\beta_{n-2k}} \tilde{C}_{\nu\rho\gamma\delta} \right) d\mu_{\lambda\alpha_1\dots\alpha_{2k}} d\mu_{$$

 $+D_{\beta_{1...}}$

$$..\beta_{n-2k}\tilde{C}^{\mu\rho\gamma\tau}\overset{\leftrightarrow}{D}_{\lambda\alpha_1...\alpha_{2k}}D^{\beta_1...\beta_{n-2k}}C_{\nu\rho\delta\tau}\bigg)$$

$$..\beta_{n-2k}\tilde{C}^{\mu\rho\gamma\delta}\overset{\leftrightarrow}{D}_{\lambda\alpha_1...\alpha_{2k}}D^{\beta_1...\beta_{n-2k}}C_{\nu\rho\gamma\delta}\right).$$

On-shell amplitudes to cross check

Amplitude basis for gravity

Helicity	Amplitude
(++++)	$[12]^4 [34] x^a y^{2b}, \qquad [12]^3 ([14]] [23] + [12]^4 [34] x^a y^{2b},$
(++)	$[12]^4 \langle {f 34} angle x^a y^{2b}$
(+-++)	$[1 ({f 3}-{f 4}) 2 angle^4[{f 3}{f 4}]x^ay^b$
(+++-)	$[12]^4 [3 (1-2) 4\rangle x^a y^{2b+1}$
(++-+)	$[12]^4 \langle 3 (1-2) 4] x^a y^{2b+1}$
(+-+-)	$[13]\langle 24 angle [1 (\mathbf{3-4}) 2 angle ^{3}x^{a}y^{b}$

where

 $x = s_{12}$ and $y = s_{13} - s_{23} + s_{24} - s_{14}$.

Used to check relation between operators which are not obvious off-shell

[Durieux and Machado, 19'] [Durieux, Kitahara, Machado, Shadmi, Weis

 $13][24])y^{2b+1}$

b

iss	,	20]
			- 5

Calculate the 2PM tidal spin-1/2 scattering amplitude

$$\Delta \mathcal{M}_{2}^{s=1/2} = G^{2} m_{2}^{2} S \sum_{j=0}^{\infty} \left(-\frac{q^{2}}{2} \right)^{j+2} \left[\mathcal{U}_{1} \mathcal{U}_{2} G_{j}^{(0)} - i\omega \mathcal{E}_{1} \mathcal{U}_{2} G_{j}^{(1,1)} + i\omega \mathcal{U}_{1} \mathcal{E}_{2} G_{j}^{(1,2)} \right. \\ \left. + \left(q \cdot S_{1} \right) \left(q \cdot S_{2} \right) G_{j}^{(2,1)} - q^{2} \left(S_{1} \cdot S_{2} \right) G_{j}^{(2,2)} + \omega q^{2} \left(v_{2} \cdot S_{1} \right) \left(v_{1} \cdot S_{2} \right) G_{j}^{(2,3)}$$

For example

where

$$egin{aligned} \mathcal{U}_1 &\equiv ar{u}(p_1-q)u(p_1) \equiv ar{u}_2 u_1, \ \mathcal{U}_2 &\equiv ar{u}(p_2+q)u(p_2) \equiv ar{u}_4 u_3, \ \mathcal{E}_i &\equiv \epsilon^{\mu
ulphaeta} p_{1\mu}p_{2
u}ar{q}_lpha S_{ieta}, \ \mathcal{E}_i^\mu &\equiv \epsilon^{\mu
ulphaeta} p_{i
u}ar{q}_lpha S_{ieta}, \end{aligned}$$

$$S_i^\mu \equiv rac{1}{2} ar{u}_{2i} \gamma_5 \gamma^\mu u_{2i-1},$$

$$\begin{split} G_{j}^{(1,1)} &= -\frac{e^{(j)}}{m_{2}} (4m_{1})^{2j} (1-\omega^{2})^{j} 16\alpha_{j+1} \\ &+ \sum_{k=0}^{j} \frac{f_{1}^{(j+k,k)}}{m_{1}m_{2}} (4m_{1})^{2k+2} (1-\omega^{2})^{k} \\ &\times \left[2(\omega^{2}-1)(\alpha_{k+2}-2\alpha_{k+1}) + (2\omega^{2}-1)2\alpha_{k} + (1-4\omega^{2})\alpha_{k+1} \right] \\ &+ \sum_{k=0}^{j} \frac{f_{3}^{(j+k,k)}}{2m_{1}m_{2}} (4m_{1})^{2k+4} (1-\omega^{2})^{k} \left[(4\omega^{2}-3)\alpha_{k+1} - 6(\omega^{2}-1)\alpha_{k+2} \right] \\ &+ \sum_{k=0}^{j} \frac{f_{4}^{(j+k,k)}}{m_{1}m_{2}} (4m_{1})^{2k+2} (1-\omega^{2})^{k} 8\alpha_{k+1}, \end{split}$$

Classical observables

$$H(\boldsymbol{q}, \boldsymbol{p}) = \sqrt{\boldsymbol{p}^2 + m_1^2} + \sqrt{\boldsymbol{p}^2 + m_2^2} + \langle \boldsymbol{n}_1 \boldsymbol{n}_2 | \left[\hat{V}(\boldsymbol{k}', \boldsymbol{k}, \hat{\boldsymbol{S}}_a) + \Delta \hat{V}(\boldsymbol{k}', \boldsymbol{k}, \hat{\boldsymbol{S}}_a)
ight] |$$

Eikonal phase: linear impulse, spin-kick and aligned scattering angle [Following Bern, Luna, Roiban, Shen, Zeng, 20']

Conservative two-body Hamiltonian

[Following Bern, Luna, Roiban, Shen, Zeng, 20']

Linear and angular impulses (KMOC)

[Following Kosower, Maybee, O'Connell, 18']

Linear and angular impulses (KMOC)

$$\begin{split} \Delta p_{1,\text{GR}}^{\mu} &= \frac{-\pi G^2 m_2}{8m_1 \sqrt{\omega^2 - 1}} \sum_{j=0}^{\infty} \left(-\frac{2}{b^2} \right)^{j+3} \frac{\Gamma[7/2 + j]}{\Gamma[-3/2 - j]} \left[-4m_1 m_2 G_j^{(j)} \right. \\ &+ 2\omega m_1 m_2^2 \epsilon_{\rho\nu\alpha\beta} v_2^{\nu} v_1^{\alpha} \langle S_1^{\beta} \rangle G_j^{(1,1)} \frac{1}{|\mathbf{b}|} \left((7 + 2j) \frac{b^{\mu} b^{\rho}}{b^2} - \Pi^{\mu} \right. \\ &+ 2\omega m_1^2 m_2 \epsilon_{\rho\nu\alpha\beta} v_1^{\nu} v_2^{\alpha} \langle S_2^{\beta} \rangle G_j^{(1,2)} \frac{1}{|\mathbf{b}|} \left((7 + 2j) \frac{b^{\mu} b^{\rho}}{b^2} - \Pi^{\mu} \right. \\ &- \left[\langle S_{1\nu} \rangle \langle S_{2\rho} \rangle G_j^{(2,1)} - \eta_{\nu\rho} \left(\langle S_1 \rangle \cdot \langle S_2 \rangle \right) G_j^{(2,2)} + \omega \eta_{\nu\rho} \left(v \right. \\ &\times \left((9/2 + j) \frac{b^{\mu} b^{\nu} b^{\rho}}{b^2} - \frac{3}{2} b^{(\mu} \Pi^{\nu\rho)} \right) \frac{2}{|\mathbf{b}|} \left(-\frac{2}{b^2} \right) (7/2 + j) \end{split}$$

And angular impulse.

$$\Delta S_1^{\mu} = \left\langle \! \left\langle i \int \hat{d}^4 q \hat{\delta} (2p_1 \cdot q) \hat{\delta} (2p_2 \cdot q) e^{-ib \cdot q} \left(-\frac{p_1^{\mu}}{m_1^2} q \cdot S_1 \right) \right\rangle \right\rangle$$

Working with covariant spin

final spinors $\bar{u}(p \pm \hbar \bar{q}) = \bar{u}(p) + \mathcal{O}(q).$ $\mathcal{U}_i = 2m_i + \mathcal{O}(q^2).$

 $\mathfrak{S}_1(p_1)\mathcal{A}(q) + [S_1^{\mu}(p_1), \mathcal{A}(q)] \bigg) \bigg\rangle,$ 11

commutator piece

Can use

$$\int \frac{d^2 \boldsymbol{q}}{(2\pi)^2} e^{-i\boldsymbol{q}\cdot\boldsymbol{b}} \frac{\pi^2}{|\boldsymbol{q}|} \left(\frac{\boldsymbol{q}^2}{2}\right)^{j+2} \hat{\mathbb{O}}^A(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{S}_a) = \hat{\mathcal{O}}^A(\boldsymbol{p}, \nabla_{\boldsymbol{b}}, \boldsymbol{S}_a) I_{j+2}(\boldsymbol{b}) \frac{\mathcal{N}}{4},$$

$$\hat{\mathcal{O}}^{(0)} = \mathbb{I}, \quad \hat{\mathcal{O}}^{(1,1)} = -(\boldsymbol{S}_1 \times \boldsymbol{p}) \cdot \nabla_{\boldsymbol{b}}, \quad \hat{\mathcal{O}}^{(1,2)} = -(\boldsymbol{S}_2 \times \boldsymbol{p}) \cdot \nabla_{\boldsymbol{b}},$$

 $\hat{\mathcal{O}}^{(2,1)} = -(\boldsymbol{S}_1 \cdot \nabla_{\boldsymbol{b}})(\boldsymbol{S}_2 \cdot \nabla_{\boldsymbol{b}}), \quad \hat{\mathcal{O}}^{(2,2)} = -(\boldsymbol{S}_1 \cdot \boldsymbol{S}_2) \nabla_{\boldsymbol{b}}^2, \quad \hat{\mathcal{O}}^{(2,3)} = -(\boldsymbol{p} \cdot \boldsymbol{S}_1)(\boldsymbol{p} \cdot \boldsymbol{S}_2) \nabla_{\boldsymbol{b}}^2.$

Eikonal operator

$$\Delta\chi_2 = 2G^2m_2^2\sum_{j=0}^\infty \hat{\mathcal{K}}_j(\omega,oldsymbol{p},
abla_{oldsymbol{b}},oldsymbol{S}_a)\,I_{j+2}(oldsymbol{b}),$$

$$\hat{\mathcal{K}}_{j}(\omega, \boldsymbol{p}, \nabla_{\boldsymbol{b}}, \boldsymbol{S}_{a}) \equiv 4E_{1}E_{2}\sum_{A}\Delta b_{2,j}^{A}(\omega)\hat{\mathcal{O}}^{A},$$

Eikonal phase

$$\chi_i = \frac{1}{4m_1m_2\sqrt{\omega^2 - 1}} \int \frac{d^{2-2\epsilon}\boldsymbol{q}}{(2\pi)^{2-2\epsilon}} e^{-i\boldsymbol{q}\cdot\boldsymbol{b}} \mathcal{M}'_i(\boldsymbol{q}),$$

Amplitude in the classical spin-structure basis

$$\hat{\mathbb{O}}^{(0)} = \mathbb{I}, \qquad \hat{\mathbb{O}}^{(1,1)} = L_q \cdot \hat{S}_1, \qquad \hat{\mathbb{O}}^{(1,2)} = L_q \cdot \hat{S}_2,$$

 $\hat{\mathbb{O}}^{(2,1)} = q \cdot \hat{S}_1 q \cdot \hat{S}_2, \qquad \hat{\mathbb{O}}^{(2,2)} = q^2 \hat{S}_1 \cdot \hat{S}_2, \qquad \hat{\mathbb{O}}^{(2,3)} = q^2 p \cdot \hat{S}_1 p \cdot \hat{S}_2,$
where $L_q \equiv i(p \times q).$

$$\int \frac{d^2 \boldsymbol{q}}{(2\pi)^2} e^{-i\boldsymbol{q}\cdot\boldsymbol{b}} \frac{\pi^2}{|\boldsymbol{q}|} \left(\frac{\boldsymbol{q}^2}{2}\right)^{j+2} \hat{\mathbb{O}}^A(\boldsymbol{p},\boldsymbol{q},\boldsymbol{S}_a) = \hat{\mathcal{O}}^A(\boldsymbol{p},\nabla_{\boldsymbol{b}},\boldsymbol{S}_a) I_{j+2}(\boldsymbol{b}) \frac{\mathcal{N}}{4},$$

Impact parameter operators

←

$$\hat{\mathcal{O}}^{(0)} = \mathbb{I}, \quad \hat{\mathcal{O}}^{(1,1)} = -(\boldsymbol{S}_1 \times \boldsymbol{p}) \cdot \nabla_{\boldsymbol{b}}, \quad \hat{\mathcal{O}}^{(1,2)} = -(\boldsymbol{S}_2 \times \boldsymbol{p}) \cdot \nabla_{\boldsymbol{b}},$$

 $\hat{\mathcal{O}}^{(2,1)} = -(\boldsymbol{S}_1 \cdot \nabla_{\boldsymbol{b}})(\boldsymbol{S}_2 \cdot \nabla_{\boldsymbol{b}}), \quad \hat{\mathcal{O}}^{(2,2)} = -(\boldsymbol{S}_1 \cdot \boldsymbol{S}_2) \nabla_{\boldsymbol{b}}^2, \quad \hat{\mathcal{O}}^{(2,3)} = -(\boldsymbol{p} \cdot \boldsymbol{S}_1)(\boldsymbol{p} \cdot \boldsymbol{S}_2) \nabla_{\boldsymbol{b}}^2.$

Classical observables from the eikonal phase

Eikonal operator

$$egin{aligned} \Delta\chi_2 &= 2G^2m_2^2\sum_{j=0}^\infty \hat{\mathcal{K}}_j(\omega,oldsymbol{p},
abla_b,oldsymbol{S}_a)\,I_{j+2}(oldsymbol{b}), & \hat{\mathcal{K}}_j(\omega,oldsymbol{p},
abla_b,oldsymbol{S}_a) &\equiv 4E_1E_2\sum_A\Delta b_{2,j}^A(\omega)\hat{\mathcal{O}}^A, \end{aligned}$$
Linear impulse and spin-kick $\Deltaoldsymbol{p}_\perp &=
abla_b\chi$ and $\Deltaoldsymbol{S}_a^i &= -\epsilon^{ijk}rac{\partial\chi}{\partialoldsymbol{S}_a^j}oldsymbol{S}_a^k, \end{aligned}$

 $\Delta p_{\perp} = \nabla_b \chi$ and $\Delta S_a = -\epsilon$ Linear impulse and spin-kick

$$egin{aligned} \Delta oldsymbol{p}_{\perp} &= -2G^2m_2^2\sum_{j=0}^\infty \hat{\mathcal{K}}_j(\omega,oldsymbol{p},
abla_{oldsymbol{b}},oldsymbol{S}_a)\left(
abla_{oldsymbol{b}}I_{j+2}(oldsymbol{b})
ight), \ \Delta oldsymbol{S}_a &= -2G^2m_2^2\sum_{j=0}^\infty \left(rac{\partial \hat{\mathcal{K}}_j(\omega,oldsymbol{p},
abla_{oldsymbol{b}},oldsymbol{S}_a)}{\partial oldsymbol{S}_a} imes oldsymbol{S}_a
ight) I_{j+2}(oldsymbol{b}). \end{aligned}$$

Scattering angle (aligned spin)

Matches the commutator piece of the angular impulse

$$\Delta heta = -rac{2G^2m_2^2}{|oldsymbol{p}|}\sum_{j=0}^\infty rac{2|oldsymbol{b}|}{(5+2j)}\hat{\mathcal{K}}_j(\omega,oldsymbol{p},
abla_b, oldsymbol{S}_a) I_{j+3}(oldsymbol{b}).$$

Conclusions

Introduced HPET variables to calculate classical gravity:

Seems natural; expansion done at operator level from start

Exact matching of the multipole expansion of a Kerr BH

Facilitates classical limit of tree-level amplitudes; Spin-Universality

Used EFT techniques to describe tidal effects for spinning particles

Expanded on recent description for spinless tidal

Used on-shell amplitudes to cross check the tidal action

Calculated several classical observables

UCLouvain

Thank you!

Hilbert Series for scalars

Contour integral of the plethystic exponential

$$\mathcal{H} = \int d\mu \frac{1}{P} \mathrm{PE}[\chi_{\phi}],$$

$$\begin{split} \chi_{\phi} &= \chi_{[1,(0,0)]}(\mathcal{D};\alpha,\beta), \qquad \qquad \chi_{[1,(0,0)]}(\mathcal{D};\alpha,\beta) = \mathcal{D}P(\mathcal{D};\alpha,\beta)(1-\mathcal{D}^{2}), \\ \chi_{F_{L}} &= \chi_{[2,(1,0)]}(\mathcal{D};\alpha,\beta), \qquad \qquad \chi_{[2,(1,0)]}(\mathcal{D};\alpha,\beta) = \mathcal{D}^{2}P(\mathcal{D};\alpha,\beta) \left[\chi_{(1,0)}(\alpha,\beta) - \mathcal{D}\chi_{(1/2,1/2)}(\alpha,\beta) + \chi_{[2,(0,1)]}(\mathcal{D};\alpha,\beta) = \mathcal{D}^{2}P(\mathcal{D};\alpha,\beta) \left[\chi_{(0,1)}(\alpha,\beta) - \mathcal{D}\chi_{(1/2,1/2)}(\alpha,\beta) + \chi_{[2,(0,1)]}(\mathcal{D};\alpha,\beta) = \mathcal{D}^{2}P(\mathcal{D};\alpha,\beta) \left[\chi_{(0,1)}(\alpha,\beta) - \mathcal{D}\chi_{(1/2,1/2)}(\alpha,\beta) + \chi_{[2,(0,1)]}(\mathcal{D};\alpha,\beta) - \mathcal{D}\chi_{(1/2,1/2)}(\alpha,\beta) + \chi_{[2,(0,1)]}(\mathcal{D};\alpha,\beta) - \mathcal{D}\chi_{(1/2,1/2)}(\alpha,\beta) + \chi_{[2,(0,1)]}(\mathcal{D};\alpha,\beta) = \mathcal{D}^{2}P(\mathcal{D};\alpha,\beta) \left[\chi_{(0,1)}(\alpha,\beta) - \mathcal{D}\chi_{(1/2,1/2)}(\alpha,\beta) + \chi_{[2,(0,1)]}(\mathcal{D};\alpha,\beta) - \mathcal{D}\chi_{(1/2,1/2)}(\alpha,\beta) + \chi_{[2,(0,1)]}(\mathcal{D};\alpha,\beta) + \chi_{[2,(0,1)]}($$

 $\chi_{(l_1,l_2)}(lpha,eta)$

$SO(4) \simeq SU(2)_L \times SU(2)_R$

$$\int d\mu_{\text{Lorentz}} = \left(\frac{1}{2\pi i}\right)^2 \oint_{|\alpha|=1} \frac{d\alpha}{2\alpha} (1-\alpha^2) \left(1-\frac{1}{\alpha^2}\right) \oint_{|\beta|=1} \frac{d\beta}{2\beta} d\beta$$

$$\mathrm{PE}_{\phi} = \exp\left[\sum_{r=0}^{\infty} z^{r+1} \frac{\phi^r}{r \mathcal{D}^{r \Delta_{\phi}}} \chi_{\phi}(x_1^r, \dots, x_k^r)\right],$$

$$\begin{split} \chi_{0}^{SU(2)}(\alpha) &= \chi_{l_{1}}^{SU(2)}(\alpha) \times \chi_{l_{2}}^{SU(2)}(\beta). & \chi_{1/2}^{SU(2)}(\alpha) &= 1, \\ \chi_{1/2}^{SU(2)}(\alpha) &= \alpha + \frac{1}{\alpha}, \\ \chi_{1}^{SU(2)}(\alpha) &= \alpha^{2} + 1 + \frac{1}{\alpha^{2}}, \\ \frac{d\beta}{2\beta}(1 - \beta^{2})\left(1 - \frac{1}{\beta^{2}}\right). \end{split}$$

Heavy Black-Hole Effective Theory (HBET)

Minimally coupled scalar:

$$\sqrt{-g}\mathcal{L}_{\rm sc-grav} = \sqrt{-g} \left(\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}m^{2}\phi^{2}\right)$$

Heavy-field limit

$$\phi \to \frac{1}{\sqrt{2m}} \left(e^{-imv \cdot x} \chi + e^{imv \cdot x} \chi^* \right)$$

The Lagrangian

$$\sqrt{-g}\mathcal{L}_{\rm HBET}^{s=0} = \sqrt{-g}\chi^* \left[g^{\mu\nu}iv_{\mu}\partial_{\nu} + \frac{1}{2}m(g^{\mu\nu}v_{\mu}v_{\nu})\right]$$

Linear propagators

$$D_v^{s=0}(k) = \frac{i}{\hbar v \cdot k}$$

[Damgaard, Haddad, Helset, 19']

 $p^{\mu} = m_Q v^{\mu} + \hbar k^{\mu}$

 $(\chi-1)-rac{1}{2m}g^{\mu
u}\partial_{\mu}\partial_{
u}\bigg]\chi+\mathcal{O}(1/m^2).$

Also obtained for s=1/2

Reparametrization invariance

The decomposition of heavy quark momentum is not unique $p^{\mu}=mv^{\mu}+k^{\mu}$

We can always transform

$$(v,k) \to (w,k') \equiv \left(v + \frac{\delta k}{m}, k - \delta k\right),$$

Which effect the variables as

$$\begin{aligned} |\mathbf{p}_{v}\rangle &= \left(1 - \frac{k^{\prime 2}}{4m^{2}}\right)^{-1} \left[\left(1 - \frac{k^{2}}{4m^{2}} + \frac{k \delta k}{4m^{2}}\right) |\mathbf{p}_{w}\rangle - \frac{\delta k}{2m} |\mathbf{p}_{v}\rangle \right] \\ |\mathbf{p}_{v}] &= \left(1 - \frac{k^{\prime 2}}{4m^{2}}\right)^{-1} \left[\left(1 - \frac{k^{2}}{4m^{2}} + \frac{k \delta k}{4m^{2}}\right) |\mathbf{p}_{w}] - \frac{\delta k}{2m} |\mathbf{p}_{v}\rangle \right] \end{aligned}$$

The S-matrix is reparametrizaion invariant

