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Motivation (I)

Scattering amplitudes are useful for the conservative regime of the inspiral
phase of the BBH/BNS/BHNS system1, using a suitable analytic
continuation between bound and unbound orbits[Kälin,Porto].
Can we extend this to the dissipative case?

How is the classical gravitational radiation
produced in the two-body scattering problem

represented at the quantum level?
What is the expression of the waveform

in terms of scattering amplitudes?

1
[Damour;Cheung,Solon,Rothstein;Bern,Cheung,Luna,Roiban,Parra-Martinez,Shen,Solon,Zeng,Hermann,Vanhove,Ruf,Plante’,Jakobsen,Kosmopoulos,

Buonanno,Bini,Geralico,Steinhoff,Mastrolia,Foffa,Sturani,Laporta,Blanchet,Henry,Faye,Levi,von Hippel,McLeod,Mougiakakos,Goldberger,Rothstein,
Maybee,O’Connell,Kosower,Vines,Veneziano,Di Vecchia,Heissenberg,Russo,Cristofoli,Bjerrum-Bohr,Damgaard,Aoude,Haddad,Helset,Sen,Laddha,Sahoo,
Li,Ridgway,Plefka,Mogull,Shi,Wang,Guevara,Ochirov,Huang,Kim,Chung,Lee...]
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Motivation (II)

Fresh look to an old subject: how does photon quantum scattering amplitude
contain information about the classical light ray scattering?

What are
the observables?

Bonus:Toy model for gravity!

Phenomenologically relevant for gravitational physics: Light deflection around
a classical object, superradiance, ...
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Classical limit for massive particles

The classical limit for external massive particles can be achieved by using
appropriate minimum-uncertainty wavefunctions which are localized on the
classical trajectory [Kosower,Maybee,O’Connell; Krivitski,Tsytovich]

φ (p) = Nm−1 exp

[
− p · u
~`c/`2

w

]
rest frame→ N ′ exp

(
− p2

2m2`2
c/`

2
w

)
where p is the 4-momentum, `c is the Compton wavelength and `w is related to
the intrinsic spread of the wavefunction.
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Classical limit for external massless particles?

Main problem: there is no rest frame for massless particles!

Theorem(Newton,Wigner): there is no well-defined (Lorentz-covariant) position
operator for massless particles

Solution:

Realize that a single massless particle is never classical: only an infinite
superposition of them can be! (→ Coherent state)
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Why coherent states?(I)

Toy Model: L(S) = 1
2∂µφ(x)∂µφ(x)− λj(x)φ(x)

Equation of motion �φ(x) = λj(x)φ(x):

φ(x) = φin(x) + λ

∫
d4x ′Gret (x− x′)j(x′)

= φout(x) + λ

∫
d4x ′Gadv(x− x′)j(x′)

where Gret (x)/Gadv(x) are the retarded/advanced propagators and φin(x) (resp.
φout(x)) is the field configuration at t → −∞ (resp.t → +∞). We have then

φout(x) = φin(x) + λ

∫
d4x ′GF(x − x ′)j(x ′)

where GF(x) is the Feynman propagator.
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Why coherent states?(II)

There must exist a unitary transformation which connects in and out states

φout(x) = S†φin(x)S |out〉 = S |in〉

Solution: S = exp

(
−iλ

∫
d4xφin(x)j(x)

)
This means that if we start at t → −∞ with a vacuum state (i.e. no incoming
wavepacket) we will create a coherent state

|out〉 = exp

(
−iλ

∫
d4xφin(x)j(x)

)
|0〉 =

= exp

(
−1

2

∫
dΦ(k)λ2|j(k)|2

)
exp

(
−iλ

∫
dΦ(k) j(k)a†(k)

)
︸ ︷︷ ︸
Infinite superposition of massless modes

|0〉
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Glauber Sudarshan P-representation and S-matrix

Theorem(Glauber,1963): Every quantum state of radiation in QFT (i.e. every
density matrix) can be written as a superposition of coherent states

ρ̂radiation =

∫
P(α) |α〉 〈α| d<(α)d=(α)

where for the classical case P(α) ≥ 0.

Unitarity of the S-matrix: pure states are mapped to pure states, so

P(α) = f (α) +
+∞∑
j=1

cjδ
2(α− αj)

(Hillery,1985) The superposition of pure states is trivial, i.e. a classical pure
state can be written as a single coherent state

P(α) = c?δ
2(α− α?)
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Example: Coherent states from soft expansion

At leading order in the soft expansion, one can study the interaction
hamiltonian of massive scalar particles minimally coupled with gravity in
asymptotic limit |t| → +∞ [Faddeev,Kulish; Ware,Saotome,Akhoury]

H(t) = H0 + V asy(t) = H0 −
∫

d3x hµν(t, ~x)T asy
µν

T asy
µν → point-particle stress tensor for a straight-line trajectory

Solving the asymptotic evolution equation for the potential V asy(t) gives an
evolution operator which generates a coherent state of soft gravitons

Cα,σ |0〉 =
∣∣ασp 〉 = exp

[∫
dΦ(p)

(
αp(p)a†σ(p)− h.c.

)]
|0〉

See also [Addazi,Bianchi,Veneziano;Ciafaloni,Colferai,Veneziano;
Monteiro,O’Connell,Veiga,Sergola]
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Classical light beam and coherent states (I)

Let’s choose the waveshape α(k) in such a way to have a localized beam of
light moving along the z-direction, and symmetrical around the z-axis

α(k) =
1

~3
|~k |(2π)3A0

√
2~ δσ‖(ω − kz/~)δσ⊥(kx/~)δσ⊥(ky/~)

where

δσ(k̄) ≡ 1

σ
√
π

exp

[
− k̄2

σ2

]

The expectation value of the number operator in a coherent state

Nγ =
〈
α+
∣∣Nγ ∣∣α−〉 =

∫
dΦ(k)|α(k)|2 k=~k̄,ᾱ=α~

3
2

=
1

~

∫
dΦ(k̄)|ᾱ(k̄)|2 .

is large in the classical limit Nγ � 1 .

The momentum carried by the classical wave

kµγ =
〈
α+
∣∣Kµ ∣∣α−〉 =

∫
dΦ(k)|α(k)|2 kµ k=~k̄,ᾱ=α~

3
2

=

∫
dΦ(k̄)|ᾱ(k̄)|2 k̄µ .

is finite in the classical limit.
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dΦ(k̄)|ᾱ(k̄)|2 k̄µ .

is finite in the classical limit.

Riccardo Gonzo (TCD) Waveforms from KMOC and coherent states 17 May 2021 11 / 26



Classical light beam and coherent states (I)

Let’s choose the waveshape α(k) in such a way to have a localized beam of
light moving along the z-direction, and symmetrical around the z-axis

α(k) =
1

~3
|~k |(2π)3A0

√
2~ δσ‖(ω − kz/~)δσ⊥(kx/~)δσ⊥(ky/~)

where

δσ(k̄) ≡ 1

σ
√
π

exp

[
− k̄2

σ2

]
The expectation value of the number operator in a coherent state

Nγ =
〈
α+
∣∣Nγ ∣∣α−〉 =

∫
dΦ(k)|α(k)|2 k=~k̄,ᾱ=α~
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Classical light beam and coherent states (II)

The expectation value of the field is〈
α+
∣∣Aµ(x)

∣∣α−〉 =
1√
~

∫
dΦ(k)

[
α(k)ε+,∗

µ (k)e−ik·x/~ + α∗(k)ε+
µ (k)e+ik·x/~]

σ‖→0
=
√

2A0<
[
e−iω(t−z)ε+,∗

µ (k̄0) e−(x2+y2)/(4`2
⊥)
]

where we require that the transverse momentum components should be
subdominant (analogue of the Goldilocks conditions for a localized wave)

ω = λ−1 � σ⊥ = `−1
⊥
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Factorization and Glauber complete coherence condition

For a single coherent state, Glauber’s complete coherence condition should
hold 〈

α+
∣∣Fµν(x)Fρσ(y)

∣∣α−〉 ' 〈α+
∣∣Fµν(x)

∣∣α−〉 〈α+
∣∣Fρσ(y)

∣∣α−〉

Check: for a constant waveshape (σ‖ → 0,σ⊥ → 0) we have〈
α+
∣∣Fµν(x)Fρσ(y)

∣∣α−〉 =
〈
α+
∣∣Fµν(x)

∣∣α−〉 〈α+
∣∣Fρσ(y)

∣∣α−〉
+ 4~∂[µην][σ∂ρ]

∫
dΦ(k̄) e−i k̄·(x−y) ,

so that asking the factorization implies exactly ~→ 0.
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Wave scattering and observables

The class of observables available for the scattering of a classical wave off a
massive particle is rich:

Field strength expectation value 〈out|Fµν |out〉

Classical differential cross section dσ
dΩ

Classical impulse for the massive scalar field 〈out|∆Pµφ |out〉

Classical impulse for the eikonal wave 〈out|∆Pµγ |out〉
Wave deflection angle ∆Θγ

Energy event shapes E(n̂) =

∫ +∞

−∞
du lim

r→∞
r2Tuu (u, r , n̂)

[Belitsky,Korchemsky,Sterman;G.,Pokraka]
→ connected to the amplitude of the waveform!
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Classical impulse

Theory: Scalar QED

Using the KMOC formalism we can write the impulse for the massive charged
particle as

〈∆pµ1 〉
= 〈ψw | i [Pµ1 ,T ] |ψw 〉+ 〈ψw |T †[Pµ1 ,T ] |ψw 〉
= Iµw(1) + Iµw(2)

where

|ψw 〉in =

∫
dΦ(p1) φ1(p1) e ib·p1/~|p1 α

η
2 〉in .
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Classical impulse in wave scattering (II)

The properties of the coherent state as a displacement operator

C†α,ηaρ(k)Cα,η = aη(k) + δηρα(k), C†α,ηa†ρ(k)Cα,η = a†η(k) + δηρα(k)

allow us to formulate the problem as an expansion around the background

〈∆pµ1 〉 :=

∫
dΦ(p1)dΦ(p′1)φ1(p1)φ∗1(p′1)e−i

q·b
~ 〈p′1| i [P

µ
1 ,T (A + Aclass

σ )] |p1〉+

+

∫
dΦ(p1)dΦ(p′1)φ1(p1)φ∗1(p′1)e−i

q·b
~ 〈p′1|T †(A + Aclass

σ )[Pµ1 ,T (A + Aclass
σ )] |p1〉

where q := p′1 − p1 and T (A + Aclass
σ ) is a short notation for the background

field expansion at the level of the interaction lagrangian.

Note: Iµw(1) is always proportional to the two point function in the classical

background α(k)!
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Classical impulse in wave scattering (II)

The properties of the coherent state as a displacement operator

C†α,ηaρ(k)Cα,η = aη(k) + δηρα(k), C†α,ηa†ρ(k)Cα,η = a†η(k) + δηρα(k)

allow us to formulate the problem as an expansion around the background

〈∆pµ1 〉 :=

∫
dΦ(p1)dΦ(p′1)φ1(p1)φ∗1(p′1)e−i

q·b
~ 〈p′1| i [P

µ
1 ,T (A + Aclass

σ )] |p1〉+

+

∫
dΦ(p1)dΦ(p′1)φ1(p1)φ∗1(p′1)e−i

q·b
~ 〈p′1|T †(A + Aclass

σ )[Pµ1 ,T (A + Aclass
σ )] |p1〉

where q := p′1 − p1 and T (A + Aclass
σ ) is a short notation for the background
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Classical field strength in Thomson scattering

Classically, we solve perturbatively the equations of motion:

dpµ

dτ
= g Fµν(x(τ))uν(τ) x(0) = u(0)τ

∂µFµν =

∫
dτ g uνδ

4(x − x(τ))

where Fµν = ∂[µAν] and Aµ,(−)(x) =
∫
dΦ(k1)α(k1)(ε−,∗µ (k1)e−ik1·x + h.c .).

The solution at order g2 is

Aν(x) = −g2

m

∫
dΦ(k1)α(k1)

δ(k1 · u − p1 · u)

k2
1 + iε

[
− εν (k1)

+
(u · ε (k1)) pν1 + (p1 · ε (k1)) uν

p1 · u + iε
− uν [(p1 · k1) (ε (k1) · u )]

(p1 · u + iε)2

]
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Classical field strength in Compton scattering (I)

The incoming state is

|ψ〉in =

∫
dΦ(p1)φ1(p1)e ib·p1/~

∣∣p1α
−〉

and using the KMOC formalism

〈∆Fµν(+)(x)〉 = i〈ψ|[Fµν(+),T ]|ψ〉+ 〈ψ|T †[Fµν(+),T ]|ψ〉

we get two types of terms up to g2

〈∆Fµν(+)(x)〉1 =
1

~3/2
2<
{∫

dΦ(k)dΦ(p1)dΦ(p′1)φ(p1)φ∗(p′1) e−i
b·q
~

×
[
k [µε(+)ν]∗〈p′1 α+

2 |a
†
+(k)T |p1 α

−
2 〉e
−ik·x/~]}
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Classical field strength in Compton scattering (II)

We cannot observe a forward scattered photon
[Frantz;Moncrief]: therefore we should restrict

the domain of Fµν to the scattered region!

Using the Compton
scattering

amplitude for the
evaluation of
〈∆Fµν(+)(x)〉1,DS

Agreement in the classical limit with the Thomson scattering!
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Waveform and localized detectors(I)

In the original KMOC paper global observables were introduced

Rµ ≡ 〈kµ〉 =in 〈ψ|S†KµS |ψ〉in

Achieving 4π coverage would make this a challenging measurement: we turn
to what we may call local observables, which can be measured with a
localized detector sitting somewhere on the celestial sphere. The paradigm
for such a measurement is that of the waveform W (t, ~n; ~x) of the emitted
radiation in direction ~n from an event at the coordinate origin.

The radiation’s spectral function f (ω, ~n) can be obtained from the waveform
via a Fourier transform,

f (ω, ~n; ~x) =

∫ +∞

−∞
dt W (t, ~n; ~x) e iωt
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Waveform and localized detectors(II)

Let’s consider two massive charged particles scattering each other

|ψ〉in =

∫
dΦ(p1)dΦ(p2)φ1(p1)φ2(p2)e i

b·p1
~ |p1p2〉

From 〈Fµν(x)〉 ≡in

〈
ψ
∣∣S†Fµν(x)S

∣∣ψ〉
in

we have, considering the linear
terms

〈Fµν(x)〉 =
1

~ 3
2

2<
∫

dΦ(k)
[
k[µ j̃ν](k)e−ik·x

]
where

j̃µ(k) ≡
∑
σ

∫
dΦ (p′1) dΦ (p′2) dΦ (p1) dΦ (p2)φ∗1 (p′1)φ∗2 (p′2)φ1 (p1)φ2 (p2)

×e−i
b·(p′1−p1)

~ ε∗,(σ)
µ (k) 〈p′1p′2kσ|T |p1p2〉
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Waveform and localized detectors(III)

Assuming that the measurement distance is much larger than the impact
parameter, so that there is a unique and well-defined direction, and using

Gret (x) = iθ
(
x0
) ∫

dΦ(k)
(
e−ik·x − e ik·x

)
=

1

4π|~x |
δ
(
x0 − |~x |

)

we get for x0 > 0

〈Fµν(x)〉 =

∫
d4yGret(x − y)

[
∂

∂yµ
jν(y)− ∂

∂yν
jµ(y)

]
=

= − i

4π|~x |

∫
d̂ωe−iωuk[µ j̃ν](k)

∣∣∣∣
k=(ω,ωx̂)

where u = x0 − |~x | is the retarded time(→ Spectral function).
This is the structure of the waveform written in terms of scattering
amplitudes! (see also [Maggiore;Jakobsen,Mogull,Plefka,Steinhoff;
Mougiakakos,Maria Riva,Vernizzi] for a complementary approach)
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Newman-Penrose Φ2

Contracting the field strength with an appropriate tetrad at infinity

K =
k

ω
= (1, n̂) M = ε+ M̄ = (ε+)∗ = ε− K · N = 1 = −M · M̄

we can define Φ2(ω, r , n̂) = Fµν(ω, r , n̂)M̄µNν . Schematically

Φ2 =
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EM memory effect (I)

The leading EM memory effect is related with the Weinberg soft factor

j̃µ(k)
ω→0'

∑
σ

∫
dΦ (p1) dΦ (p2) |φ1 (p1) |2|φ2 (p2) |2

×
∫

d̂4q1d̂4q2δ̂(2p1 · q1)δ̂(2p2 · q2)e−i
b·q1
~ ε∗,(σ)

µ (k)δ̂4(k − q1 − q2)

× g

[
ε∗,(σ)(k) · (p1 − q1)

k · (p1 − q1)
− ε∗,(σ)(k) · p1

k · p1
+ (1↔ 2)

]
〈p′1p′2|T |p1p2〉

Expanding the soft factor in the classical limit q1 = ~q̄1 we get

g

 qµ1︸︷︷︸
Impulse!

(
− 1

k · p1
ε∗,(σ)
µ (k) +

ε∗,(σ)(k) · p1

(k · p1)2
kµ

)
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EM memory effect (II)

We can then compute the leading expectation value of 〈Φ2〉

〈Φ2(ω ' 0, r , n̂)〉 =
g

4πr

[(
1

k · p1

)
I(1) · ε∗,(σ)

µ (k)

−
(
ε∗,(σ)(k) · p1

(k · p1)2

)
I(1) · k + (1↔ 2)

]

which is exactly the electromagnetic memory effect (we checked that it
agrees with the purely classical prediction, see also [Guevara, Bautista]).
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Summary and future directions

Since massless particles have no rest frame and due to Newton-Wigner
theorem, the classical limit requires to work with coherent states.

We can scatter coherent states with a definite waveshape and build a notion
of impulse and of field strength from KMOC formalism which connects
smoothly to the classical wave scattering observables. Interesting IR safe
observables defined for localized observers like the energy event shape.

The waveform and its spectral function have a natural expression in terms of
scattering amplitudes; the memory effect is naturally included in our
framework.

For the future: focus purely on the gravitational case. Understand better the
role of coherent states, classical exponentiation to calculate more efficiently
our observables in terms of on-shell data.
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