Gravitational Bremsstrahlung in the Post-Minkowskian Effective Field Theory

Massimiliano Maria Riva

Based on work with S. Mougiakakos and F. Vernizzi [arXiv:2102.08339]

Université Paris-Saclay, CNRS, CEA, Institut de physique théorique, 91191, Gif-sur-Yvette, France.

GGI Workshop on Gravitational scattering, inspiral, and radiation Florence, $17~{\rm May}~2021$

Outline

The Binary Inspiral Problem

Three phases, different approaches Post-Minkowskian: a complementary approach

Gravitational Bremsstrahlung with PM EFT

PM Effective Field Theory Diagrams and matching The amplitude Waveform direct space

Radiated observables

LO Radiated Linear Momentum LO Radiated Angular Momentum

Conclusions and Future directions

Three phases, different approaches

- Inspiral and ringdown phases studied using perturbation theory
- Merger phase studied using numerical relativity
- Interplay between the different phases (EOB, Inspiral-merger-ringdown)

Figure: LIGO and VIRGO scientific collaboration, Phys. Rev. Lett. **116** 6 (2016).

Inspiral phase

Inspiral phase contains most of the signal. Traditionally studied in the Post Newtonian (non-relativistic) regime $v \ll c$. L. Blanchet (2014) [1310.1528], (2019) [1812.07490] D. Bini and T. Damour (2017) [1706.06877]

Post-Minkowskian: a complementary approach

- Perturbative study in G while keeping the velocity fully relativistic
- One can still split in conservative + dissipative effects

 Traditional GR
 S. Kovacs and K. Thorne *Astrophys. J. 200 (1975) - 215,* 217 (1977) - 224 (1978) , K. Westpfahl and M. Goller Lett. *Nuovo Cim. 26 (1979) 573-576.*

• Scattering Amplitudes

C. Cheung, I. Z. Rothstein, M. P. Solon (2018) 1808.02489 , Z. Bern et al. (2019) [1908.01493], (2021) [2101.07254] , D. Kosower, B. Mayee, D. O'Connell (2019) [1811.10950] - E. Herrmann et al. (2021) [2101.07255]

Eikonal

P. Di Vecchia, C. Heissenberg, R. Russo, G. Veneziano (2020) [2008.12743], (2021) [2101.05772], [2104.03256]

• Worldline EFT

```
G. Kälin and R. A. Porto (2020) [2006.01184], [2007.04977], G. Mogull, J.
Plefka, J. Steinhoff (2021) [2010.02865], G. U. Jakobsen et al.
(2021)[2101.12688]
```

PM Effective Field Theory

Setting up our EFT

Expansion around Minkowski $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}/m_{\rm Pl}$

Implicit splitting in potential+radiation modes, flexibility (and care) in the $i\varepsilon$ prescription

G. Kälin and R. A. Porto (2020) [2006.01184]

$$\hbar = 1 \,, \quad c = 1 \,, \quad m_{\rm Pl} = 1/\sqrt{32\pi G} \,, \quad \eta_{\mu\nu} = {\rm diag}(+,-,-,-) \,, \quad \int_q \equiv \int \frac{d^4q}{(2\pi)^4} \, \, \label{eq:hamiltonian}$$

PM Effective Field Theory

Setting up our EFT

Expansion around Minkowski $g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}/m_{\rm Pl}$

Polyakov action reduces the point-particle vertices. G. Kälin and R. A. Porto (2020) [2006.01184]

$$\bigotimes^{\tau_a}_{a} = -\frac{im_a}{2m_{\rm Pl}} \int d\tau_a \int_q e^{-iq \cdot x_a(\tau_a)} \mathcal{U}^{\mu}_a(\tau_a) \mathcal{U}^{\nu}_a(\tau_a)$$

Isolate the powers of G

$$x_{a}^{\mu}(\tau_{a}) = b_{a}^{\mu} + u_{a}^{\mu}\tau_{a} + \delta^{(1)}x_{a}^{\mu}(\tau_{a}) + \dots$$
$$\mathcal{U}_{a}^{\mu}(\tau_{a}) = u_{a}^{\mu} + \delta^{(1)}u_{a}^{\mu}(\tau_{a}) + \dots$$

•
$$u_a = \lim_{\tau_a \to -\infty} \mathcal{U}_a^{\mu}(\tau_a) , \qquad b_a \cdot u_a = 0$$

- $\delta^{(n)}x_a^{\mu}$, $\delta^{(n)}u_a^{\mu}$ deviations from the straight motion at order G^n containing **both** conservative and radiation effects
- G. Kälin and R. A. Porto (2020) [2006.01184]

$$\begin{aligned} \tau_a & \quad \\ \bullet \text{LLLL} = -\frac{im_a}{2m_{\text{Pl}}} u_a^{\mu} u_a^{\nu} \int d\tau_a \int_q e^{-iq \cdot (b_a + u_a \tau_a)} \\ \tau_a & \quad \\ \bullet \text{LLLL} = -\frac{im_a}{2m_{\text{Pl}}} \int d\tau_a \int_q e^{-iq \cdot (b_a + u_a \tau_a)} \\ \times \left(2\delta^{(1)} u_a^{(\mu}(\tau_a) u_a^{\nu)} - i(q \cdot \delta^{(1)} x_a(\tau_a)) u_a^{\mu} u_a^{\nu} \right) \end{aligned}$$

Matching procedure

The pseudo Stress-Energy Tensor

$$= -\frac{i}{2m_{\rm Pl}} \int d^4x \, T^{\mu\nu}(x) h_{\mu\nu}(x) = -\frac{i}{2m_{\rm Pl}} \int_k \tilde{T}^{\mu\nu}(-k) \tilde{h}_{\mu\nu}(k)$$

Classical Amplitude and Asymptotic Waveform

$$\begin{aligned} \mathcal{A}_{\lambda}(k) &= -\frac{1}{2m_{\mathrm{Pl}}} \epsilon_{\mu\nu}^{*\lambda}(\mathbf{k}) \tilde{T}^{\mu\nu}(k) , \qquad \epsilon_{0\nu}^{\lambda} &= 0 , \ k^{\mu} \epsilon_{\mu\nu}^{\lambda} &= 0 , \ \eta^{\mu\nu} \epsilon_{\mu\nu}^{\lambda} &= 0 \\ h_{\mu\nu}(x) &= -\frac{1}{4\pi r} \sum_{\lambda=\pm 2} \int \frac{dk^0}{2\pi} e^{-ik^0(t-r)} \epsilon_{\mu\nu}^{\lambda}(\mathbf{k}) \mathcal{A}_{\lambda}(k)|_{k^{\mu} = k^0 n^{\mu}} \end{aligned}$$

The Amplitude is the only thing we need to compute.

LO amplitude

$$\gamma \equiv u_1 \cdot u_2, \qquad b \equiv b_1^{\mu} - b_2^{\mu}, \qquad \omega_a \equiv k \cdot u_a, \qquad \delta^{(n)}(\omega_a) = (2\pi)^n \delta^{(n)}(\omega_a).$$

NLO Amplitude

TI Qeek $\mathcal{A}_{\lambda}^{(2)}(k) = -\frac{m_1 m_2}{8 m_{p_1}^3} \epsilon_{\mu\nu}^{*\lambda}(\mathbf{n}) \bigg\{ \bigg| -2 \left(\gamma I_{(0)} + \omega_1 \omega_2 J_{(0)} \right) u_1^{\mu} u_2^{\nu}$ $+ \left(-\frac{2\gamma^2 - 1}{2} \frac{k \cdot I_{(1)}}{(\omega_1 + i\epsilon)^2} + \frac{2\gamma\omega_2}{\omega_1 + i\epsilon} I_{(0)} + 2\omega_2^2 J_{(0)} \right) u_1^{\mu} u_1^{\nu}$ $+\left(\frac{2\gamma^{2}-1}{\omega_{1}+i\epsilon}I^{\mu}_{(1)}+4\gamma\omega_{2}J^{\mu}_{(1)}\right)u^{\nu}_{1}+\frac{2\gamma^{2}-1}{2}J^{\mu\nu}_{(2)}\bigg]e^{ik\cdot b_{1}}\bigg\}+(1\leftrightarrow2)$

Retarded Boundary conditions

$$\frac{1}{x+i\epsilon} = P\left(\frac{1}{x}\right) - \frac{i}{2}\delta(x) \to \text{Other static contributions}$$

$$\begin{split} \mathcal{A}_{\lambda}^{(2)}(k) &= -\frac{m_1 m_2}{8 m_{\text{Pl}}^3} \epsilon_{\mu\nu}^{*\lambda}(\mathbf{n}) \bigg\{ \bigg[-2 \left(\gamma I_{(0)} + \omega_1 \omega_2 J_{(0)} \right) u_1^{\mu} u_2^{\nu} \\ &+ \left(-\frac{2\gamma^2 - 1}{2} \frac{k \cdot I_{(1)}}{(\omega_1 + i\epsilon)^2} + \frac{2\gamma \omega_2}{\omega_1 + i\epsilon} I_{(0)} + 2\omega_2^2 J_{(0)} \right) u_1^{\mu} u_1^{\nu} \\ &+ \left(\frac{2\gamma^2 - 1}{\omega_1 + i\epsilon} I_{(1)}^{\mu} + 4\gamma \omega_2 J_{(1)}^{\mu} \right) u_1^{\nu} + \frac{2\gamma^2 - 1}{2} J_{(2)}^{\mu\nu} \bigg] e^{ik \cdot b_1} \bigg\} + (1 \leftrightarrow 2) \end{split}$$

Two sets of master integrals

$$I_{(n)}^{\mu_1\dots\mu_n} \equiv \int_q \delta\left(q \cdot u_1 - \omega_1\right) \delta\left(q \cdot u_2\right) \frac{e^{-iq \cdot b}}{q^2} q^{\mu_1} \dots q^{\mu_n}$$
$$J_{(n)}^{\mu_1\dots\mu_n} \equiv \int_q \delta\left(q \cdot u_1 - \omega_1\right) \delta\left(q \cdot u_2\right) \frac{e^{-iq \cdot b}}{q^2(k-q)^2} q^{\mu_1} \dots q^{\mu_n}$$

- The first set can be solved analytically.
- The second set can be express as a one dimensional integration over a Feynman parameter.

Master Integrals

Integral I_0

$$I_{(0)} \equiv \int_{q} \delta\left(q \cdot u_{1} - \omega_{1}\right) \delta\left(q \cdot u_{2}\right) \frac{e^{-iq \cdot b}}{q^{2}}$$
$$= -\frac{1}{\gamma v} \int \frac{d^{2} \mathbf{q}_{\perp}}{(2\pi)^{2}} \frac{e^{i\mathbf{q}_{\perp} \cdot \mathbf{b}}}{|\mathbf{q}_{\perp}|^{2} + \frac{\omega_{1}^{2}}{\gamma^{2} v^{2}}} = -\frac{1}{2\pi \gamma v} K_{0} \left(\frac{|\mathbf{b}|\omega_{1}}{\gamma v}\right)$$

Integral J_0

$$\begin{split} J_{(0)} &\equiv \int_{q} \delta\left(q \cdot u_{1} - \omega_{1}\right) \delta\left(q \cdot u_{2}\right) \frac{e^{-iq \cdot b}}{q^{2}(k-q)^{2}} \\ &= \frac{1}{\gamma v} \int_{0}^{1} dy \, e^{-iyk \cdot b} \int \frac{d^{2}q_{\perp}}{(2\pi)^{2}} \frac{e^{iq_{\perp} \cdot b_{\perp}}}{\left[q_{\perp}^{2} + \frac{s^{2}(y)}{\gamma^{2}v^{2}}\right]^{2}} = \frac{|\mathbf{b}|^{2}}{4\pi\gamma v} \int_{0}^{1} dy \, e^{-iyk \cdot b} \frac{K_{1}\left(zf(y)\right)}{zf(y)} \\ s(y) &= \sqrt{(1-y)^{2}\omega_{1}^{2} + 2\gamma y(1-y)\omega_{1}\omega_{2} + y\omega_{2}^{2}} \end{split}$$

Master Integrals

Integral I_0

$$\begin{split} I_{(0)} &\equiv \int_{q} \delta\left(q \cdot u_{1} - \omega_{1}\right) \delta\left(q \cdot u_{2}\right) \frac{e^{-iq \cdot b}}{q^{2}} \\ &= -\frac{1}{\gamma v} \int \frac{d^{2} \mathbf{q}_{\perp}}{(2\pi)^{2}} \frac{e^{i\mathbf{q}_{\perp} \cdot \mathbf{b}}}{|\mathbf{q}_{\perp}|^{2} + \frac{\omega_{1}^{2}}{\gamma^{2} v^{2}}} = -\frac{1}{2\pi \gamma v} K_{0} \left(\frac{|\mathbf{b}|\omega_{1}}{\gamma v}\right) \end{split}$$

Integral J_0

$$\begin{split} J_{(0)} &\equiv \int_{q} \delta\left(q \cdot u_{1} - \omega_{1}\right) \delta\left(q \cdot u_{2}\right) \frac{e^{-iq \cdot b}}{q^{2}(k-q)^{2}} \\ &= \frac{1}{\gamma v} \int_{0}^{1} dy \, e^{-iyk \cdot b} \int \frac{d^{2} \boldsymbol{q}_{\perp}}{(2\pi)^{2}} \frac{e^{i\boldsymbol{q}_{\perp} \cdot \boldsymbol{b}_{\perp}}}{\left[\boldsymbol{q}_{\perp}^{2} + \frac{s^{2}(y)}{\gamma^{2}v^{2}}\right]^{2}} = \frac{|\mathbf{b}|}{4\pi} \int_{0}^{1} dy \, e^{-iyk \cdot b} \frac{K_{1}\left(|\mathbf{b}| \frac{s(y)}{\gamma v}\right)}{s(y)} \\ s(y) &= \sqrt{(1-y)^{2} \omega_{1}^{2} + 2\gamma y(1-y) \omega_{1} \omega_{2} + y \omega_{2}^{2}} \end{split}$$

$$b_2^{\mu} = 0 \,, \quad b_1^{\mu} = b^{\mu} \,, \quad u_2^{\mu} = \delta_0^{\mu} \,, \quad k^{\mu} = \omega n^{\mu} \,, \quad u_1^{\mu} = \gamma v^{\mu} = \gamma (1, v \mathbf{e}_v) \,, \quad \mathbf{e}_v \equiv \mathbf{v} / v \,, \quad \mathbf{e}_b = \mathbf{b} / |\mathbf{b}|$$

$$\mathcal{A}_{\lambda}^{(1)}(k) = -\frac{m_1}{2m_{\rm Pl}} \frac{\gamma v^2}{n \cdot v} \epsilon_{ij}^{*\lambda} \mathbf{e}_v^i \mathbf{e}_v^j \, \delta(\omega) e^{ik \cdot b} \,, \quad \mathcal{A}_{\lambda}^{(2)}(k) = -\frac{Gm_1m_2}{m_{\rm Pl}\gamma v} \epsilon_{ij}^{*\lambda} \mathbf{e}_I^i \mathbf{e}_J^j A_{IJ}(k) e^{ik \cdot b} \,,$$

$$\begin{split} A_{vv} &= c_1 K_0 \big(z(n \cdot v) \big) + i c_2 \Big[K_1 \big(z(n \cdot v) \big) - i \pi \delta \big(z(n \cdot v) \big) \Big] \\ &+ \int_0^1 dy \, e^{i y z v \mathbf{n} \cdot \mathbf{e}_b} \Big[d_1(y) z K_1 \big(zf(y) \big) + c_0 K_0 \big(zf(y) \big) \Big] \\ A_{vb} &= i c_0 \Big[K_1 \big(z(n \cdot v) \big) - i \pi \delta \big(z(n \cdot v) \big) \Big] + i \int_0^1 dy \, e^{i y z v \mathbf{n} \cdot \mathbf{e}_b} d_2(y) z K_0 \big(zf(y) \big) \\ A_{bb} &= \int_0^1 dy \, e^{i y z v \mathbf{n} \cdot \mathbf{e}_b} d_0(y) z K_1 \big(zf(y) \big) \end{split}$$

$$z \equiv \frac{|\mathbf{b}|\omega}{v} , \qquad f(y) \equiv \sqrt{(1-y)^2(n\cdot v)^2 + 2y(1-y)(n\cdot v) + y^2/\gamma^2}$$

$$c_0 = 1 - 2\gamma^2 , \qquad c_1 = -c_0 + \frac{3 - 2\gamma^2}{n\cdot v} , \quad c_2 = vc_0 \frac{\mathbf{n} \cdot \mathbf{e}_b}{n\cdot v}$$

$$d_0(y) = f(y)c_0 , \quad d_1(y) = \dots$$

$$\begin{aligned} \mathcal{A}_{\lambda}^{(2)}(k) &= -\frac{Gm_1m_2}{m_{\text{Pl}}\gamma v} \epsilon_{ij}^{*\lambda} \mathbf{e}_I^i \mathbf{e}_J^j A_{IJ}(k) e^{ik \cdot b} \\ A_{vv} &= c_1 K_0 \big(z(n \cdot v) \big) + ic_2 \Big[K_1 \big(z(n \cdot v) \big) - i\pi \delta \big(z(n \cdot v) \big) \Big] \\ &+ \int_0^1 dy \, e^{iyzv \mathbf{n} \cdot \mathbf{e}_b} \Big[d_1(y) z K_1 \big(zf(y) \big) + c_0 K_0 \big(zf(y) \big) \Big] \\ A_{vb} &= ic_0 \Big[K_1 \big(z(n \cdot v) \big) - i\pi \delta \big(z(n \cdot v) \big) \Big] + i \int_0^1 dy \, e^{iyzv \mathbf{n} \cdot \mathbf{e}_b} d_2(y) z K_0 \big(zf(y) \big) \\ A_{bb} &= \int_0^1 dy \, e^{iyzv \mathbf{n} \cdot \mathbf{e}_b} d_0(y) z K_1 \big(zf(y) \big) \end{aligned}$$

Consistency checks with S. Kovacs and K. Thorne Astrophys. J. 224 (1978)

- Coincides with the Forward limit, i. e. $\mathbf{k} \parallel \mathbf{v}$. In this limit $k \cdot b = 0$ and one can perform the y integral.
- Agreement in the small velocity limit i.e. $v \ll 1$

Waveform direct space

 $b_2^\mu = 0\,, \quad b_1^\mu = b^\mu\,, \quad u_2^\mu = \delta_0^\mu\,, \quad k^\mu = \omega n^\mu\,, \quad u_1^\mu = \gamma(1,v{\bf e}_v)\,, \quad {\bf e}_v \equiv {\bf v}/v\,, \quad {\bf e}_b = {\bf b}/|{\bf b}|$

Master Integral time domain

$$\int \frac{d\omega}{2\pi} \left\{ I_{(0)}, J_{(0)} \right\} e^{-i\omega(\mathbf{n}\cdot\mathbf{b}+t-r)} = \frac{1}{n\cdot u_1} \int_{\mathbf{q}} e^{i\mathbf{q}\cdot\tilde{\mathbf{b}}(t-r)} f\left(\tilde{\omega}, \mathbf{q}\right)$$
$$\tilde{\mathbf{b}}(t-r) \equiv \mathbf{b} + \frac{\gamma v}{n\cdot u_1} (t-r+\mathbf{b}\cdot\mathbf{n}) \qquad \tilde{\omega} \equiv -\frac{\gamma v}{n\cdot u_1} \mathbf{q}\cdot\mathbf{e}_v$$

Waveform G. U. Jakobsen et al. (2021)[2101.12688]

$$\begin{split} h^{(2)}_{\pm 2} &= \frac{m_1 m_2 G}{8 m_{\rm Pl} r} \int_{\mathbf{q}} e^{i \mathbf{q} \cdot \tilde{\mathbf{b}}} \left[\frac{q^i \mathcal{N}^i_{\pm}}{\mathbf{q}^2 \left(\mathbf{q} \cdot \mathbf{e}_v - i \epsilon \right)} + \frac{q^i q^j \mathcal{M}^{ij}_{\pm}}{\mathbf{q}^2 \left(\mathbf{q}^2 + \mathbf{q} \cdot L \cdot \mathbf{q} \right)} \right] \\ L^{ij} &\equiv 2 \frac{v}{n \cdot v} \mathbf{e}^{(i)}_v \mathbf{n}^{(j)} \\ \mathcal{N}^i_{\pm} &\equiv 4 \frac{\gamma v}{(n \cdot v)^2} (\boldsymbol{\epsilon}^{\pm} \cdot \mathbf{e}_v)^2 \left[(1 + v^2) n^i - 4v \, e^i_v \right] + 8 \frac{\gamma (1 + v^2)}{n \cdot v} (\boldsymbol{\epsilon}^{\pm} \cdot \mathbf{e}_v) \boldsymbol{\epsilon}^i_{\pm} \\ \mathcal{M}^{ij}_{\pm} &\equiv 16 \frac{\gamma v^4}{(n \cdot v)^3} (\boldsymbol{\epsilon}^{\pm} \cdot \mathbf{e}_v)^2 e^i_v e^j_v + 8 \frac{\gamma (1 + v^2)}{n \cdot v} \, \boldsymbol{\epsilon}^i_{\pm} \boldsymbol{\epsilon}^j_{\pm} - 32 \frac{\gamma v^2}{(n \cdot v)} (\boldsymbol{\epsilon}^{\pm} \cdot \mathbf{e}_v) e^{(i}_v \boldsymbol{\epsilon}^j_{\pm}) \end{split}$$

Radiated observables

 $u \equiv t - r$

$$h_{\mu\nu}(x) = -\frac{1}{4\pi r} \sum_{\lambda=\pm 2} \int \frac{dk^0}{2\pi} e^{-ik^0 u} \epsilon^{\lambda}_{\mu\nu}(\mathbf{k}) \mathcal{A}_{\lambda}(k)|_{k^{\mu}=k^0 n^{\mu}}$$

Linear and Angular momentum fluxes

$$\begin{aligned} P^{\mu}_{\rm rad} &= \int d\Omega \, du \, r^2 \, n^{\mu} \, \dot{h}_{ij} \dot{h}_{ij} \\ J^{i}_{\rm rad} &= \epsilon^{ijk} \int d\Omega \, du \, r^2 \left(2h_{jl} \dot{h}_{lk} - x_j \partial_k h_{lm} \dot{h}_{lm} \right) \end{aligned}$$

 $\dot{h}_{\mu\nu}(x) \propto \omega \mathcal{A}_{\lambda}(k) = \omega \mathcal{A}_{\lambda}(k)_{\text{finite}}, \qquad \mathcal{A}_{\lambda}(k)_{\text{finite}} = \mathcal{A}_{\lambda}(k) - \left(\begin{smallmatrix} \text{static} \\ \text{contributions} \end{smallmatrix} \right)$

A time derivative removes all static contributions

Different scaling

$$\begin{aligned} \mathcal{A}_{\lambda}^{(1)}(k) \propto \delta(\omega) \\ P_{\rm rad}^{\mu} &= O\left(G^{3}\right), \qquad J_{\rm rad}^{i} &= O\left(G^{2}\right) \end{aligned}$$

LO Radiated Linear Momentum

Momentum in terms of the Amplitude

$$P_{\mathrm{rad}}^{\mu} = \sum_{\lambda} \int_{k} \delta(k^{2}) \theta(k^{0}) k^{\mu} |\mathcal{A}_{\lambda}(k)_{\mathrm{finite}}|^{2}$$
$$= \frac{G^{3} m_{1}^{2} m_{2}^{2}}{|\mathbf{b}|^{3}} \frac{u_{1}^{\mu} + u_{2}^{\mu}}{\gamma + 1} \mathcal{E}(\gamma) + \mathcal{O}(G^{4})$$

Homogeneous mass dependence, result fixed by the probe limit S. Kovacs and K. Thorne Astrophys. J. 224 (1978) .

 $\mathcal{E}(\gamma)$ recently found in E. Herrmann et al. (2021) [2101.07255] and confirmed in P. Di Vecchia et al. (2021) [2104.03256]

$$\frac{\mathcal{E}(\gamma)}{\pi} = f_1 + f_2 \log\left(\frac{\gamma+1}{2}\right) + f_3 \frac{\gamma \operatorname{arcsinh}}{\sqrt{\gamma^2 - 1}} \sqrt{\frac{\gamma^2 - 1}{\gamma^2 - 1}}$$

$$\begin{split} f_1 &= \frac{210\gamma^6 - 552\gamma^5 + 339\gamma^4 - 912\gamma^3 + 3148\gamma^2 - 3336\gamma + 1151}{48\left(\gamma^2 - 1\right)^{3/2}}\\ f_2 &= -\frac{35\gamma^4 + 60\gamma^3 - 150\gamma^2 + 76\gamma - 5}{8\sqrt{\gamma^2 - 1}}\\ f_3 &= \frac{\left(2\gamma^2 - 3\right)\left(35\gamma^4 - 30\gamma^2 + 11\right)}{8\left(\gamma^2 - 1\right)^{3/2}} \end{split}$$

LO Radiated Linear Momentum

Momentum in terms of the Amplitude

$$\begin{aligned} P_{\mathrm{rad}}^{\mu} &= \sum_{\lambda} \int_{k} \delta(k^{2}) \theta(k^{0}) k^{\mu} \, |\mathcal{A}_{\lambda}(k)_{\mathrm{finite}}|^{2} \\ &= \frac{G^{3} m_{1}^{2} m_{2}^{2}}{|\mathbf{b}|^{3}} \frac{u_{1}^{\mu} + u_{2}^{\mu}}{\gamma + 1} \mathcal{E}(\gamma) + \mathcal{O}(G^{4}) \end{aligned}$$

Homogeneous mass dependence, result fixed by the probe limit S. Kovacs and K. Thorne Astrophys. J. 224 (1978) .

 $\mathcal{E}(\gamma)$ recently found in E. Herrmann et al. (2021) [2101.07255] and confirmed in P. Di Vecchia et al. (2021) [2104.03256]

$$\frac{\mathcal{E}(\gamma)}{\pi} = f_1 + f_2 \log\left(\frac{\gamma+1}{2}\right) + f_3 \frac{\gamma \operatorname{arcsinh}}{\sqrt{\gamma^2 - 1}}$$

$$f_{1} = \frac{210\gamma^{6} - 552\gamma^{5} + 339\gamma^{4} - 912\gamma^{3} + 3148\gamma^{2} - 3336\gamma + 1151}{48(\gamma^{2} - 1)^{3/2}}$$

$$f_{2} = -\frac{35\gamma^{4} + 60\gamma^{3} - 150\gamma^{2} + 76\gamma - 5}{8\sqrt{\gamma^{2} - 1}}$$

$$f_{3} = \frac{(2\gamma^{2} - 3)(35\gamma^{4} - 30\gamma^{2} + 11)}{8(\gamma^{2} - 1)^{3/2}}$$

$$P_{\rm rad}^{\mu} = \frac{G^3 m_1^2 m_2^2}{|\mathbf{b}|^3} \frac{u_1^{\mu} + u_2^{\mu}}{\gamma + 1} \mathcal{E}(\gamma) + \mathcal{O}(G^4)$$

$$\mathcal{E}(\gamma) = \frac{2|\mathbf{b}|^3}{\pi^2(\gamma^2 - 1)} \sum_{\lambda} \int d\Omega \int_0^\infty \omega^2 d\omega \left| \epsilon_{ij}^{*\lambda} \mathbf{e}_I^j \mathbf{e}_J^j A_{IJ}(k) \right|^2$$

- Analytic result for $\mathcal{E}(\gamma)$ cannot (yet) be found due to the involved integration in y.
- The computation is possible at virtually any PN order

$$\frac{\mathcal{E}}{\pi} = \frac{37}{15}v + \frac{2393}{840}v^3 + \frac{61703}{10080}v^5 + \frac{3131839}{354816}v^7 + \mathcal{O}(v^9)$$

This is in perfect agreement with E. Herrmann et al. (2021) [2101.07255]

Agreement with known results at 2PN once written in the CoM frame.
 L. Blanchet and G. Schaefer Mon. Not. Roy. Astron. Soc. (1989).

Spectral dependence

$$P_{\rm rad}^{\mu} = \frac{G^3 m_1^2 m_2^2}{|\mathbf{b}|^3} \frac{u_1^{\mu} + u_2^{\mu}}{\gamma + 1} \mathcal{E}(\gamma) + \mathcal{O}(G^4)$$

Spectral dependence

$$\mathcal{E}(\gamma) = \frac{2v^3}{\pi^2(\gamma^2 - 1)} \int d\Omega \int_0^\infty z^2 dz f(z, \Omega) \,, \qquad \qquad z \equiv \frac{|\mathbf{b}|\omega}{v}$$

Spectrum $f(z, \Omega)$ depends only on

$$\begin{cases} I_i^{(s)}, I_i^{(c)} \\ & \left\{ z, \Omega \right\} \equiv \int_0^1 dy \left\{ \sin(yzv\mathbf{n} \cdot \mathbf{e}_b), \cos(yzv\mathbf{n} \cdot \mathbf{e}_b) \right\} g_i(z, \Omega; y) \\ & g_0(z, \Omega; y) \equiv d_0(y)zK_1\left(zf(y)\right) \\ & g_1(z, \Omega; y) \equiv c_0K_0\left(zf(y)\right) + d_1(y)zK_1\left(zf(y)\right) \\ & g_2(z, \Omega; y) \equiv d_2(y)zK_0\left(zf(y)\right) \\ & a_{IJ} \equiv [(\mathbf{e}_{\theta} \cdot \mathbf{e}_I)(\mathbf{e}_{\theta} \cdot \mathbf{e}_J) + (\mathbf{e}_{\phi} \cdot \mathbf{e}_I)(\mathbf{e}_{\phi} \cdot \mathbf{e}_J)]/2 \end{cases}$$

 $\mathbf{e}_{I} = \left\{ \mathbf{e}_{v}, \mathbf{e}_{b} \right\}, \qquad \mathbf{e}_{\theta} = \left(\cos \theta \cos \phi, \cos \theta \sin \phi, -\sin \theta \right), \qquad \mathbf{e}_{\phi} = \left(-\sin \phi, \cos \phi, 0 \right)$

Soft Limit

$$\begin{split} \mathcal{A}_{\lambda}^{(2)}(k) &= -\frac{m_1 m_2}{8 m_{\text{Pl}}^3} \epsilon_{\mu\nu}^{*\lambda}(\mathbf{n}) \bigg\{ \left[-2 \left(\gamma I_{(0)} + \omega_1 \omega_2 J_{(0)} \right) u_1^{\mu} u_2^{\nu} \right. \\ &+ \left(-\frac{2 \gamma^2 - 1}{2} \frac{k \cdot I_{(1)}}{(\omega_1 + i\epsilon)^2} + \frac{2 \gamma \omega_2}{\omega_1 + i\epsilon} I_{(0)} + 2 \omega_2^2 J_{(0)} \right) u_1^{\mu} u_1^{\nu} \\ &+ \left(\frac{2 \gamma^2 - 1}{\omega_1 + i\epsilon} I_{(1)}^{\mu} + 4 \gamma \omega_2 J_{(1)}^{\mu} \right) u_1^{\nu} + \frac{2 \gamma^2 - 1}{2} J_{(2)}^{\mu\nu} \bigg] e^{ik \cdot b_1} \bigg\} + (1 \leftrightarrow 2) \end{split}$$

Small frequency limit, i.e. $|\mathbf{b}|\omega/v \ll 1$

Amplitude in the soft limit

The amplitude in the small frequency limit is insensitive to the gravitational self-interactions.

$$\mathcal{A}_{\lambda}^{(2)}(k)_{\omega \to 0} = -\frac{Gm_1m_2}{m_{\rm Pl}|\mathbf{b}|} \frac{i}{\gamma \omega n \cdot v} \epsilon_{ij}^{*\lambda} (c_2 \mathbf{e}_v^i \mathbf{e}_v^j + 2c_0 \mathbf{e}_v^i \mathbf{e}_b^i)$$

Soft Limit

$$\begin{split} \mathcal{A}_{\lambda}^{(2)}(k) &= -\frac{m_1 m_2}{8 m_{\rm Pl}^3} \epsilon_{\mu\nu}^{*\lambda}(\mathbf{n}) \bigg\{ \bigg[-\overline{2\left(\gamma I_{(0)} + \omega_1 \omega_2 J_{(0)}\right)} u_1^{\mu} u_2^{\nu} \\ &+ \bigg(-\frac{2\gamma^2 - 1}{2} \frac{k \cdot I_{(1)}}{(\omega_1 + i\epsilon)^2} + \frac{2\gamma \omega_2}{\omega_1 + i\epsilon} I_{(0)} + 2\omega_2^2 J_{(0)} \bigg) u_1^{\mu} u_1^{\nu} \\ &+ \bigg(\frac{2\gamma^2 - 1}{\omega_1 + i\epsilon} I_{(1)}^{\mu} + 4\gamma \omega_2 J_{(1)}^{\mu} \bigg) u_1^{\nu} + \frac{2\gamma^2 - 1}{2} J_{(2)}^{\mu\nu} \bigg] e^{ik \cdot b_1} \bigg\} + (1 \leftrightarrow 2) \end{split}$$

Small frequency limit, i.e. $|{\bf b}|\omega/v\ll 1$

Amplitude in the soft limit

The amplitude in the small frequency limit is insensitive to the gravitational self-interactions.

$$\mathcal{A}_{\lambda}^{(2)}(k)_{\omega \to 0} = -\frac{Gm_1m_2}{m_{\rm Pl}|\mathbf{b}|} \frac{i}{\gamma \omega n \cdot v} \epsilon_{ij}^{*\lambda} (c_2 \mathbf{e}_v^i \mathbf{e}_v^j + 2c_0 \mathbf{e}_v^i \mathbf{e}_b^i)$$

$$\mathcal{A}_{\lambda}^{(2)}(k)_{\omega \to 0} = -\frac{Gm_1m_2}{m_{\rm Pl}|\mathbf{b}|} \frac{i}{\gamma \omega n \cdot v} \epsilon_{ij}^{*\lambda} (c_2 \mathbf{e}_v^i \mathbf{e}_v^j + 2c_0 \mathbf{e}_v^i \mathbf{e}_b^i)$$

Spectrum in the Small frequency limit

$$\begin{aligned} \frac{dE_{\rm rad}}{d\omega}\Big|_{\omega\to 0} &= \frac{1}{2(2\pi)^3} \sum_{\lambda} \int d\Omega |\omega \mathcal{A}_{\lambda}(k)_{\omega\to 0}|^2 \\ &= \frac{4}{\pi} \frac{(2\gamma^2 - 1)^2}{\gamma^2 v^2} \frac{G^3 m_1^2 m_2^2}{|\mathbf{b}|^2} \mathcal{I}(v) + \mathcal{O}(G^4) \\ \mathcal{I}(v) &\equiv -\frac{16}{3} + \frac{2}{v^2} + \frac{2(3v^2 - 1)}{v^3} \operatorname{arctanh}(v) \end{aligned}$$

L. Smarr Phys. Rev. D 15 (1977) , P. Di Vecchia et al. (2021) [2101.05772] .

LO Radiated Angular Momentum

$$J_{\rm rad}^{i} = \epsilon^{ijk} \int d\Omega \, du \, r^2 \left(2h_{jl}\dot{h}_{lk} - x_j\partial_k h_{lm}\dot{h}_{lm} \right)$$
$$= \epsilon^{ijk} \int d\Omega \, r^2 \left(2h_{jl}^{(1)}\delta_{mk} - x_j\partial_k h_{lm}^{(1)} \right) \int du \, \dot{h}_{lm}^{(2)} + O\left(G^3\right)$$

Gravitational wave memory

LO Angular Momentum does not depend on gravitational self-interactions. T. Damour (2020) [2010.01641] .

$$J_{\rm rad}^{i} = \epsilon^{ijk} \int d\Omega r^2 \left(2h_{jl}^{(1)} \delta_{mk} - x_j \partial_k h_{lm}^{(1)} \right) \int du \, \dot{h}_{lm}^{(2)} + O\left(G^3\right)$$

LO Angular momentum

Polar coordinates $\mathbf{e}_{\theta} = (\cos \theta \cos \phi, \cos \theta \sin \phi, -\sin \theta), \mathbf{e}_{\phi} = (-\sin \phi, \cos \phi, 0),$ $\mathbf{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta).$

$$\mathbf{J}_{\mathrm{rad}} = \frac{2(2\gamma^2 - 1)}{\gamma v} \frac{G^2 m_1 m_2 J}{|\mathbf{b}|^2} \mathcal{I}(v)(\mathbf{e}_b \times \mathbf{e}_v) + \mathcal{O}(G^3)$$
$$\mathcal{I}(v) \equiv -\frac{16}{3} + \frac{2}{v^2} + \frac{2(3v^2 - 1)}{v^3} \operatorname{arctanh}(v)$$

T. Damour (2020) [2010.01641] .

Conclusions and Future directions

- Worldline EFT methods prove to be efficient and useful also in the PM study of the binary inspiral problem (unbound case)
- Small number of topologies thanks to the Polyakov action
- First stepping stone for a derivation of $P^{\mu}_{\rm rad}$ and ${\bf J}_{\rm rad}$ alternative to other methods

- New way of approaching integrals of the form J^{µ1...µn}_(n)
- Include Spin and finite-size effects in the radiative sector
- Build a map to connect unbound and bound quantities

Thank you for your attention!