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Motivations

Main objectives of this talk :

Show how the scattering amplitude computation can be simplified, by assembling
the integrands, so that

i delta functions (”velocity cuts”) appear, reducing the dimensionality of the integrals ;
ii we can clearly separate the iterations of sub-loop integrals that are cancelled in the

matching procedure vs the integrals really relevant for the 3PM observables ;

Point what is exactly the difference between the potential and the soft region
computations ;

Identify how we can make contact between the amplitude and the world-line
formalism and how the eikonal matching procedure works at the integral level.
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Definitions (1/2)

2-body interaction in both supergravity and Einstein gravity :

Soft expansion (small q expansion and Laurent expansion in ~) of the Feynman
integrals implies a classification of the different corrections in order of classicality.
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Definitions (2/2)

Going from q-space to b-space :

Eikonal in b-space (see also Carlo Heissenberg talk) :
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The box integral

M� = c�(Is + Iu) +O(|~q|2Is , |~q|2Iu) (4)

To perform the soft expansion we rescale l = |~q|l , q = |~q|uq and |~q| = ~|~q|
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c�|~q|D−6
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The one-loop amplitude

M1 =
cSC

~2

∫
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identification in b-space (after Fourier transform) :
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interpretation with velocity cuts :
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The two loop topologies

Laurent expansion in ~ :

Amplitude decomposition :

M2 =M��
2 +M/�

2 +M�.
2 +M..

2 +M//
2 +MH

2 +M�◦
2 +MSE

2 (9)
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Exploiting the symmetry of the integrand - the N = 8 supergravity case

We only need to compute (i) Jt and Ju at the first order in |~q|, (ii) Js + Ju up to the
third order in |~q|.
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Jt integral

contributes at leading order in |~q|, each matter line being reduced to two external
sources :

Final result :
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Js + Ju integral

The Js + Ju integral

Expansion in |~q|, and identification of delta functions gives

Js + Ju =
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Velocity cuts and eikonal matching in b-space

One-to-one match between velocity cuts and the eikonal matching decomposition :
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The final value for the deviation angle

Deviation angle at 3PM in N = 8 :
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Match with Di Vecchia, Heissenberg, Russo and Veneziano.
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The case of Einstein gravity

Natural question : Does the method work in Einstein gravity ? The answer is yes !

Main piece is the 3-graviton cut (see also Radu Roiban talk)

The integrand can then be decomposed as

M3−cut
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The double box contribution

Only one additional integral compared to N = 8, sum of non planar integrals, also
written in terms of delta functions
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Velocity cuts and eikonal matching in b-space - double box

As in N = 8, one-to-one match between the velocity cuts insertion and the eikonal
matching procedure :
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The box triangle and the box bubble topologies

Same thing for the box triangle and the box bubble topologies :
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The 3PM scattering angle in Einstein gravity

Decomposition at the level of the amplitude, from the match at each topology level :
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Match with Bern, Cheung, Roiban, Shen, Solon and Zeng for the potential contribution. Match
with Damour and Di Vecchia, Heissenberg, Russo and Veneziano for the radiation-reaction part.
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The relevant basis for 3PM observables

Set of integrals for relevant classical terms

∫
1

(p̄1.l2 ± iε)n1 (p̄2.l1 ± iε)n2 ((uq − l1)2)n3 ((uq + l2)2)n4 (l21 )n5 (l22 )n6

δ(p̄1.l1)δ(p̄2.l2)

((l1 + l2)2)n7
(21)

It reduces the dimensionality of the integrals

∫
1

(k.l1 ∓ iε)n1 (k.l2 ∓ iε)n2 ((uq − l1)2)n3 ((uq + l2)2)n4 ((l1)2)n5 (l22 )n6

1

((l1 + l2)2 − 2(σ − 1)k.l1k.l2)n7

(22)

Then determine a set of master integrals (we find 9) In, and an ODE system

d

dσ
~I(σ) = εM~I(σ) (23)
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Potential vs soft : The I5 integral (1/2)

1/ Velocity (σ − 1) expansion :

I5 ∼
∫

1

l21 (l1 − uq)2((l1 + l2)2 − 2(σ − 1)k.l1k.l2)
=
∞∑
n=0

∫
(2(σ − 1)(k.l1)(k.l2))n

l21 (l1 − uq)2(l1 + l2)2(n+1)
= 0

(24)

2/ Direct computation :

I5 ∼ m1m2

∫
δ(p̄1.l1)δ(p̄2.l2)

l21 (l1 − uq)2(l1 + l2)2
= −

iε(4πe−γE )2ε

32π3

( −1

4(σ2 − 1)

)ε
+O(ε2) (25)

What is the problem ? (24) is only valid when 2(σ− 1)(k.l1)(k.l2) << (l1 + l2)2, i.e. in
the potential region.
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Potential vs soft : The I5 integral (2/2)

Differential equation method

dI5

dσ
= −ε

2σ

σ2 − 1
I5 (26)

1/ Expansion in ε, I5 =
∑∞

n=N ε
nI5,n, with boundary condition I5(σ = 1) = 0 :

I5 = 0 (27)

2/ Direct computation :

I5 = c5(σ2 − 1)−ε (28)

where c5 is a constant of integration, that cannot be determined by the σ = 1 limit.

What is the problem ? Non-commutativity of limits, limσ→1 limε→0 I5 = c5 whereas
limε→0 limσ→1 I5 = 0.
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Potential vs soft : General solution for the integrals

Same method for all integrals of the basis, that can be written

In = IPn +

(
−1

4(σ2 − 1)

)ε
IRn (29)

Potential constants of integration at σ = 1 :

lim
σ→1
In = lim

σ→1
IPn (30)

IRn are the radiation-reaction terms. The result for I5 is sufficient to determine
entirely the value of all IRn terms (no need for additional constants of integration).
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Relation with the world line approach

Exact correspondence between the basis we use here and the basis used in the world
line approach (Kalin, Liu and Porto). It implies that radiation-reaction should be
present also in the world line formalism.

This correspondence tends also to prove that the basis with two velocity cuts that we
use here is in fact the minimal basis necessary to generate the 3PM observables.
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Conclusion and outlook

We have been able to develop a new method to compute the classical terms of the
2-body amplitudes in both N = 8 supergravity and Einstein gravity, up to 3PM. The
general idea is to exploit symmetries of the amplitude, and sum parts of the integrand
that generate velocity cuts when the soft expansion is performed. This method has
several advantages :

It decreases both the dimension of the integrals that have to be performed and
the number of master integrals that have to be computed to get the physical
observables ;

It is performed in a covariant formalism and do not need any velocity expansion
(that may have problems because of the non commutativity of ε→ 0 and σ → 1
limits) ;

It points exactly the differences between the soft and the potential regions,
showing also that the full soft region computation of the integrals is not more
complicated to achieve than the potential region one. No new integral is needed
to get the radiation-reaction terms, compared to the conservative result ;

There is a one-to-one correspondence between the classification in terms of
velocity cuts and the terms appearing in the eikonal matching, so that at higher
loop orders, it opens the way to more efficient computations, focusing directly on
the terms

∫
δ(p̄.l1)...δ(p̄.ln) contributing to the eikonal phase δn.
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