

Classical scattering of spinning black holes from quantum amplitudes

based on 1812.06895, 1906.10071 with Alfredo $\operatorname{GuevaRA}$ and Justin VINES

Alexander OCHIROV Math Institute, University of Oxford

GGI Workshop on Gravitational scattering, inspiral, and radiation Galileo Galilei Institute, Florence, May 20, 2021

Introduction

This workshop:

amazing results for classical binaries using ampl. methods

- This talk: classical scattering of spinning black holes
- Focus: connect 3pt amplitude to 1PM scattering Guevara, AO, Vines '19

Vines '17

Arkani-Hamed, Huang, Huang '17

Aim: elucidate spin aspects of classical limit Kosower, Maybee, O'Connell '18 Maybee, O'Connell, Vines '19 Bern, Luna, Roiban, Shen, Zeng '20 de la Cruz, Maybee, O'Connell, Ross '20 2 / 41

Outline

- 1. Building blocks: amplitudes
- 2. Recognizing spin operators: spin exponentiation
- 3. Classical limit: spin coherent states
- 4. 1PM for general spins
- 5. 2PM for aligned spins
- 6. Summary & outlook

Building blocks: amplitudes

3-pt gravitational vertices*

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu} \qquad \Rightarrow \qquad g^{\mu\nu} = \eta^{\mu\nu} + \kappa h^{\mu\nu} + \mathcal{O}(\kappa^2)$$

Spin 0: $\mathcal{L}_{\text{scalar}} = g^{\mu\nu} (\partial_{\mu}\varphi)^{\dagger} (\partial_{\nu}\varphi) - m^{2}\varphi^{\dagger}\varphi$ $\mathcal{L}_{\varphi\varphi h} = -\kappa h^{\mu\nu} (\partial_{\mu}\varphi^{\dagger}) (\partial_{\nu}\varphi)$

$$\begin{aligned} \text{Spin 1:} \\ \mathcal{L}_{\text{Proca}} &= -\frac{1}{2} V_{\mu\nu}^{\dagger} V^{\mu\nu} + m^2 V_{\mu}^{\dagger} V^{\mu} \\ \mathcal{L}_{VVh} &= \kappa h^{\mu\nu} \left(V_{\mu\sigma}^{\dagger} V_{\nu}^{\sigma} - m^2 V_{\mu}^{\dagger} V_{\nu} \right) \\ &\Rightarrow \\ V_1^{\dagger \lambda} &\stackrel{\lambda \mu}{\longrightarrow} V_2^{\mu} \\ &= -i\kappa \left[\left((p_1 \cdot p_2) + m^2 \right) \eta^{\lambda(\nu} \eta^{\rho)\mu} \\ &+ \eta^{\lambda\mu} p_1^{(\nu} p_2^{\rho)} - \eta^{\lambda(\nu} p_2^{\rho)} p_1^{\mu} - p_2^{\lambda} p_1^{(\nu} \eta^{\rho)\mu} \right] \end{aligned}$$

*Disclaimer: all momenta incoming

3-pt gravitational amplitudes

Spin 0:

$$3^{\pm}$$

$$= -i\kappa(p_1 \cdot \varepsilon_3)^2 = -\frac{i\kappa}{2}m^2 x_{\pm}^2$$

$$\overline{1} \cdot \cdot \cdot \underline{2}$$

where $x = \sqrt{2} \frac{p_1 \cdot \varepsilon_3}{m}$

Why does spinor helicity help?

Consider QFT amplitude $\mathcal{A}(\underline{1}^a, 3^-, 4^+, \dots, n^+, \overline{2}^b)$

Feynman rules give function of

- momenta p_i^{μ}
- ▶ pol. tensors $\varepsilon^{\mu}_{\pm}(p_i)$, $\varepsilon^{\mu\nu}_{\pm}(p_i)$ gauge-dep.!
- external spinors $\bar{v}^a(p_1)$, $u^b(p_2)$

But all vector, spinor indices must be contracted

Remaining indices \Leftrightarrow physical quantum numbers:

- ▶ helicities \pm \Leftrightarrow spins $\{\pm 1/2\}_p$, $\{\pm 1\}_p$, etc.
- ▶ SU(2) labels $a, b \Leftrightarrow \text{spins } \{\pm 1/2\}_q, \{\pm 1, 0\}_q, \text{ etc.}$

Crucial on-shell notion — LITTLE GROUP

Little groups

- Quantum fields \Leftarrow reps of SO(1,3)
- Quantum states \leftarrow reps of LITTLE GROUP
 - massless states \leftarrow SO(2)
 - massive states \leftarrow SO(3)

Little groups

Quantum fields \Leftarrow reps of SO(1,3) \subset SL(2, C)
Quantum states \Leftarrow reps of LITTLE GROUP's dbl cover
massless states \Leftarrow SO(2) \subset U(1)
massive states \Leftarrow SO(3) \subset SU(2)

Minor complication: spinorial reps use groups' double covers

U(1) and SU(2) arise naturally in spinor helicity

Massless vs massive spinor helicity

Arkani-Hamed, Huang, Huang '17

Spinor map: $p_{lpha\dot{eta}}=p_{\mu}\sigma^{\mu}_{lpha\dot{eta}}$	
MASSLESS	MASSIVE
$\det\{p_{\alpha\dot\beta}\}=0$	$\det\{p_{\alpha\dot\beta}\}=m^2$
$p_{\alpha\dot\beta}=\lambda_{p\alpha}\tilde\lambda_{p\dot\beta}\equiv p\rangle_\alpha [p _{\dot\beta}$	$p_{\alpha\dot{\beta}} = \lambda_{p\alpha}^{\ a} \epsilon_{ab} \tilde{\lambda}_{p\dot{\beta}}^{\ b} \equiv p^a\rangle_{\alpha} [p_a _{\dot{\beta}}$
$p^{\mu} = \frac{1}{2} \langle p \sigma^{\mu} p]$	$\det\{\lambda_{p\alpha}^{\ a}\} = \det\{\lambda_{p\dot{\alpha}}^{\ a}\} = m$ $p^{\mu} = \frac{1}{2}\langle p^{a} \sigma^{\mu} p_{a}]$
$p_{\alpha\dot\beta}\tilde\lambda_p^{\dot\beta}=0$	$p_{\alpha\dot\beta}\tilde\lambda_p^{a\dot\beta}=m\lambda_{p\alpha}^{\ \ a}$
$ \begin{array}{l} \langle p q \rangle = - \langle q p \rangle \Rightarrow \langle p p \rangle = 0 \\ [p q] = - [q p] \Rightarrow [p p] = 0 \\ \langle p q \rangle [q p] = 2p \cdot q \end{array} $	$ \begin{array}{l} \langle p^a q^b \rangle = - \langle q^b p^a \rangle \text{e.g.} \langle p^a p^b \rangle = -m \epsilon^{ab} \\ [p^a q^b] = -[q^b p^a] \text{e.g.} [p^a p^b] = m \epsilon^{ab} \\ \langle p^a q^b \rangle [q_b p_a] = 2p \cdot q \end{array} $
$SV(2) = 1,2$ spins $(a_1,, a_{2S})$	

10/41

Wavefunctions from helicity spinors

Massless:

$$\begin{split} \varepsilon_{p+}^{\mu} &= \frac{\langle q | \sigma^{\mu} | p]}{\sqrt{2} \langle q \, p \rangle} \\ \varepsilon_{p-}^{\mu} &= \frac{\langle p | \sigma^{\mu} | q]}{\sqrt{2} [p \, q]} \end{split} \Rightarrow \begin{cases} \varepsilon_{p}^{\pm} \cdot p = \varepsilon_{p}^{\pm} \cdot q = 0 \\ \varepsilon_{p+}^{\mu} \varepsilon_{p-}^{\nu} + \varepsilon_{p-}^{\mu} \varepsilon_{p+}^{\nu} = -\eta^{\mu\nu} + \frac{p^{\mu} q^{\nu} + q^{\mu} p^{\nu}}{p \cdot q} \\ \varepsilon_{p}^{h_{1}} \cdot \varepsilon_{p}^{h_{2}} = -\delta^{h_{1}(-h_{2})} \end{split}$$

Xu, Zhang, Chang '85

Massive:

$$\varepsilon_{p\mu}^{ab} = \frac{i\langle p^{(a}|\sigma_{\mu}|p^{b})]}{\sqrt{2}m} \qquad \Rightarrow \qquad \begin{cases} p \cdot \varepsilon_{p}^{ab} = 0\\ \varepsilon_{p\mu}^{ab} \varepsilon_{p\nu ab} = -\eta_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{m^{2}}\\ \varepsilon_{p}^{ab} \cdot \varepsilon_{pcd} = -\delta_{(c}^{(a}\delta_{d)}^{b)} \end{cases}$$

Guevara, AO, Vines '18 Chung, Huang, Kim, Lee '18

and (symmetrized) tensor products thereof

3-pt gravitational amplitudes

Spin 0:

Spin 1:

Minimal 3-pt amplitudes

Arkani-Hamed, Huang, Huang '17

$$\begin{array}{c} \langle \mathbf{1}^{a} \mathbf{2}^{b} \rangle & = -\frac{\kappa}{2} \frac{\langle \mathbf{1}^{a} \mathbf{2}^{b} \rangle^{\odot 2s}}{m^{2s-2}} x_{+}^{2} \\ \mathcal{M}_{3}(\overline{1}^{\{a\}}, \underline{2}^{\{b\}}, 3^{-}) &= -\frac{\kappa}{2} \frac{[\mathbf{1}^{a} 2^{b}]^{\odot 2s}}{m^{2s-2}} x_{-}^{2} \end{array}$$

$$x = \sqrt{2} \frac{p_1 \cdot \varepsilon_3}{m}$$
: $x_+ = \frac{\langle r|1|3]}{m \langle r3 \rangle}$, $x_- = -\frac{[r|1|3\rangle}{m[r3]} = -\frac{1}{x_+}$

NB! Independent of ref. momentum r

$$p_2^2 - m^2 = 2p_1 \cdot p_3 = \langle 3|1|3] = 0 \qquad \Rightarrow \qquad \exists x \in \mathbb{C} : |1|3\rangle = -mx|3]$$

Recognizing spin operators: spin exponentiation

Minimal-coupling 3-pt amplitudes

Angular-momentum structure inside:

$$\mathcal{M}_{3}^{(s,+)} = \mathcal{M}_{3}^{(0,+)} \frac{\langle 12 \rangle^{\odot 2s}}{m^{2s}} = \frac{\mathcal{M}_{3}^{(0,+)}}{m^{2s}} [2|^{\odot 2s} \exp\left(-i\frac{k_{\mu}\varepsilon_{\nu}^{+}\bar{\sigma}^{\mu\nu}}{p_{1}\cdot\varepsilon^{+}}\right)|1]^{\odot 2s}$$
$$\mathcal{M}_{3}^{(s,-)} = \mathcal{M}_{3}^{(0,-)} \frac{[12]^{\odot 2s}}{m^{2s}} = \frac{\mathcal{M}_{3}^{(0,-)}}{m^{2s}} \langle 2|^{\odot 2s} \exp\left(-i\frac{k_{\mu}\varepsilon_{\nu}^{-}\sigma^{\mu\nu}}{p_{1}\cdot\varepsilon^{-}}\right)|1\rangle^{\odot 2s}$$

Guevara, AO, Vines '18

inspired by soft theorems, e.g. Cachazo, Strominger '14

Angular-momentum exponential of Kerr

Stress-energy tensor (eff. source) for lin. Kerr BH:*

$$T^{\mu\nu}_{\mathsf{BH}}(x) = \frac{1}{m} \int d\tau \, p^{(\mu} \exp(a * \partial)^{\nu)}{}_{\rho} p^{\rho} \delta^{(4)}(x - u\tau), \qquad p^{\mu} = m u^{\mu}$$
$$T^{\mu\nu}_{\mathsf{BH}}(k) = \hat{\delta}(p \cdot k) p^{(\mu} \exp(-ia * k)^{\nu)}{}_{\rho} p^{\rho}, \qquad S^{\mu} = m a^{\mu}$$

Couple to on-shell graviton $h_{\mu\nu}(k) \rightarrow \hat{\delta}(k^2) \varepsilon_{\mu} \varepsilon_{\nu}$:

$$\begin{split} h_{\mu\nu}(k)T^{\mu\nu}_{\mathsf{BH}}(-k) &= \hat{\delta}(k^2)\hat{\delta}(p\cdot k)(p\cdot \varepsilon)^2\exp\!\left(\!-i\frac{k_{\mu}\varepsilon_{\nu}S^{\mu\nu}}{p\cdot \varepsilon}\right)\!,\\ \text{where} \qquad S^{\mu\nu} &= \epsilon^{\mu\nu\rho\sigma}p_{\rho}a_{\sigma} \end{split}$$

^{*}Hat notation absorbs straightforward powers of 2π .

Kerr \Leftarrow minimal coupling to gravity

•

Guevara, AO, Vines '18

$$h_{\mu\nu}(k)T_{\mathsf{BH}}^{\mu\nu}(-k) = \hat{\delta}(k^2)\hat{\delta}(p \cdot k)(p \cdot \varepsilon)^2 \exp\left(-i\frac{k_{\mu}\varepsilon_{\nu}S^{\mu\nu}}{p \cdot \varepsilon}\right)$$

Compare to

$$\mathcal{M}_3^{(s,+)} = \frac{\mathcal{M}_3^{(0,+)}}{m^{2s}} [2|^{\odot 2s} \exp\left(-i\frac{k_{\mu}\varepsilon_{\nu}^+\bar{\sigma}^{\mu\nu}}{p_1 \cdot \varepsilon^+}\right)|1]^{\odot 2s}$$

$$\mathcal{M}_3^{(s,-)} = \frac{\mathcal{M}_3^{(0,-)}}{m^{2s}} \langle 2|^{\odot 2s} \exp\left(-i\frac{k_{\mu}\varepsilon_{\nu}^-\sigma^{\mu\nu}}{p_1 \cdot \varepsilon^-}\right)|1\rangle^{\odot 2s}$$

Matching spin-induced multipole structure!

complementary picture: 1-body EFT of Kerr by Levi, Steinhoff '15 match to Wilson coeffs by Chung, Huang, Kim, Lee '18

Spin exponentiation in covariant form

Covariant formulation: $\mathcal{M}_{3}^{(s)} = \mathcal{M}_{3}^{(0)} \varepsilon_{2} \cdot \exp\left(-i\frac{k_{\mu}\varepsilon_{\nu}\Sigma^{\mu\nu}}{p_{1}\cdot\varepsilon}\right) \cdot \varepsilon_{1}$ Bautista, Guevara '19

Lorentz generators:

$$(\Sigma^{\mu\nu})^{\sigma_1\dots\sigma_s}{}_{\tau_1\dots\tau_s} = \Sigma^{\mu\nu,\sigma_1}{}_{\tau_1}\delta^{\sigma_2}_{\tau_2}\dots\delta^{\sigma_s}_{\tau_s} + \dots + \delta^{\sigma_1}_{\tau_1}\dots\delta^{\sigma_{s-1}}_{\tau_{s-1}}\Sigma^{\mu\nu,\sigma_s}{}_{\tau_s}, \qquad \Sigma^{\mu\nu,\sigma}{}_{\tau} = i[\eta^{\mu\sigma}\delta^{\nu}_{\tau} - \eta^{\nu\sigma}\delta^{\mu}_{\tau}]$$

Polarization tensors:

Guevara, AO, Vines '18, Chung, Huang, Kim, Lee '18

$$\varepsilon_{p\mu_1\dots\mu_s}^{a_1\dots a_{2s}} = \varepsilon_{p\mu_1}^{(a_1a_2}\dots\varepsilon_{p\mu_s}^{a_{2s-1}a_{2s})}, \qquad \varepsilon_{p\mu}^{ab} = \frac{i\langle p^{(a}|\sigma_{\mu}|p^{o})\rangle}{\sqrt{2}m}$$

Spinor-helicity formulation:

Guevara, AO, Vines '19

$$\mathcal{M}_{3}^{(s,+)} = \frac{\mathcal{M}_{3}^{(0)}}{m^{2s}} [2|^{\odot 2s} \exp\left(-i\frac{k_{\mu}\varepsilon_{\nu}^{+}\bar{\sigma}^{\mu\nu}}{p_{1}\cdot\varepsilon^{+}}\right)|1]^{\odot 2s} = \frac{\mathcal{M}_{3}^{(0)}}{m^{2s}} [2|^{\odot 2s} \exp\left(-2k\cdot a\right)|1]^{\odot 2s}$$

$$\mathcal{M}_{3}^{(s,-)} = \frac{\mathcal{M}_{3}^{(0)}}{m^{2s}} \langle 2|^{\odot 2s} \exp\left(-i\frac{k_{\mu}\varepsilon_{\nu}^{-}\sigma^{\mu\nu}}{p_{1}\cdot\varepsilon^{-}}\right)|1\rangle^{\odot 2s} = \frac{\mathcal{M}_{3}^{(0)}}{m^{2s}} \langle 2|^{\odot 2s} \exp(2k\cdot a)|1\rangle^{\odot 2s}$$

$$a^{\mu}{}_{\alpha}{}_{\beta}^{\beta} = \frac{1}{2m^{2}}\epsilon^{\mu\nu\rho\sigma}p_{\mathrm{a}\nu}\sigma_{\rho\sigma,\alpha}{}_{\beta}^{\beta}, \qquad a^{\mu,\dot{\alpha}}{}_{\dot{\beta}}^{\beta} = \frac{1}{2m^{2}}\epsilon^{\mu\nu\rho\sigma}p_{\mathrm{a}\nu}\bar{\sigma}_{\rho\sigma,\dot{\beta}}^{\dot{\alpha}}$$

$$\sigma^{\mu\nu} = \frac{i}{2}\sigma^{[\mu}\bar{\sigma}^{\nu]}, \qquad \bar{\sigma}^{\mu\nu} = \frac{i}{2}\bar{\sigma}^{[\mu}\sigma^{\nu]} \qquad \text{(and tensor generalizations)}$$

$$18/41$$

Spin quantization

Define Pauli-Lubanski vector operator Its 1-particle matrix elements are

$$S_{p\mu}^{\{a\}\{b\}} = (-1)^{s} \varepsilon_{p}^{\{a\}} \cdot \Sigma_{\mu} \cdot \varepsilon_{p}^{\{b\}}$$

= $-\frac{s}{2m} \{ \langle p^{(a_{1})} \sigma_{\mu} | p^{(b_{1})} \} + [p^{(a_{1})} \bar{\sigma}_{\mu} | p^{(b_{1})} \} \epsilon^{a_{2}b_{2}} \dots \epsilon^{a_{2s}b_{2s}} \}$

 $\Sigma_{\lambda} = \frac{1}{2m} \epsilon_{\lambda\mu\nu\rho} \Sigma^{\mu\nu} p^{\rho}$

Spin quantized explicitly:

$$\frac{\varepsilon_{p\{a\}} \cdot \Sigma^{\mu} \cdot \varepsilon_{p}^{\{a\}}}{\varepsilon_{p\{a\}} \cdot \varepsilon_{p}^{\{a\}}} = \begin{cases} ss_{p}^{\mu}, & a_{1} = \dots = a_{2s} = 1, \\ (s-1)s_{p}^{\mu}, & \sum_{j=1}^{2s} a_{j} = 2s+1, \\ (s-2)s_{p}^{\mu}, & \sum_{j=1}^{2s} a_{j} = 2s+2, \\ \dots & & \\ -ss_{p}^{\mu}, & a_{1} = \dots = a_{2s} = 2, \end{cases}$$

in terms of unit spin vector

$$s_{p}^{\mu} = -\frac{1}{2m} \{ \langle p_{1} | \sigma^{\mu} | p^{1}] + [p_{1} | \bar{\sigma}^{\mu} | p^{1} \rangle \} \qquad p \cdot s_{p} = 0$$
$$= \frac{1}{2m} \bar{u}_{p1} \gamma^{\mu} \gamma^{5} u_{p}^{1} = -\frac{1}{2m} \bar{u}_{p2} \gamma^{\mu} \gamma^{5} u_{p}^{2} \qquad s_{p}^{2} = -1$$

Spin asymmetry of chiral reps

Puzzle:

two reps of $\mathcal{M}_3^{(s,+)} = \frac{\mathcal{M}_3^{(0)}}{m^{2s}} \langle 21 \rangle^{\odot 2s} = \frac{\mathcal{M}_3^{(0)}}{m^{2s}} [2|^{\odot 2s} e^{-2k \cdot a}|1]^{\odot 2s}$ seem to depend differently on a^{μ}

Fix:

Guevara, AO, Vines '18

"divide" by $\lim_{s \to \infty} \varepsilon_2 \cdot \varepsilon_1 = \lim_{s \to \infty} \frac{1}{m^{2s}} \langle 2|^{\odot 2s} e^{k \cdot a} |1\rangle^{\odot 2s} = \lim_{s \to \infty} \frac{1}{m^{2s}} [2|^{\odot 2s} e^{-k \cdot a} |1]^{\odot 2s}$

Hint:

Levi, Steinhoff '15

"spin-induced higher multipoles should naturally be considered in the body-fixed frame"

Solution:

Bautista, Guevara '19 Guevara, AO, Vines '19 also in Arkani-Hamed, Huang, O'Connell '19 Aoude's talk on Aoude, Haddad, Helset '20

must only compare states of same momentum!

Lorentz-boost exponentials

Bautista, Guevara '19 Guevara, AO, Vines '19 also in Arkani-Hamed, Huang, O'Connell '19

Consider $p_1 \rightarrow p_2$ boost:

$$p_{2}^{\rho} = \exp\left(\frac{i}{m^{2}}p_{1}^{\mu}k^{\nu}\Sigma_{\mu\nu}\right)_{\sigma}^{\rho}p_{1}^{\sigma}$$
$$|2^{b}\rangle = U_{12}{}^{b}{}_{a}\exp\left(\frac{i}{m^{2}}p_{1}^{\mu}k^{\nu}\sigma_{\mu\nu}\right)|1^{a}\rangle$$
$$|2^{b}] = U_{12}{}^{b}{}_{a}\exp\left(\frac{i}{m^{2}}p_{1}^{\mu}k^{\nu}\bar{\sigma}_{\mu\nu}\right)|1^{a}]$$

$$k^2 = (p_2 - p_1)^2 = 0$$

 $U_{12} \in SU(2)$

Self-duality of $\sigma^{\mu\nu}$, $\bar{\sigma}^{\mu\nu}$ implies

$$\frac{i}{m^2} p_1^{\mu} k^{\nu} \sigma_{\mu\nu,\alpha}{}^{\beta} = k \cdot a_{\alpha}{}^{\beta}, \qquad \qquad \frac{i}{m^2} p_1^{\mu} k^{\nu} \bar{\sigma}_{\mu\nu,\dot{\beta}}{}^{\dot{\alpha}} = -k \cdot a^{\dot{\alpha}}{}_{\dot{\beta}}$$

in terms of left- and right-handed reps of Pauli-Lubanski vector

$$a^{\mu,\ \beta}_{\ \alpha} = \frac{1}{2m^2} \epsilon^{\mu\nu\rho\sigma} p_{\mathbf{a}\nu} \sigma_{\rho\sigma,\alpha}^{\ \beta}, \qquad a^{\mu,\dot{\alpha}}_{\ \dot{\beta}} = \frac{1}{2m^2} \epsilon^{\mu\nu\rho\sigma} p_{\mathbf{a}\nu} \bar{\sigma}_{\rho\sigma,\ \dot{\beta}}^{\ \dot{\alpha}}$$

Spin exponentials from Lorentz boosts

Arbirary-spin reps boost as

$$|2\rangle^{\odot 2s} = e^{k \cdot a} \{ U_{12} |1\rangle \}^{\odot 2s}, \qquad |2|^{\odot 2s} = e^{-k \cdot a} \{ U_{12} |1| \}^{\odot 2s} \langle 2|^{\odot 2s} = \{ U_{12} \langle 1| \}^{\odot 2s} e^{-k \cdot a}, \qquad [2|^{\odot 2s} = \{ U_{12} [1| \}^{\odot 2s} e^{k \cdot a} \}$$

Back to spin dependence of 3-pt amplitude:*

$$\begin{split} \mathcal{M}_{3}^{(s,+)} &= \frac{\mathcal{M}_{3}^{(0)}}{m^{2s}} \langle 21 \rangle^{\odot 2s} = \frac{\mathcal{M}_{3}^{(0)}}{m^{2s}} \{ U_{12} \langle 1| \}^{\odot 2s} e^{-k \cdot a} |1 \rangle^{\odot 2s} \\ &= \frac{\mathcal{M}_{3}^{(0)}}{m^{2s}} [2|^{\odot 2s} e^{-2k \cdot a} |1]^{\odot 2s} = \frac{\mathcal{M}_{3}^{(0)}}{m^{2s}} \{ U_{12} [1| \}^{\odot 2s} e^{-k \cdot a} |1]^{\odot 2s} \\ &\xrightarrow[s \to \infty]{} \mathcal{M}_{3}^{(0)} e^{-k \cdot a} \lim_{s \to \infty} (U_{12})^{\odot 2s} \quad \text{unambigiously!} \end{split}$$

 a^{μ} is now classical (C-number) spin of Kerr BH

 ${}^{*}m^{2s}$ cancels due to $\langle p^{a}p^{b}\rangle = -[p^{a}p^{b}] = -m\epsilon^{ab}.$

Classical limit: spin coherent states

Want: extract classical spin dependence $(S^{\mu} \in \mathbb{R}^4)$ from quantum spin amplitudes $(s \in \mathbb{Z}_+)$

> Kosower, Maybee, O'Connell '18 Maybee, O'Connell, Vines '19 Bern, Luna, Roiban, Shen, Zeng '20 de la Cruz, Maybee, O'Connell, Ross '20

Impulse formulae

$$\begin{aligned} & \text{Avepackets} \\ & \text{Momentum wavepacket in} \\ & \phi(p) = \mathcal{N} \exp\left(-\frac{p \cdot u}{m\xi}\right) \end{aligned} \Rightarrow \begin{aligned} & \frac{\langle (\Delta p)^2 \rangle}{\langle p \rangle^2} = \mathcal{O}(\xi), \qquad \xi \equiv \frac{\ell_c^2}{\ell_\omega^2} \to 0 \end{aligned}$$

Classical limit for momentum vs spin:

- amplitudes are functions of continously changing momenta
- vs little-group index dependence on spin

To model classical spin $S^{\mu}=ma^{\mu},$ need spinning wavefunctions such that

$$\langle p^{\mu} \rangle = m u^{\mu}, \qquad \langle p^{\mu} p^{\nu} \rangle = m^2 u^{\mu} u^{\nu} + \text{negligible}, \qquad \text{etc.}$$

$$\langle S^{\mu} \rangle = m a^{\mu}, \qquad \langle S^{\mu} S^{\nu} \rangle = m^2 a^{\mu} a^{\nu} + \text{negligible}, \qquad \text{etc.}$$

Canonical coherent states

Spin coherent states [Schwinger (52 - sp.-hel. language]
[a^q, ato] =
$$\delta_b$$
; (aⁿ)^t = a_a^{\dagger} q, b = 1, 2 - SU(2) spinor indices
Del. $J = \frac{t}{2} a_a^{\dagger} \tilde{G}^{a} b a^{b}$ [δ_i^{\dagger} , δ_j^{\dagger}] = 2i ϵ_j^{\dagger} b δ_k
=) $[J^{\dagger}, J^{\dagger}] = it \epsilon_j^{\dagger}$ b J^{k} =) arb. spin vop of SU(2)
Del SU(2) - corniant j - spin state (scalar state)
I j. [$a_{1, -, a_2j}^{\dagger}$] > = $\frac{1}{|k_1|!} a_{a_1}^{\dagger} \dots a_{a_2j}^{\dagger}$ [0 >
Suprom.
I j. [$a_{1, -, a_2j}^{\dagger}$] > = $\frac{1}{|k_1|!} a_{a_1}^{\dagger} \dots a_{a_2j}^{\dagger}$ [0 >
"Fach" space for spin

1PM for general spins

Holomorphic Classical Limit (HCL)

Cachazo, Guevara '17 Guevara '17

$$p_2 \xrightarrow{k} p_4$$

$$p_1 \xrightarrow{p_1} p_3$$
Idea: Replace $k^{\mu} = \hbar \bar{k}^{\mu} \rightarrow 0$ by non-zero on-shell $t = k^2 \rightarrow 0$
Indeed, $k^2 = 0 \Rightarrow p_i \cdot k = \mathcal{O}(t) = 0$

$$\mathcal{M}_{4}^{(s_{\mathrm{a}},s_{\mathrm{b}})}(p_{1},-p_{2},p_{3},-p_{4}) = \frac{-1}{t} \sum_{\pm} \mathcal{M}_{3}^{(s_{\mathrm{a}})}(p_{1},-p_{2},k^{\pm}) \mathcal{M}_{3}^{(s_{\mathrm{b}})}(p_{3},-p_{4},-k^{\mp}) + \mathcal{O}(t^{0})$$

4-pt "classical amplitude" from HCL

Guevara, AO, Vines '19

$$\mathcal{M}_{4} = \frac{-(\kappa/2)^{2} \gamma^{2}}{m_{\rm a}^{2s_{\rm a}-2} m_{\rm b}^{2s_{\rm b}-2} t} \Big((1-v)^{2} \Big\{ U_{12} \langle 1| \Big\}^{\odot 2s_{\rm a}} e^{-k \cdot a_{\rm a}} |1\rangle^{\odot 2s_{\rm a}} \Big\{ U_{34} [3| \Big\}^{\odot 2s_{\rm b}} e^{-k \cdot a_{\rm b}} |3]^{\odot 2s_{\rm b}} + (1+v)^{2} \Big\{ U_{12} [1| \Big\}^{\odot 2s_{\rm a}} e^{k \cdot a_{\rm a}} |1]^{\odot 2s_{\rm a}} \Big\{ U_{34} \langle 3| \Big\}^{\odot 2s_{\rm b}} e^{k \cdot a_{\rm b}} |3\rangle^{\odot 2s_{\rm b}} \Big)$$

Remove parity-oddness using

$$k \cdot a_{\mathrm{a,b}} = ik \cdot w \ast a_{\mathrm{a,b}}, \qquad [w \ast a_{\mathrm{a,b}}]_{\mu} = \frac{\epsilon_{\mu\nu\rho\sigma}a_{\mathrm{a,b}}p_{\mathrm{a}}p_{\mathrm{b}}}{m_{\mathrm{a}}m_{\mathrm{b}}\gamma v}$$
$$\langle \mathcal{M}_{4}(k) \rangle = -\left(\frac{\kappa}{2}\right)^{2} \frac{m_{\mathrm{a}}^{2}m_{\mathrm{b}}^{2}}{k^{2}} \gamma^{2} \sum_{\pm} (1 \pm v)^{2} \exp[\pm i(k \cdot w \ast a_{0})], \quad a_{0}^{\mu} = a_{\mathrm{a}}^{\mu} + a_{\mathrm{b}}^{\mu}$$

 $_{\sim}\nu$

 $m\rho m\sigma$

4-pt scattering function

Guevara, AO, Vines '19

from momentum transfer/mismatch k^{μ}

$$\langle \mathcal{M}_4(k) \rangle = -\left(\frac{\kappa}{2}\right)^2 \frac{m_{\rm a}^2 m_{\rm b}^2}{k^2} \gamma^2 \sum_{\pm} (1\pm v)^2 \exp[\pm i(k\cdot w * a_0)]$$

to impact parameter b^{μ}

$$\langle \mathcal{M}_4(b) \rangle = \int \hat{d}^4 k \, \hat{\delta}(2p_{\mathbf{a}} \cdot k) \hat{\delta}(2p_{\mathbf{b}} \cdot k) e^{-ik \cdot b} \langle \mathcal{M}_4(k) \rangle = -Gm_{\mathbf{a}} m_{\mathbf{b}} \frac{\gamma}{v} \sum_{\pm} (1 \pm v)^2 \log \sqrt{-(b \mp w * a_0)^2}$$

 $\begin{array}{c} p_{\rm b} = -p \\ \Delta p_{\rm b} & b \\ & b \\ & b \\ & p_{\rm a} = p \end{array} \Delta p_{\rm a} \qquad b \cdot p_{\rm b} = 0 \end{array}$

eikonal Fourier transform e.g. in Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove '18

32/41

Linear and angular impulses from scattering function Guevara, AO, Vines '19

$$\begin{split} \langle \mathcal{M}_{4}(b) \rangle &= -Gm_{\mathrm{a}}m_{\mathrm{b}}\frac{\gamma}{v}\sum_{\pm}(1\pm v)^{2}\log\sqrt{-(b\mp w\ast a_{0})^{2}}\\ \Delta p_{\mathrm{a}}^{\mu} &= \left\langle\!\!\!\left\langle\int\!\!d^{4}k\,\hat{\delta}(2p_{\mathrm{a}}\cdot k)\hat{\delta}(2p_{\mathrm{b}}\cdot k)k^{\mu}e^{-ik\cdot b/\hbar}i\mathcal{M}_{4}(k)\right\rangle\!\!\right\rangle = -\frac{\partial}{\partial b_{\mu}}\langle\mathcal{M}_{4}(b)\rangle\\ \Delta a_{\mathrm{a}}^{\mu} &= \frac{1}{m_{\mathrm{a}}}\left\langle\!\!\left\langle\int\!\!d^{4}k\,\hat{\delta}(2p_{\mathrm{a}}\cdot k)\hat{\delta}(2p_{\mathrm{b}}\cdot k)e^{-ik\cdot b/\hbar}\right.\\ &\quad \times\left(\!\!\left(-\frac{i}{m_{\mathrm{a}}^{2}}p_{\mathrm{a}}^{\mu}S_{\mathrm{a}}^{\nu}k_{\nu}\mathcal{M}_{4}(k) + \left[S_{\mathrm{a}}^{\mu},i\mathcal{M}_{4}(k)\right]\right)\right)\!\!\right\rangle\!\!\right\rangle\\ &\stackrel{*}{=} \frac{1}{m_{\mathrm{a}}^{2}}\left[p_{\mathrm{a}}^{\mu}a_{\mathrm{a}}^{\nu}\frac{\partial}{\partial b^{\nu}} - \epsilon^{\mu\nu\rho\sigma}p_{\mathrm{a}\nu}a_{\mathrm{a}\rho}\frac{\partial}{\partial a_{\mathrm{a}}^{\sigma}}\right]\langle\mathcal{M}_{4}(b)\rangle \end{split}$$

Complete match to 1PM classical solution! Vines '17

^{*}Relied on little-group so(3) algebra of $S^{\mu}_{\rm a}$ in rest frame of $p_{\rm a}$, i.e.

$$[S^{\mu}_{a}, S^{\nu}_{a}] = \frac{i}{m_{a}} \epsilon^{\mu\nu\rho\sigma} p_{a\rho} S_{a\sigma} \quad \Rightarrow \quad [S^{\mu}_{a}, \mathcal{M}_{4}] = \frac{i}{m_{a}} \epsilon^{\mu\nu\rho\sigma} p_{a\nu} S_{a\rho} \frac{\partial \mathcal{M}_{4}}{\partial S^{\sigma}_{a}}.$$

1PM classical solution for general spin orientations

Vines '17

Linear and angular impulses

$$\Delta p_{\rm a}^{\mu} = Gm_{\rm a}m_{\rm b}\Re Z^{\mu}$$
$$\Delta a_{\rm a}^{\mu} = -\frac{Gm_{\rm b}}{m_{\rm a}} \left[p_{\rm a}^{\mu}(a_{\rm a} \cdot \Re Z) + \epsilon^{\mu\nu\rho\sigma}(\Im Z_{\nu}) p_{{\rm a}\rho}a_{{\rm a}\sigma} \right]$$

in terms of an auxiliary complex vector

$$Z^{\mu} = \frac{\gamma}{v} \sum_{\pm} \left(1 \pm v \right)^2 [\eta^{\mu\nu} \mp i(*w)^{\mu\nu}] \frac{(b \mp w * a_0)_{\nu}}{(b \mp w * a_0)^2}$$

 Z^{μ} automatic from scattering function $\langle \mathcal{M}_4(b) \rangle$

$$\frac{\partial}{\partial b^{\mu}} \langle \mathcal{M}_4(b) \rangle = -Gm_{\mathrm{a}}m_{\mathrm{b}} \Re Z_{\mu}, \qquad \qquad \frac{\partial}{\partial a^{\mu}} \langle \mathcal{M}_4(b) \rangle = Gm_{\mathrm{a}}m_{\mathrm{b}} \Im Z_{\mu}$$

2PM for aligned spins

Classical contributions from loops

1 loop triangles with massive propagators

▶ 1 loop boxes contribute to $\Delta p^{\mu}_{\rm a,b}$ Kosower, Maybee, O'Connell '18 but not to scattering angle θ

Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove '18

Bern, Luna, Roiban, Shen, Zeng '20

higher loops discussed in talks by

Bern, Cheung, Roiban, Shen, Solon, Zeng '19, '20

Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon, Zeng '21

2PM aligned-spin scattering angle from 1 loop

Guevara, AO, Vines '18

- Incoming spins \perp to scattering plane \Rightarrow outgoing spins stay aligned, $\Delta a_{a,b} = 0$, scattering within plane \Rightarrow scattering angle θ implies $\Delta p_{a,b}$
- Use known non-spinning formula from eikonal

$$2\sin\frac{\theta}{2} = \frac{-E}{(2m_a m_b \gamma v)^2} \frac{\partial}{\partial b} \int \frac{d^2 \mathbf{k}}{(2\pi)^2} e^{-i\mathbf{k}\cdot\mathbf{b}} \lim_{s_a, s_b \to \infty} \langle \mathcal{M}_4^{(s_a, s_b)} \rangle + \mathcal{O}(G^3)$$

Kabat, Ortiz '92; Akhoury, Saotome '13

Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove '18

• Triangle contributions encode θ

Compute triangle coeffs in HCL

Cachazo, Guevara '17; Guevara '17

Extract angular-momentum dependence from spin exponentials

2PM aligned-spin scattering angle result

Guevara, AO, Vines '18

$$\begin{aligned} \theta_{\triangleleft} &= \pi G^2 E \frac{m_b}{2v^4} \frac{\partial}{\partial b} \oint_{R>1/v} \frac{dz}{2\pi i} \frac{(1-vz)^4}{(z^2-1)^{3/2}} \Big| b - za_{\rm b} - \frac{z-v}{1-vz} a_{\rm a} \Big|^{-1} \\ \theta^{\rm 1-loop} &= \theta_{\triangleleft} + \theta_{\triangleright} = -\pi G^2 E \frac{\partial}{\partial b} \bigg[m_{\rm b} f(a_{\rm a}, a_{\rm b}) + m_a f(a_{\rm b}, a_{\rm a}) \bigg], \end{aligned}$$

where

$$E = \sqrt{m_{\rm a}^2 + m_{\rm b}^2 + 2m_{\rm a}m_{\rm b}\sqrt{1 - v^2}},$$

$$f(\sigma, a) = \frac{1}{2a^2} \left[-b + \frac{(j + \varkappa - 2a)^5}{4v\varkappa [(j + \varkappa)^2 - (2va)^2]^{3/2}} \right] + \mathcal{O}(\sigma^5),$$

$$j = vb + \sigma + a, \qquad \varkappa = \sqrt{j^2 - 4va(b + v\sigma)}$$

true at least through $\mathcal{O}(a^2)$, possibly wrong beyond $\mathcal{O}(a^4)$

Bini, Damour '18 Vines, Steinhoff, Buonanno '18

2PM aligned-spin scattering angle vs PN theory

$$\theta = \frac{GE}{v^2} \sum_{\pm} \frac{(1\pm v)^2}{b\pm (a_{\rm a}+a_{\rm b})} - \pi G^2 E \frac{\partial}{\partial b} \bigg[m_{\rm b} f(a_{\rm a},a_{\rm b}) + m_a f(a_{\rm b},a_{\rm a}) \bigg] + \mathcal{O}(G^3)$$
(taken through $\mathcal{O}(G^2S^4)$)

 \blacktriangleright agrees with older PN results through NNLO S^2

Porto, Rothstein '06, '08; Levi '08, '10; Perrodin '10; Porto '10

Levi '11; Levi, Steinhoff '14 '15 '16

 \blacktriangleright agrees with newer PM results through S^2

Bern, Luna, Roiban, Shen, Zeng '20 Liu, Porto, Yang '21 Kosmopoulos, Luna '21

• conjectures new results at 4.5PN (NLO S^3) and 5PN (NLO S^4)

table by Vines as of '19 39/41

Gravitational Compton amplitude

$$\mathcal{M}_{4}^{(s)}(p_{1},-p_{2},k_{3}^{+},k_{4}^{-}) = -\left(\frac{\kappa}{2}\right)^{2} \langle 2|^{\odot 2s} \exp\left(-i\frac{k_{4\mu}\varepsilon_{4\nu}^{-}\sigma^{\mu\nu}}{p_{1}\cdot\varepsilon_{4}^{-}}\right)|1\rangle^{\odot 2s}$$
$$= -\left(\frac{\kappa}{2}\right)^{2} [2|^{\odot 2s} \exp\left(-i\frac{k_{3\mu}\varepsilon_{3\nu}^{+}\bar{\sigma}^{\mu\nu}}{p_{1}\cdot\varepsilon_{3}^{+}}\right)|1]^{\odot 2s}$$
$$= \left(\frac{\kappa}{2}\right)^{2} \frac{\langle 4|1|3|^{4-2s} \left([13]\langle 42\rangle + \langle 14\rangle[32]\right)^{\odot 2s}}{(2p_{1}\cdot k_{4})(2p_{2}\cdot k_{4})(2k_{3}\cdot k_{4})}$$

- first appeared in
- problematic at $s \ge 2$
- alternatives proposed in

Arkani-Hamed, Huang, Huang '17

double-copy aspects in Johansson, AO '19

Chung, Huang, Kim, Lee '18; Falkowski, Machado '20

Summary & outlook

Spin exponentiation pattern inherent to Kerr BH

Guevara, AO, Vines '18 Bautista, Guevara '19 Guevara, AO, Vines '19 Arkani-Hamed, Huang, O'Connell '19

- 1PM match for general spin (to all orders in spin)
- 2PM results for aligned spins:
 - match at presently known orders in spins
 - conjectured results for higher orders in spins
- Used HCL and KMOC formalism, interplay between classical-limit approaches

Guevara '17

Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove '18 Cheung, Rothstein, Solon '18 Kosower, Maybee, O'Connell '18 Koemans Collado, Di Vecchia, Russo '19 Bjerrum-Bohr, Cristofoli, Damgaard, Vanhove '19 Maybee, O'Connell, Vines '19 Damgaard, Haddad, Helset '19 Kälin, Porto '19 Aoude, Hadded, Helset '20 Jakobsen, Mogull, Plefka, Steinhoff '21 Di Vecchia, Heissenberg, Russo, Veneziano '21 Bjerrum-Bohr, Damgaard, Planté, Vanhove '21

► Open questions at higher orders in G and spin