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Tidal Deformation

Astrophysical objects would deform when they are perturbed by external tidal
fields.

The tidal deformability of an object is quantified by its Love numbers, whose
values depend on the internal structure of the object.

Love (1912)
Poisson, Will (Gravity Textbook)



Tidal Dissipation

The viscosity of the object would result in a transfer of energy and angular
momentum between the external tidal field and the object.

This tidal effect leads to tidal heating/torquing/acceleration of two-body systems.
E.g. the gradual spin down of Earth along with the recession of the Moon.

Poisson, Will (Gravity Textbook)



Tidal Effects in Waveforms

These responses leave distinct imprints in the phase of the gravitational

W

Tidal dissipation Love numbers
(2.5PN order onwards) (5PN order onwards)

A precise measurement of these phase imprints would allow us to probe the
nature of the binary constituents.

Poisson, Sasaki [9412027]
Tagoshi, Mano, Takasugi [9711072]
Flanagan, Hinderer [0709.1915]




Probing Binary Constituents with Tidal Effects

For binary neutron stars, these tidal effects probe the high-density and low-
temperature regime of the QCD phase diagram.
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Measurements of these tidal effects could also provide hints for the existence of
new types of compact objects, e.g. superradiant clouds, boson stars, etc.

Raithel, Ozel, Psaltis [1803.07687], Chatziioannou [2006.03168]
Figures adapted from Aarts [1512.05145] & Baumann, HSC, Porto, Stout [1912.04932]



Tidal Response of Black Holes

Black holes are the simplest and most abundant compact objects that are
detected by the LIGO and Virgo observatories.

A detailed understanding of their tidal deformation and dissipation is a key goal
in gravitational astrophysics and fundamental physics.

Kerr (1963)
Carter (1971)
Robinson (1975)



Black Holes do not Fall in Love

Black holes do not deform when they are perturbed by a static tidal field.
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This conclusion holds for all values of black hole spin, ranging from
Schwarzschild black holes to extremal Kerr black holes.

HSC [2010.07300]
Charalambous, Dubovsky, lvanov [2102.08917]



Black Hole Dissipation

In general, energy and angular momentum are absorbed into the black hole.
Highly-rotating
N> Vv Vv > black hole

For highly-rotating black holes, the dissipative response would trigger mode
amplification, which is a phenomenon known as superradiance.

HSC [2010.07300]
Charalambous, Dubovsky, lvanov [2102.08917]
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Electrostatic Response

In electromagnetism, a dielectric medium would respond to its external
electrostatic field E by acquiring an induced polarization:

P:XEE7

where X E is the electric susceptibility of the medium.
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For a static external field, the material polarizes instantaneously.

Jackson (Classical Electrodynamics textbook)



Electrodynamic Response

In general, the external electric field varies with time and the material does
not polarize instantaneously. For a slowly-varying external field,

P(1) — /OOO dr v (T E(t — 7).

Applied: — ~

____— —>  Measured:

where overdot denotes time derivative, and 7o is the typical time lag.

Jackson (Classical Electrodynamics textbook)



Conservative and Dissipative Effects

In Fourier space, the electrodynamic response reads

P(w) = xp(w)E(w)

where w is the frequency of the external electric field, and

YE(w) = ( ) + 1WT XE_@) + -

real part = / \ imaginary part =

conservative effect dissipative effect

Jackson (Classical Electrodynamics textbook)



Static Tidal Response

In Newtonian gravity, a non-rotating body would respond to a static external
tidal field by acquiring induced mass-type moments:

5Q€m X Qkémgém

where the proportionality constants £y,,, are called the Love numbers.

Love (1912)
Poisson, Will (Gravity textbook)



Time-Dependent Tidal Response

For a slowly-varying external tidal field, the induced response is

5Q€m (t) X Zkﬁmgﬁm (t) — TOVEmSEm (t) + - )

static tides  tidal dissipation dynamical tides
(subleading)

where 1y, are the dissipation numbers associated to the object’s viscosity.

Viscosity-induced
time lag, 70

Poisson, Will (Gravity textbook)



Tidal Response of a Non-rotating Body

In Fourier space, the tidal response of a non-rotating body is

5Q€m(w) — Fém(w)gﬁm(w) )

where w is the frequency of the external tidal field, and

Fgm(w) — Qkﬁm + iCUT()ng -+ ..

real part = / \ imaginary part =

conservative effect dissipative effect

Goldberger, Rothstein [0409156, 0511133]
Chakrabarti, Delsate, Steinhoff [1306.5820]



Tidal Response of a Rotating Body

For a rotating body, the functional form
Fglm/ (w/) — ng/m/ —+ iw,TOVB’m’ -+ .-

holds in the co-rotating frame, in which case w’ and {¢', m'} are tidal field’s
frequency and angular momentum numbers as perceived in this frame.

Co-rotating frame Observer’s frame
()= body’s angular frequency

W = w —m" W

For a rotating body, tidal dissipation can still occur in a static tidal field, w = 0,
due to the presence of relative motion between the body and the external field.



Measuring the Response Function

In Fourier space, the total potential of the perturbed non-rotating body is

Z g [ ( r ] Yem(9,¢)
~ 7t “growing term” /‘ ‘\_ —t=1 “decaying term”

(applied external tidal field) (object’s response)




Relativistic Tides

In addition to the electric-type tides &£y,,,, tidal perturbations in General
Relativity are also described by the magnetic-type tides 5y,,,

These magnetic-type tides source induced current-type moments, and the tidal
response is analogous to magnetic susceptibilities in electromagnetism.

Zhang (1986)
Binnington Poisson [0906.1366], Damour Nagar [0906.0096]



Weyl Scalars

For various practical reasons, it is convenient to decompose the Weyl tensor
into five complex Weyl scalars in the Newman-Penrose formalism:

{¢07 1?17 Qan 1?37 1?4}

The “peeling theorem” states that ¥, ~ O(r °T™) at r — 0o

Measured:
\ W4 X hy —1hy

Newman and Penrose (1962)



Black Hole Perturbation Theory

For Kerr black holes, the linear perturbations of 14 (and %g) can be solved
relatively easily through the Teukolsky equation.

Using this method, the gravitational wave fluxes emitted by extreme mass ratio
iInspirals have been computed to high perturbative orders.

Teukolsky (1972, 1973)
Press and Teukolsky (1973, 1974)
Sasaki, Tagoshi (Living Review)



Tidal Moments as Amplitude Modulations

The Teukolsky equation separates 14 into a set of coupled ordinary differential
equations. This is achieved through the separable form

plpy =) e T Ry (1) —aSem (0) X Moy,

m

where {v, 7,0, ¢} are the spacetime coordinates, sS¢m is the spin-weighted
spheroidal harmonic, and M y,,, are amplitude constants.

One can show that the tidal moments modulate the amplitudes via

Re (/\/lgm) X ggm ) Im (/\/lgm) X Bgm

Teukolsky (1972, 1973)
Chatziioannou, Poisson, Yunes [1211.1686]
HSC [2010.07300]



The Radial Teukolsky Equation

The radial Teukolsky equation is*

d°R N ( %P, —1 2iP_+1 y dR N 4iP_
dr? _r—ry r—r_ dr (r—r_)?
asrr — Ty (r—ry)2 | (r—r_)ry—r_) (r—ry)(ro—r_) A’

where we have organised the radial equation in terms of its poles at r4, 00, and

am — 2r- Mw
P, = i x mfdly —w
ry —T—

The P, “superradiance factor” captures all of the physics of the event horizon.

*In the the ingoing-Kerr coordinates and the Kinnersley null tetrad
Press and Teukolsky (1974)
HSC [2010.07300]



Boundary Conditions

The Teukolsky equation allows for the easy incorporation of the boundary
conditions at the outer horizon, r = r , and at asymptotic infinity, r — co.

Yy ingoing source outgoing
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The asymptotic radial behaviours at these locations are

Y4 {Y}n(r — 7“+)2} Your (7 — 7°+)_2ip+ . T =T,
w4 N in/r5 +CZout€2iw(r—|—2Mlog T) /a r— 00

Press and Teukolsky (1974)
Figure from HSC [2010.07300]
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Perturbed Spherical Star: Metric

The metric of a perturbed relativistic spherical star has been computed in the
literature for the static limit, w = 0 (no information about dissipation). E.g.

_ 2M 28em | ¢ B ¢ (T0o\**!
oy = — (1 - ) — (-1 [r A(r) + 2k, r (r) B(r)] Yo (0, ¢),

where kem are the electric-type Love numbers. Other metric components
depend on the magnetic-type Love numbers, kgm , as well.

kpp, # 0

Binnington, Poisson [0906.1366]
Damour, Nagar [0906.0096]



Perturbed Spherical Star: Weyl Scalar

We can condense all information of the perturbed metric into the Weyl scalar:*

Plw=0)=) Y M, 2Ym(0, )

I /Im

{ EG(r) + 2kg,,rt 2( >2£+1 De(?“)} ,

rt=2 “growing term” _/ k ~ 173 “decaying term”

(applled external tidal field) (object’s response)

where I = {E, B} label quantities of electric- and magnetic-type characters:

E B .
Mﬁm X gf’m ) Mem X ZBEm 9

HSC [2010.07300]

—*~1 scalings in the Newtonian potential

*Recall the analogous ~ r* and ~ r



Spherical Star: Love Numbers

The Love numbers are determined by matching the exterior metric with the
boundary condition at the star’s surface, 7 = 7¢.

2041
Eph(w =0) rﬁ_QGg(r) + le{mre—z (—) Dy(r).

For a general star, 79 > 2M . In addition, one would need to specify an
equation of state for the star’s interior region to obtain boundary condition.

K 7 O

Binnington, Poisson [0906.1366]
Damour, Nagar [0906.0096]



Schwarzschild Black Hole: Love Numbers

For a Schwarzschild black hole, 7o = 2.M.
ra 20+1
Zfph(w =0) x TE_QGg(T) + Qkémre_Q (—O) Dy(r).
Furthermore, as we approach the event horizon,

r2Gy(r) ~ (r — 2M)?, r— 2M .

while D, diverges logarithmically. The boundary condition at the event horizon*
forces the decaying terms to vanish identically, which is only possible if kl{m = 0.

gﬁm; Bﬁm

I
(w=0) Ko =0

No deformation

Binnington, Poisson [0906.1366], Damour, Nagar [0906.0096], Kol, Smolkin [1110.3764]
*Recall that the purely ingoing wave scales as 14 ~ (r — r,)?



Schwarzschild Black Hole: Solution

The discussion above was restricted to the static limit.
PV (4 =0) x oF1(2— 20,0 +3;3;1 —r/2M).

To derive the dissipative response of the Schwarzschild black hole, we solve
the Teukolsky equation perturbatively in M w < 1. At leading order, we find

AW N < 1) o oF1 (2 = 4,0 +3;3+2iP ;1 —r/2M).

where i]5+ = —iw(2M) is the zero-spin limit of the superradiance factor.
I _
Eemy Bem Kem =0
(w # 0) vl #0

Absorption of energy and
angular momentum fluxes

HSC [2010.07300]



Schwarzschild Black Hole: Total Response

The tidal response is obtained by expanding the Weyl scalar at large distances:

- N 20+1 i
EchWOCTE—Q (1_|_)T> (1—|—°°') T > 2M

FEISChW (w) = 0+ iw(2M )7 4 ...

Well-known result in the literature

We obtain the general expression for the dissipation numbers Vgsﬁlhw, which

recovers known results for the first few orders of ¢ in the literature.

HSC [2010.07300]
Binnington, Poisson [0906.1366], Damour, Nagar [0906.0096], Kol, Smolkin [1110.3764
Goldberger, Rothstein [0511133]




Newtonian vs Schwarzschild Response

Non-rotating body in Newtonian gravity:
Fom(w) = 2kgp, + iwtorem, + - - -

Schwarzschild black hole:

F) 5 () = 04 dw(2M ) v . ..

m

where 79 = 2M is the black hole light crossing time.

At w = 0, tidal dissipation and all higher order terms of the Schwarzschild
response function vanish identically.

.
Evr s By Schwarzschild black
m,_ Om holes do not respond to
(w=0) static tides

HSC [2010.07300]
Poisson [2012.10184]
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Kerr Black Hole: Solution

Repeating the same exercise as above, we can derive the tidal response of
Kerr black hole’s tidal response through the Teukolsky equation:

P (Mw < 1) o oF1 (2= 0,0+ 3;3+ 2P (ry —71)/(ry —7_)).

Easy to check that this reduces to the Schwarzschild solution at a = 0.

gﬁma BEm kl{m =0
(w # 0) vl #0

Deformation is spin-induced,
not tidally-induced!

HSC [2010.07300]



Kerr Black Hole: Tidal Response

We also solve for the response function of the Kerr black hole:

FLE (45 Qpr) = 0 — i(mQur — w) [2Mry /(ry — 7 )] vEe™ + ..

m

e Rotating black holes do not fall in Love

- true for all spins, all {¢/, m}, and both electric-type and magnetic-type tides
- generalizes partial results known in the literature

e Tidal dissipation is proportional to the so-called superradiance factor
x mQy —w

which can either be negative (energy loss) or positive (energy extraction)

HSC [2010.07300]
Poisson [1411.4711], Pani, Gualtieri, Maselli, Ferrari [1503.07365
Goldberger, Li, Rothstein [2012.14869], Charalambous, Dubovsky, lvanov [2102.08917, 2103.01234]




Schwarzschild vs Kerr Response

Schwarzschild black hole:

F5M(0) = 0 + iw(2M) s 4 ...

m

Kerr black hole:

FLRerr (4 a) = 0 — i(mQy — w) [2Mr /(s —r_)| VKT 4 ...

m

Unlike the Schwarzschild black hole, the Kerr black hole still experiences
dissipation at w = 0 due to the relative motion between the black hole’s rotation

and the static tidal field.
Qg

E B The Kerr black hole does
tmy Shm respond to static tides
(w=0) through dissipation

HSC [2010.07300]
Goldberger, Li, Rothstein [2012.14869]
Charalambous, Dubovsky, lvanov [2102.08917]




Claims of “Spinning Black Holes Fall in Love”

Le Tiec, Casals [2007.00214] (PRL) + Franzin [2010.15795]:

In the revised version of the draft, the authors

Talal : defined what th by “L bers”.
Spinning Black Holes Fall in Love redefined what they mean by "Love numbers

They also added:
Alexandre Le Tiec and Marc Casals
Phys. Rev. Lett. 126, 131102 — Published 30 March 2021 Speculation.—As suggested by this tidal lag and as
argued in Ref. [66], the purely imaginary TLNs (8) may
i . S (L=2)1(£+2)! give I:ise to' dissipativ-e effects only, such as the Kerr tidal
kem = ——— sinh (2amy) |[U'(C+ 1+ 2imy)|* . torquing discussed in Ref. [41]. However, under the
4 (20)1(20+ 1)(!22) assumption that the induced quadrupole moments (13)

also give rise to conservative effects, there is the exciting

oo

Fyp (w0, Q) = 0 —i(mQy — w) [2Mry /(ry — o) vt + -+

m

In the first version of the arXiv paper, the authors claimed that the non-vanishing
term is the conservative tidal Love numbers. Instead, those are dissipation
numbers at the static limit, which are non-vanishing due to frame dragging.

HSC [2010.07300]
Poisson [1411.4711], Pani, Gualtieri, Maselli, Ferrari [1503.07365
Goldberger, Li, Rothstein [2012.14869], Charalambous, Dubovsky, Ivanov [2102.08917, 2103.01234]




Black Holes do not Fall in Love

The GW community commonly refers to £y, , not Fy,,, as Love numbers

|

Fot (w, Qp) = 0—i(mQy —w) [2Mry /(ry —r_) upt™ + -

m

Regardless of difference in definitions/nomenclatures, the physical imprints
of those tidal effects on waveforms are unambiguous.

- Tidal deformation (first appears at 5PN in waveform phase): ()
- Tidal dissipation (first appears at 2.5PN in waveform phase): o« m{)y — w
HSC [2010.07300]

Poisson [1411.4711], Pani, Gualtieri, Maselli, Ferrari [1503.07365]
Goldberger, Li, Rothstein [2012.14869], Charalambous, Dubovsky, Ivanov [2102.08917, 2103.01234]




Tidal Dissipation in Schwarzschild vs Kerr BHs

The superradiance factor is responsible for an enhancement of tidal
dissipation in rotating black holes, compared to Schwarzschild black holes.

W

Tidal dissipation Love numbers
(2.5PN order onwards) (5PN order onwards)

P ocmQyg —w

In the PN expansion, Mw ~ 113, where v is the typical binary velocity. For a

Schwarzschild black hole, where {2y = 0, tidal dissipation is suppressed by
an additional factor of v° and therefore first appears at 4PN order.

Poisson, Sasaki [9412027]
Tagoshi, Mano, Takasugi [9711072]
Flanagan, Hinderer [0709.1915]




Love is Unambiguous

There are also claims in the literature that Love numbers are “ambiguous” in

General Relativity (related to coordinate transformation arguments)

Yy ingoing source outgoing
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However, this is a red-herring and can be resolved by performing a matched
asymptotic expansion between the solutions in the regions of spacetime.

Gralla
HSC
Charalambous, Dubovsky, lvanov

1710.11096]
2010.07300!

2102.08917]



Why is Love only Vanishing at D=47

It is known for some time that Love numbers of (Schwarzschild black holes)
are only zero at four spacetime dimensions, but not at higher dimensions.

From a field theory perspective:

Vanishing Love number <— Symmetry?

Recent work has found a remarkable hidden S (2, R) symmetry and a
ladder symmetry associated to the black hole horizon, which is responsible
for vanishing Love only at D=4.

Kol, Smolkin [1110.3764]
Hui, Joyce, Penco, Santoni, Solomon [2010.00593, 2105.01069 |
Charalambous, Dubovsky, lvanov [2103.01234]




Thank you for your attention!

Tidal deformation Tidal dissipation

: Highly-rotating
: black hole

Rotating black holes

do notfall in Love Black hole dissipation can induce

mode absorption and amplification

HSC [2010.07300]
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Relativistic Tides

In General Relativity, the tidal perturbations are characterised by both the
electric-type and magnetic-type tidal moments

: STF
a, B
Er o |uu Caﬂlﬁl-lv2§ﬂ3"’#£]

)

] STF

B o u u € ﬁuzcalh)\d;ﬂe'“ﬂe

)

where C,,,+ is the Weyl tensor, and u* is the time-like unit vector of a Fermi
comoving observer.

The tidal moments in the STF representation can be rewritten in terms of the
spherical harmonic representation:

8LCI3L X 're Z gé"m,Yfm(oa ¢) )
im

BLIEL X ,rE Z Bémnm(ea ¢) )
im

Zhang (1986)



Newman-Penrose Weyl Scalars

In the Newman-Penrose formalism, the Weyl tensor can be decomposed into
five complex Weyl scalars through a set of null tetrad:

o = Cluype 'm”1Pm? | Ingoing transverse wave
V1 = Clupe Hn 1Pm? Ingoing longitudinal wave
o = ClupeFm”mPn?,  “Coulomb” field

3 = Clppe 0" mPn? Outgoing longitudinal wave
V4 = Cpupen”m " nfm’ Outgoing transverse wave

where [, n are real, m is the complex conjugate of m, and they obey
I"n, = —mtm, = —1, with all other inner products vanish.

Newman and Penrose (1962)
Szekeres (1965)



“Shearing” Forces of the Weyl Scalars

Each of the Weyl scalars represents different “shearing” forces:

A
Sq > 3o
(a) (b) (c)
Y0, P4 1,3 (05
transverse longitudial “Coulomb”

For a “star”, such as the Kerr black hole, only )5 is non-vanishing.
For gravitational waves, only g, 14 are non-vanishing.

Newman and Penrose (1962)
Szekeres (1965)



The Peeling Theorem

The “peeling theorem” states that each of these Weyl scalars decays as

Yy, ~ O (7“_5+'”’) : r — 00

For example:

e the Uy ~ O (T‘_S) scaling of the “Coulomb” field represents the dominant
tidal force that are sourced by stars;

e the Y4 ~ O (7“_1) scaling implies that the outgoing transverse waves
dominate the gravitational field at large distances.

For an outgoing plane wave, vy = 91 = 19 = 93 = 0, while 14 encodes
the two independent GW polarizations that we measure at large distances

Wy = —hy +ihy, r — O

where dot denotes time derivative.

Newman and Penrose (1962)



