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Double Copy

• Double copy relations between Yang Mills and GR
scattering amplitudes proved to be a useful tool for
GW calculations, because they simplify the scattering
amplitude calculations a lot.

• The most studied double copy is between YM and
GR, however there are more examples of this relation
between different theories, for example, NLSM and
special Galileon, NLSM, YM and DBI,
supersymmetric theories, YM and GR with higher
derivative operators and many more.
[Bern, Carrasco, Chiodaroli, Johansson, Roiban 2019]

• What makes these theories special and how general is
double copy?



Massive Double Copy

• Are there examples of double copy relations between
massive spin-1 and massive spin-2 theories?

• Maybe they could help to simplify the calculations in
massive gravity? (for example GW, BH, Vainshtein
mechanism)

• Related work on double copy with massive matter:
[Plefka, Shi, Wang, Johansson, Ochirov, Carrasco, Vazquez-Holm,

Haddad, Helset, Brandhuber, Chen, Travaglini, Wen]



Massive Yang Mills and Massive Gravity

It is natural to begin with massive Yang Mills theory:
[Johnson, Jones, Paranjape, 2020, Momeni, Rumbutis, Tolley, 2020]
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and check if it is related to dRGT massive gravity theory:
[de Rham, Gabadadze, Tolley 2010]
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Massive Yang Mills and Massive Gravity: EFT Cutoffs

Both of these theories are effective field theories (EFTs). They are
only valid up to a certain scale called the cutoff. For mYM the
cutoff, Λ is given by:

Λ =
m

g
,

while for mGR it is Λ3 equal to:

Λ3 = (m2Mpl)
1/3.

These EFTs greatly simplify if we only look at the energies close to
cutoff, which is known as decoupling limit.



Massive Yang Mills and Massive Gravity: Decoupling
Limits

One of the reasons to expect a relation between these two theories
is the double copy relation between their decoupling limits:

lim
m→0,Λ fixed

LmYM = NLSM,

lim
m→0,Λ3fixed

LmGR = Gal,

sGal = NLSM⊗ NLSM.



Degrees of Freedom

To find the spectrum of double copy theory we need to decompose
the product of two massive Aµ into irreps of SO(d − 1):

Aµ ⊗ Aν = hµν ⊕ Bµν ⊕ φ,

hµν is a massive spin-2 field, Bµν is a massive 2-form field which is
dual to a massive spin-1 field in four dimensions and φ is a massive
scalar field.



3pt Amplitudes

In terms of polarization and momentum vectors the three-point
on-shell vertex for massive Yang-Mills is exactly same as that of
massless Yang-Mills:
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4pt Amplitudes

4pt massive YM amplitude can be written as:

A4(1a, 2b, 3c , 4d) = g2

(
csns

s −m2
+

ctnt
t −m2

+
cunu

u −m2

)
,

where colour factors satisfy Jacobi identity cs + ct + cu = 0. The
same identity is satisfied by the kinematic factors directly obtained
from Feynman rules:

ns + nt + nu ∝ p4 · ε4 = 0.



4pt Amplitudes

Since the colour kinematics duality is satisfied we can just square
the numerators to obtain external spin-2 scattering:
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and compare it with 4pt massive gravity amplitude:
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4pt Amplitudes



4pt Amplitudes

Considering other combinations if n’s we constructed 4pt
amplitudes with external φ and Bµν . Then from them we
constructed an action with Λ3 cutoff matching all of these 4pt
double copy amplitudes:
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Decoupling Limit

However taking the decoupling of this action does not give a
special Galileon action as expected, but rather a bi-Galileon theory
coupled to spin-2:
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showing that double copy does not commute with taking DL!



Decoupling Limit

The reason for this is CK duality:
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where n̂’s are finite in DL.



Decoupling Limit
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Decoupling Limit

Σ(s, t, u) term is responsible for this discontinuity in DL:

• mYM
DL−−→ Σ(s, t, u) cancels, we get NLSM

DC−−→ sGal

• mYM
DC−−→ Σ(s, t, u) remains for CK, we get MG

DL−−→ bi-Gal
(Σ(s, t, u) still survives)



5pt Amplitudes

However at 5pt there is a problem: squaring massive YM
numerators obeying CK duality gives spurious poles...
[Johnson, Jones, Paranjape, 2020]



Massive Double Copy for n-pt Amplitudes

The n-point tree level gauge theory amplitude, An, can be written
in matrix form as:

An = gn−2cTD−1n.

The Jacobi identities and CK duality in matrix form are

Mc = 0→ Mn = 0,

then the double copy is

Mn = i
(κ

2

)n−2
nTD−1n.



Shifting the Numerators

The kinematics factors directly calculated from Feynman diagrams
may not satisfy Jacobi relations, therefore they must be shifted as

n→ n + ∆n, (1)

such that the amplitude is unchanged, which can be achieved by
setting

D−1∆n = MT v , (2)

where v is some vector. CK duality :

M(n + ∆n) = 0, (3)

which combined with Eq. (2) gives

MDMT v = −Mn. (4)



Shifting the Numerators

We need to invert the non-zero block matrix in MDMT , we call it
A:

v = −(A−1U, 0, .., 0), (5)

where
Mn = (U, 0, ..., 0). (6)



Final Expression for Double Copy

Substituting the solution for ∆n:

−i
(κ

2

)−(n−2)
Mn = (n + ∆n)TD−1(n + ∆n)

= (n + ∆n)TD−1n + (M(n + ∆n))T v

= nTD−1n + ∆nTD−1n

= nTD−1n + vTMn

= nTD−1n − UTA−1U,

(7)



Spurious poles
In addition to physical poles, Dij , the double copy amplitude has
poles coming from det(A), which in general is some complicated
polynomial of Mandelstam variables.
For example for 5pt massive YM:

det(A) = m8(
∏
i<j

Dij)P(skl ,m), (8)
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Singular Matrix A

For more general masses in the spectrum we can have detA = 0
(for example when m = 0). Then we can find ∆n satisfying CK
ONLY if U lives in the space orthogonal to null vectors of A:

U.null(A) = 0.

These conditions in massless Yang-Mills are equivalent to BCJ
relations.
For 5pt massless YM amplitudes A has rank 5 and in the 5
dimensional subspace its inverse does not have any spurious poles.



Spectral Conditions

If the propagators in a massive theory obey they same algebraic
relations as the massless ones, for example at 4pt,

s −m2
12 + t −m2

13 + u −m2
14 = 0,

A is guaranteed to have the same rank as in the massless case.
Such constraints on masses are known as spectral conditions
[Johnson, Jones, Paranjape, 2020].
However, the interactions still need to satisfy the BCJ relations.



Kaluza-Klein Theories

Kaluza-Klein (KK) theories satisfy these spectral conditions.
We tried to start with KK spectrum (conservation of mass) and
operators the same as in compactifications of [Broedel, Dixon, 2012]

−1

4
tr(F 2) +

G5d

Λ2
tr(F 3)−

9G 2
5d

16Λ4
tr([F ,F ]2)

and construct a general EFT for mass spin-1 fields, then impose
BCJ relations to check if we can get something other than KK
compatible with CK duality.[Momeni, Rumbutis, Tolley, 2020]



Kaluza-Klein Theories

L = LF 2
+ LF 3

+ LF 4
,
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Kaluza-Klein Theories: 4pt Diagrams



Kaluza-Klein Theories: 5pt Diagrams



Kaluza-Klein Theories
In every individual scattering process there seems to be some
freedom to satisfy the 4pt BCJ relation (ns + nt + nu = 0):

iA4 ∝
(
V AAA
g12

+ V AAA1
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+ V AAA2
Ĝ12

) i
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G 2
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,

G1234 = G12g34 = G13g24 = G14g23 = g12G34 = g13G24 = g14G23,

Gij = Ĝij , G1234 = Ĝ1234, c1234 = C1234,

c1234 = G12G34 = G13G24 = G14G23 .



Kaluza-Klein Theories: 4pt BCJ Relation Constraints

coefficient CK constrained value coefficient CK constrained value

LAAA gijk g LF3

AAφφ1 Gijss g(2G0ss − G)−
3
√

2m2
i G

2

Λ2

LAAφ g′ijs mi g LF3

AAφφ2 Ĝijss gG

LAAAA gijkl g2 +
mimjmkml

Λ4 G2 LF3

AAAφ1 Ĝijks gG

LAAφφ gijss g2 LF3

AAAφ2 Gijks gG

LF4

AAF0 gi gi = g − G
3
√

2m2
i

Λ2 LF4

AAAA1 cijkl G2

LF3

AAF0 Gi Gi = G LF4

AAAA2 Cijkl G2

LF3

AAA1 Gijk G LF4

AAAφ1 cijks G2

LF3

AAA2 Ĝijk G LF4

AAAφ2 Cijks G2

LF3

AAφ G ′ijs miG LF4

AAφφ1 cijss G0ssG

LF3

Aφφ G0ss not constrained LF4

AAφφ2 c
(2)
ijss G2

LF3

AAAA1 Gijkl gG LF4

AAφφ3 c
(3)
ijss G0ssG +

√
2Λ2

6m2
i

g (G0ss − G)

LF3

AAAA2 Ĝijkl gG LF4

φφφφ cφ4 G2
0ss

Table: Coefficients of the interactions constrained the 4pt BCJ relation.



Kaluza-Klein Theories: 4 and 5 pt BCJ Relation
Constraints

• Imposing 4pt BCJ relation on all 4pt amplitudes
leaves us with a single free coefficient which is fixed
by 5pt BCJ relations.

• All of the interactions must be the same as in the KK
theory.

• This suggests that these constraints are very strong.



Massive Double Copy in 3d

Under closer inspection of the polynomial P(skl ,m) in

det(A) = m8(
∏
i<j

Dij)P(skl ,m),

we find that it can be expressed as:

P(skl ,m) = 16 det(pi · pj). i , j < 5, (10)

which is zero in d < 4.



Further Work

• Are there any other massive spin-1 theories
compatible with CK?

• Does the double copy formalism have to be changed
for massive theories? (different rank of A and
different number of BCJ relations?)

• Are there any new examples of massive double copy
in lower spacetime dimensions?


