String correlators on AdS₃

Andrea Dei Harvard University

Based on 2105.12130 and work in progress with Lorenz Eberhardt

Motivation

- String theory on AdS is important to understand holography
- ► The simplest setup is AdS₃ with pure NSNS flux: string theory can be studied via the SL(2, ℝ) WZW model [Giveon, Kutasov, Seiberg '98; Maldacena Ooguri '00-'01, ...]
- ► SL(2, ℝ) WZW model is suspected to be completely solvable, but this is still a work in progress...

What's the novelty? Spectral flow!

The string can have non-trivial winding around the insertion points

Not many results are known in the literature [Maldacena, Ooguri '01; Minces, Nunez, Herscovich '05; Cagnacci, Iguri '13]

Setup

- We consider genus zero bosonic string theory [Teschner '97-'99; Maldacena, Ooguri, '01]
- Everything will be a consequence of symmetries
- The symmetry algebra on the worldsheet is $\mathfrak{sl}(2,\mathbb{R})_k$

$$\begin{split} [J_m^3, J_n^3] &= -\frac{k}{2} m \, \delta_{m+n,0} , \\ [J_m^3, J_n^{\pm}] &= \pm J_{m+n}^{\pm} , \\ [J_m^+, J_n^-] &= k m \, \delta_{m+n,0} - 2J_{m+n}^3 \end{split}$$

.

Unflowed vertex operators

Notice that $j = h \equiv$ spacetime conformal dimension.

Flowed vertex operators

OPEs of the currents with these vertex operators have higher-order poles.

Our strategy: symmetries

We require correlators to obey

- Global symmetries
- Affine symmetry
- Knizhnik–Zamolodchikov equation
- Null vector equation

We solve these constraints case by case for all the w_i 's with $\sum w_i \le 10$ and make a proposal for 3- and 4-point functions

Our strategy: symmetries

We require correlators to obey

Global symmetries

Affine symmetry

Knizhnik–Zamolodchikov equation

Null vector equation

Global Ward identities

We can use global Ward identities to set

$$x_1 = z_1 = 0$$
, $x_2 = z_2 = 1$, $x_3 = z_3 = \infty$.

The x_i and z_i dependence of 3-point functions is fully fixed while 4-point functions still depend on the cross ratios

$$x \equiv x_4$$
, $z \equiv z_4$.

Affine symmetry

Affine symmetry implies additional constraints, for example

$$\begin{split} & \left(h_1 - \frac{k}{2} - 1 + j_1\right) \left\langle V_{h_1 - 1}^1 V_{h_2}^1 V_{h_3}^1 \prod_{i=4}^n V_{h_i}^1 \right\rangle \\ &= \left[h_1 - h_2 - h_3 + \sum_{i=4}^n \frac{h_i \left(z_i - 2x_i\right) + x_i \left(z_i - x_i\right) \partial_{x_i}}{z_i}\right] \left\langle V_{h_1}^1 V_{h_2}^1 V_{h_3}^1 \prod_{i=4}^n V_{h_i}^1 \right\rangle \\ &+ \sum_{i=2}^n \left(h_i - \frac{k}{2} + 1 - j_i\right) \frac{x_i^2}{z_i^2} \left\langle V_{h_1}^1 V_{h_2}^1 V_{h_3}^1 V_{h_i+1}^1 \prod_{\ell \neq \{1,2,3,i\}} V_{h_\ell}^1 \right\rangle \end{split}$$

when all the vertex operators have $w_i = 1$.

[Eberhardt, Gaberdiel, Gopakumar '19]

How to solve local Ward identities?

We Fourier transform in order to turn recursion relations into PDEs

$$V^w_{j,h,\bar{h}}(x;z) = \int \mathrm{d}^2 y \, y^{\frac{kw}{2} + j - h - 1} \, \bar{y}^{\frac{kw}{2} + j - \bar{h} - 1} \, V^w_j(x;y;z)$$

 h_i recursion relations are traded for a system of linear PDEs in the $y_i. \ \mbox{For example,}$

$$0 = \left((1 - y_1) (1 - z)^2 \partial_{y_1} + (1 - y_2) y_2 (1 - z)^2 \partial_{y_2} + (1 - y_3) (1 - z)^2 \partial_{y_3} \right. \\ \left. + \left(x^2 - 2zy_4 x + 2y_4 x - 2x + z^2 y_4 - y_4 + 1 \right) \partial_{y_4} \right. \\ \left. + \left(-xk + k - zj_1 + j_1 + zj_2 - j_2 - zj_3 + j_3 - 2xj_4 + zj_4 + j_4 \right. \\ \left. -2zj_2 y_2 + 2j_2 y_2 \right) (z - 1) - (x - 1)(x - z)(z - 1)\partial_x \right) \left\langle \dots \right\rangle$$

The general solution

The solution of the global symmetries in the unflowed sector is

$$\left\langle \prod_{i=1}^{4} V_{j_{i}}^{0}(x_{i}, z_{i}) \right\rangle = x_{12}^{-j_{1}-j_{2}+j_{3}-j_{4}} x_{13}^{-j_{1}+j_{2}-j_{3}+j_{4}} \\ \times \quad x_{23}^{j_{1}-j_{2}-j_{3}+j_{4}} x_{34}^{-2j_{4}} F\left(\frac{x_{23}x_{14}}{x_{12}x_{34}}, z\right)$$

The solution of affine symmetry constraints in the flowed sector has a similar structure, with x_{ij} traded for the 'generalised differences' $X_{ij}(x, z, y_i, y_j)$. When $\sum_i w_i$ is even,

$$\left\langle \prod_{i=1}^{4} V_{j_{i}}^{w_{i}}\left(x_{i}, y_{i}, z_{i}\right) \right\rangle = X_{\emptyset}^{j_{1}+j_{2}+j_{3}+j_{4}-k} X_{12}^{-j_{1}-j_{2}+j_{3}-j_{4}} \\ \times X_{13}^{-j_{1}+j_{2}-j_{3}+j_{4}} X_{23}^{j_{1}-j_{2}-j_{3}+j_{4}} X_{34}^{-2j_{4}} F\left(\frac{X_{23}X_{14}}{X_{12}X_{34}}, z\right)$$

The general solution

For
$$\sum_i w_i$$
 even,

$$\left\langle \prod_{i=1}^{4} V_{j_{i}}^{w_{i}}\left(x_{i}, y_{i}, z_{i}\right) \right\rangle = X_{\emptyset}^{j_{1}+j_{2}+j_{3}+j_{4}-k} X_{12}^{-j_{1}-j_{2}+j_{3}-j_{4}} \\ \times X_{13}^{-j_{1}+j_{2}-j_{3}+j_{4}} X_{23}^{j_{1}-j_{2}-j_{3}+j_{4}} X_{34}^{-2j_{4}} F\left(\frac{X_{23}X_{14}}{X_{12}X_{34}}, z\right)$$

For example

$$\begin{aligned} X_{\emptyset} &= P_{(w_1, w_2, w_3, w_4)}(x; z) ,\\ X_{12} &= P_{(w_1 + 1, w_2 + 1, w_3, w_4)}(x; z) + y_1 P_{(w_1 - 1, w_2 + 1, w_3, w_4)}(x; z) \\ &+ y_2 P_{(w_1 + 1, w_2 - 1, w_3, w_4)}(x; z) + y_1 y_2 P_{(w_1 - 1, w_2 - 1, w_3, w_4)}(x; z) .\end{aligned}$$

Additional constraints

For
$$\sum_i w_i$$
 even,

$$\left\langle \prod_{i=1}^{4} V_{j_{i}}^{w_{i}}\left(x_{i}, y_{i}, z_{i}\right) \right\rangle = X_{\emptyset}^{j_{1}+j_{2}+j_{3}+j_{4}-k} X_{12}^{-j_{1}-j_{2}+j_{3}-j_{4}} \\ \times X_{13}^{-j_{1}+j_{2}-j_{3}+j_{4}} X_{23}^{j_{1}-j_{2}-j_{3}+j_{4}} X_{34}^{-2j_{4}} F\left(\frac{X_{23}X_{14}}{X_{12}X_{34}}, z\right)$$

Can we constrain F(c, z) further?

Yes! We can impose the Knizhnik–Zamolodchikov equation and for special values of the spins, null vector equations.

Knizhnik–Zamolodchikov equation

The spacetime translation can be written as

$$\begin{aligned} \partial_z V_{j,h}^w(0;z) &= L_{-1} V_{j,h}^w(0;z) = \\ &= \frac{1}{k-2} \left(-(J^3 J^3)_{-1} + \frac{1}{2} (J^+ J^-)_{-1} + \frac{1}{2} (J^- J^+)_{-1} \right) V_{j,h}^w(0;z) \;, \end{aligned}$$

We get a differential equation for the unknown function F(c, z).

The differential equation for F(c, z) coincides with the KZ equation of the unflowed correlator!

A conjecture for the full correlator

This motivates the conjecture

$$F(c,z) = \left\langle V_{j_1}^0(0,0) V_{j_2}^0(1,1) V_{j_3}^0(\infty,\infty) V_{j_4}^0(c,z) \right\rangle$$

and for the full correlator with $\sum w_i$ even

$$\left\langle \prod_{i=1}^{4} V_{j_{i},h_{i},\bar{h}_{i}}^{w_{i}}\left(x_{i};z_{i}\right) \right\rangle = \int \prod_{i=1}^{4} \mathsf{d}^{2} y_{i} y_{i}^{\frac{kw_{i}}{2}+j_{i}-h_{i}-1} \bar{y}_{i}^{\frac{kw_{i}}{2}+j_{i}-\bar{h}_{i}-1} \\ \times X_{\emptyset}^{j_{1}+j_{2}+j_{3}+j_{4}-k} X_{12}^{-j_{1}-j_{2}+j_{3}-j_{4}} X_{13}^{-j_{1}+j_{2}-j_{3}+j_{4}} X_{23}^{j_{1}-j_{2}-j_{3}+j_{4}} \\ \times X_{34}^{-2j_{4}} \left\langle V_{j_{1}}^{0}(0,0)V_{j_{2}}^{0}(1,1)V_{j_{3}}^{0}(\infty,\infty)V_{j_{4}}^{0}\left(\frac{X_{23}X_{14}}{X_{12}X_{34}},z\right) \right\rangle$$

Unflowed correlators give flowed correlators for free!

Work in progress and open questions

Worldsheet correlators have intriguing singularity structure

► Near the singularity the string correlator becomes the correlator of Sym^N $\left(\mathbb{R}_{Q=\frac{k-3}{\sqrt{k-2}}} \times X\right)$

Proof of our formula via free-field Wakimoto representation?

Supersymmetric and extremal correlators