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The topological charge in 4d gauge theories

The topological charge of the gluon �eld Aµ(x)

Q =
g2

16π2

∫
d4x Tr

{
G̃µν(x)Gµν(x)

}
∈ Z, G̃µν(x) ≡ 1

2
εµνρσGρσ(x)

can be coupled to the QCD action via the dimensionless parameter θ:

SQCD → SQCD(θ) = SQCD + θQ,

introducing a non-trivial dependence on θ in the theory.

The θ-dependence of the free energy (density), de�ned in Euclidean
time as

f(θ) = − 1

V
log

∫
[dψdψdA]e−SQCD+iθQ, f(θ) =

1

2
χθ2
(

1 +

∞∑
n=1

b2nθ
2n

)
,

χ =
〈Q2〉
V
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θ=0

, b2 = − 1

12

〈Q4〉 − 3 〈Q2〉2

〈Q2〉

∣∣∣∣
θ=0

, b2n ∝
〈Q2n+2〉c
〈Q2〉

∣∣∣∣
θ=0

has been extensively investigated in several di�erent physical contexts.
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Motivations to compute large-N f(θ) from the lattice

Physics of η′ related to θ-dependence of large-N SU(N) gauge theories:

N →∞ : Veff (η′) ∼ fYM (θ), χ ∼ m2
η′ b2 ∼ λ4η′ .

SU(N) gauge theories → large-N arguments + Witten�Veneziano eq. give

Large-N : χ = χ̄+O(1/N2), b2n = b̄2n/N
2n [1 +O(1/N2)],

Witten�Veneziano: χ̄ = m2
η′f

2
π/6 ' (180 MeV)4.

Lattice data con�rm within ∼ 5% accuracy LO large-N behavior for χ and
within ∼ 15% accuracy LO large-N behavior for b2 (Bonati et al., 2016).

2d CPN−1 models → θ-dependence known analytically in the large-N limit:

ξ2χ = 1
2π

1
N
− 0.0605 1

N2 +O
(

1
N3

)
(D'Adda et al., 1978; Rossi et al., 1991),

b2 = − 27
5

1
N2 +O

(
1
N3

)
(Del Debbio et al., 2006).

Lattice data disagree with large-N predictions of NLO coe�. of χ and LO
coe�. of b2. Larger values of N are needed to clarify this issue.

Improvements limited by the severe critical slowing down of standard
algorithms approaching the large-N and the continuum limit.
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Critical Slowing Down (CSD) of topological modes

Approaching the continuum limit, �uctuations of Q during the

simulation become extremely rare. In the continuum theory

topological sectors are separated by in�nite free-energy barriers.

Left to right: a = 0.082 fm, 0.057 fm and 0.040 fm (�gs. Bonati et al., 2016)
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Moreover, CSD worsens increasing N
=⇒ approaching the continuum limit
for N large is extremely challeng-
ing. Goal: improve large-N val-

idation of 2d CPN−1 models us-

ing the recently-proposed Hasen-

busch algorithm.
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The Hasenbusch algorithm: parallel tempering of defect

Simulate collection of lattice copies with di�erent boundary

conditions, interpolating periodic and open ones. Each replica

has an independent evolution and di�erent copies are swapped

from time to time. Charge is quickly changed in the open

replica, then the con�guration is transferred to the periodic

replica through the swaps (Hasenbusch, 2018).
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Large-N behavior of Nξ2χ in 2d CPN−1 models
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Fit results up to O(1/N2) terms, N ∈ [10, 51]

Nξ2χ = 1/(2π)− 0.08(2)(1/N) + 2.2(3)(1/N2)
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Large-N behavior of N 2b2 in 2d CPN−1 models
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Fit results up to O(1/N3) terms, N ∈ [11, 51]

b̄theo
2 ≡ lim

N→∞
N2b2 = −27/5 = −5.4,

(N2b2)fit = −5.7(1.1) + 160(60)(1/N) + . . .
C. Bonanno Large-N limit and θ-dep. from the lattice | Cortona Young 2021 - 10/06/21 6 / 17



Pathological behavior of CPN−1 models when N → 2
The 1/N expansion converges very slowly at large-N for 2d
CPN−1 models, unlike SU(N) Yang�Mills theories. Why?

A possible explanation could reside in the pathological behavior

of CPN−1 models in the opposite limit N → 2.

Semiclassical methods predict dI ∼ ρN−3. For N = 2: UV
divergence of instanton density =⇒ χ ∼

∫
dI(ρ) dρ→∞

Situation unclear also for N = 3: disagreeing claims in the

literature about �niteness of χ (Petcher et al., 1983; Lian et al., 2007).

What about b2n? If small instantons with ρ→ 0 dominate

dynamics, simplest guess is (by virtue of asymptotic freedom)

that f(θ) is close to the behavior predicted by the Dilute

Instanton Gas Approximation (DIGA):

f(θ)|N=2 ∼ fDIGA(θ) = χ(1− cos θ),
=⇒ b2 = −1/12, b4 = 1/360, . . .
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Modi�ed continuum scaling at small N

Usual continuum scaling

〈O〉lat (a) = 〈O〉cont + k2a
2 + o(a2)

could be modi�ed for small N . Naive argument assuming
non-interacting instantons on a L× L lattice with spacing a:

χ ∼
∫ L

a

ρN−3dρ ∝





aN−2 , if N > 2,

log (a) , if N = 2.

=⇒ Modi�cations expected for N = 3 and 2:

N = 3 : χ(a) = χ+ k1a+ k2a
2 + o(a2)

N = 2 : χ(a) = k0 log(a/a0) + k2a
2 + o(a2)

These equations must be taken with a grain of salt, however, they still
constitute an useful guide to study the continuum scaling at small N .
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Small-N results for ξ2χ
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Left: N = 3. Right: N = 2.

N = 3: good agreement with dominant ∼ O(a) corrections +
O(a2) terms =⇒ convergent continuum limit.

N = 2: no clear conclusion. Data are both compatible with a

dominant logarithmic divergent behavior and with a dominant

slowly convergent power-law behavior, with dominant ∼ O(ac)
corrections, c ∼ 0.1 (plus O(a2) corrections).
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Alternative approach: N → 2 extrapolation of ξ2χ

Ansatz: since χ(N) ∼
∫
ρN−3dρ ∼ 1/(N − 2) =⇒ ξ2χ(N) is

extrapolated towards N = 2 from N > 2 using critical function

ξ2χ =
A

(N −N∗)γ
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N > 2 fit
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Result: N∗ = 1.90(14) =⇒
No clear evidence for a

divergent behavior in N = 2:
again both scenarios are

supported.
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Small-N results for b2
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Left: N = 3. Right: N = 2.

The quartic coe�cient b2, instead, shows the usual scaling down
to N = 2. Approaching N → 2, b2 approaches
bDIGA
2 = −1/12 ' −0.083. However, we �nd

b2(N = 2) = −0.070(4), ∼ 3σ distant from bDIGA
2 .
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Critical small-N extrapolation of b2

Ansatz: assuming a critical behavior of the type

b2 = bDIGA
2 +B(N −N∗)γ′ ,

we look for the critical value N∗ such that b2(N = N∗) = bDIGA
2 .
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We �nd N∗ = 1.94(6) (black
point). This value is compat-
ible with N = 2 so further re-
�nements are needed in the fu-
ture to better clarify this issue.
Note that it is also well com-
patible with N∗ = 1.90(14),
the critical value for which ξ2χ
diverges.
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Adapting Hasenbusch Algorithm to 4d gauge theories
Standard simulations of SU(N) gauge theories su�er from severe CSD in
the large-N limit =⇒ Hasenbusch algorithm can be adopted to mitigate
topological freezing. Di�erence: now the defect is a cubic volume.
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Parallel tempering dramatically im-
proves simulations at large N (�g. on
the left: N = 6). Performances are ex-
ceedingly better without much tuning
of the algorithm free parameters (de-
fect volume and swap acceptance).
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Continuum limits: diamond pnts (Bonati et al., 2016), full pnts (CB, Bonati, D'Elia, 2020).
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Large-N limit of χ in SU(N) pure-gauge theories
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Witten�Veneziano: χ̄1/4 ' 180 MeV +O(1/N2). Fit results:

χ/σ2 = 0.0199(10) + 0.08(2)(1/N2)

χ̄/σ2 = 0.0199(10) =⇒ χ̄1/4 = 173(8) MeV
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Large-N limit of b2 in SU(N) pure-gauge theories
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Large-N prediction: b2 = b̄2/N
2 +O(1/N4). Fit results:

1) b2 = b̄2/N
γ → γ = 2.17(26), cf. γ = 2.0(4) (Bonati et al., 2016)

2) b2 = b̄2/N
2 → b̄2 = −0.19(1), cf. b̄2 = −0.23(3) (Bonati et al., 2016)

3) b2 = b̄2/N
2 + b̄

(1)
2 /N4 → b̄

(1)
2 = −0.17(35)
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Conclusions and take-home results

Large-N limit and 1/N expansion: 2d CPN−1 vs 4d SU(N) YM

The Hasenbusch algorithm dramatically mitigates severe topological CSD,

both in 2d CPN−1 models and in 4d SU(N) gauge theories.

Large-N data show slow convergence of 1/N series of CPN−1 models,

explaining discrepancies between early lattice results and analytic

predictions.

Large-N predicted scaling of 4d SU(N) θ-dependence holds for N ≥ 3.

Small-N behavior of 2d CPN−1 models
These models at small N are dominated by small instantons, this modi�es

the continuum scaling of χ for N = 3 and N = 2.

For CP2 linear O(a) corrections appear =⇒ convergent continuum limit,

for CP1 data are compatible both with slow convergent power and slow

divergent log, b2 instead shows usual scaling.

Critical �t χ ∼ 1/(N −N∗)γ gives N∗ = 1.90(14), while critical �t

b2 − bDIGA
2 ∼ (N −N∗)γ′ gives N∗ = 1.94(6).
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Future outlooks

Re�nement of present study of critical small-N behavior of

2d CPN−1 models.

Extend present topology studies to higher momenta of the

topological charge density correlator (e.g., χ′).

Some non-topological observables of large-N SU(N) gauge
theories are a�ected by the topological freezing (e.g.,

glueball masses, k-strings tension) =⇒ possible

improvements of state of the art adopting the Hasenbusch

algorithm.

C. Bonanno Large-N limit and θ-dep. from the lattice | Cortona Young 2021 - 10/06/21 17 / 17



Thank you for your

attention!



Back-up slides



Higher-order cumulants and imaginary-θ simulations

Signal-to-Noise Ratio (SNR) of b2n (higher-order cumulants) degrades
rapidly as the volume grows due to the Central Limit Theorem.
=⇒ large statistics required to keep �nite-size e�ects of b2n under control.
Idea 1: add imaginary-θ term to Euclidean action, so that it acts as a
source term for Q, enhancing SNR of higher-order cumulants:

S → S + θIQ, θI ≡ iθ =⇒ kn → kn(θI) ∝ dnf(θI )
dθn

I

Idea 2: information on χ and b2n now encoded in θI -dependence of
lower-order cumulants =⇒ extract χ and b2n from combined �t of
θI -dependence of cumulants kn. (N. B. odd cumulants non-zero for θI 6= 0)
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Imaginary-θ �t. Left: 2d CPN−1 models. Right: 4d SU(N) pure-gauge theories.
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Hasenbusch algorithm details, SU(N) gauge theories

Links crossing the defect get their coupling multiplied by a factor c(r):
0 ≤ c(r) ≤ 1 (r = replica index). In our SU(N) implementation we chose
c(r) so that swap acceptance p is ∼ const. for couples (r, r + 1).
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When acc. ∼ const. =⇒
conf. moves freely among
di�erent replicas (left �g.)
and c(r) deviates from lin-
ear interpolation (center
�g.). Examples: N = 4.
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Standard algorithm

Parallel tempering, Ld = a

Parallel tempering, Ld = 2a

Parallel tempering, Ld = 3a

Auto-correlation time of Q2 scales
as exp(1/a) if defect size Ld is �xed
in lattice units as a → 0, however
with a much smaller slope com-
pared to the standard algorithm. If
instead Ld is kept �xed in physical
units, scaling with a is largely im-

proved. (Fig. on the left: N = 6)
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Large-N behavior of b4 in 2d CPN−1 models
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With our statistics b4 is always compatible with zero. However,

we �nd |b̄4| ∼ |N4b4| . 20, but large-N analytic computations

yield b̄4 = −25338/175 ' −144.79 . . . =⇒ b4 data compatible
with slow convergence of 1/N series too.
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Small-N cont. limit and smoothing, 2d CPN−1 models

ncool steps → smoothing radius rs with rs/a ∝
√
ncool .

We kept ncool = const. as a→ 0 =⇒ rs ∼ a in the continuum

limit =⇒ rs → 0 in the continuum limit, and no relevant signal

at the scale of a is smoothed away.

If this hypothesis is correct: rs = c(ncool ) a, =⇒
χ(a, ncool ) = χ(a′, n′cool ) if (a, ncool ) and (a′, n′cool ) have same rs.
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We plot ξ2χ vs xeff ∝
ac(ncool)/c(ncool = 50) =⇒ all

data obtained for di�erent values of

ncool collapse on each other =⇒
choosing a di�erent value of ncool

is just a di�erent choice of a =⇒
continuum limit must be the same.

(Fig. on the left: N = 3.)
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