The Cardy-like limit of the $\mathcal{N}=1$ superconformal index

Marco Fazzi

INFN Milano-Bicocca

Based on 2012.15208 & 2103.15853 with Antonio Amariti (INFN Milano) and Alessia Segati (Milano Uni)

[see also Cassani-Komargodski 2104.01464 & Arabi Ardehali-Murthy 2104.13932]

Based on 2012.15208 & 2103.15853 with Antonio Amariti (INFN Milano) and Alessia Segati (Milano Uni)

[see also Cassani-Komargodski 2104.01464 & Arabi Ardehali-Murthy 2104.13932]

Here focus on d=4 (field theory dimension). A lot of work in d=3, some results in d=5,6

This talk:

Black hole entropy & superconformal index

New general formula for the Cardy-like limit

Examples (including & beyond $\mathcal{N}=4$ super-YM)

The problem: counting the microsta	ates for susy blac	k holes (BHs); poss	ibly identify them

microstates are at the origin of Bekenstein-Hawking entropy formula:

$$S_{\rm BH} = k_{\rm B} \frac{c^3 A_{\rm BH}}{4\hbar G_{\rm N}}$$

microstates are at the origin of Bekenstein-Hawking entropy formula:

$$S_{\rm BH} = k_{\rm B} \frac{c^3 A_{\rm BH}}{4\hbar G_{\rm N}}$$

Why is it true? Derivation as statistical entropy?

$$S_{\rm BH} = k_{\rm B} \log n$$

microstates are at the origin of Bekenstein-Hawking entropy formula:

$$S_{\rm BH} = k_{\rm B} \frac{c^3 A_{\rm BH}}{4\hbar G_{\rm N}}$$

Why is it true? Derivation as statistical entropy?

$$S_{\rm BH} = k_{\rm B} \log n$$

Incarnation of holographic principle: n microscopic **dof** concentrated **on the boundary** (A_{BH} dependence)

microstates are at the origin of Bekenstein-Hawking entropy formula:

$$S_{\mathrm{BH}} = k_{\mathrm{B}} \frac{c^3 A_{\mathrm{BH}}}{4 \hbar G_{\mathrm{N}}}$$

Why is it true? Derivation as statistical entropy?

$$S_{\rm BH} = k_{\rm B} \log n$$

Incarnation of holographic principle: - • *n* microscopic **dof** concentrated **on the boundary** (ABH dependence)

[Strominger-Vafa,...]

[Strominger-Vafa,...]

What about asymptotically curved BHs? Like **anti-de Sitter** (AdS). Can string theory help?

For asymptotically flat BHs, string theory gives right answer [Strominger-Vafa,...]

What about asymptotically curved BHs? Like **anti-de Sitter** (AdS). Can string theory help?

In AdS₅, 1/16-BPS BH embedded in AdS₅ x S⁵ vacuum of string theory

[Strominger-Vafa,...]

What about asymptotically curved BHs? Like **anti-de Sitter** (AdS). Can string theory help?

In AdS₅, 1/16-BPS BH embedded in AdS₅ x S⁵ vacuum of string theory

Extremal: zero temp

"1/16-BPS": 2 out of 32 supercharges

[Gutowski-Reall,...]

[Strominger-Vafa,...]

What about asymptotically curved BHs? Like **anti-de Sitter** (AdS). Can string theory help?

In AdS₅, 1/16-BPS BH embedded in AdS₅ x S⁵ vacuum of string theory

Extremal: zero temp

"1/16-BPS": 2 out of 32 supercharges

 $\mathbb{R} \times \mathbb{S}^3$ conformal boundary

[Gutowski-Reall,...]

[Strominger-Vafa,...]

What about asymptotically curved BHs? Like **anti-de Sitter** (AdS). Can string theory help?

In AdS₅, 1/16-BPS BH embedded in AdS₅ x S⁵ vacuum of string theory

3 electric charges q_a 2 angular momenta j_i (constrained by susy)

conformal boundary

[Gutowski-Reall,...]

AdS/CFT: weakly-coupled string theory on AdS₅ x $S^5 \leftrightarrow 4d$ $\mathcal{N}=4$ SU(N) super-YM [Maldacena]

AdS/CFT: weakly-coupled string theory on AdS₅ x $S^5 \leftrightarrow 4d$ $\mathcal{N}=4$ SU(N) super-YM [Maldacena]

CFT provides definition of microscopical theory, with its dof. **BH microstates** correspond to **states in CFT**

AdS/CFT: weakly-coupled string theory on AdS₅ x $S^5 \leftrightarrow 4d$ $\mathcal{N}=4$ SU(N) super-YM [Maldacena]

CFT provides definition of microscopical theory, with its dof. **BH microstates** correspond to **states in CFT**

Ensemble of states in dual $\mathcal{N}=4$ on $\mathbb{R} \times S^3$? Susy & charges suggest BH entropy should be given by 1/16-BPS states of $\mathcal{N}=4$ super-YM w/ spins j_i & U(1) charges q_a

if BH solution embeds in AdS_{d+1} and has conformal horizon $\mathbb{R} \times M_{d-1}$, enumerate 1/4-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$. When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, ...]

if BH solution embeds in AdS_{d+1} and has conformal horizon $\mathbb{R} \times M_{d-1}$, enumerate 1/4-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$. When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, ...]

for AdS₅ BHs, entropy correctly reproduced by log of superconformal index^(*) of d=4 $\mathcal{N}=4$ SYM at large N (~1/ \sqrt{G}_{Newton}) & for complex chemical potentials

[Hosseini-Hristov-Zaffaroni, Benini-Milan, Choi-Kim-Kim-Nahmgoong, CaboBizet-Cassani-Martelli-Murthy]

if BH solution embeds in AdS_{d+1} and has conformal horizon $\mathbb{R} \times M_{d-1}$, enumerate 1/4-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$. When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, ...]

 $(S_{BH} = \log n)$

for AdS₅ BHs, entropy correctly reproduced by log of superconformal index^(*) of d=4 $\mathcal{N}=4$ SYM at large N (~1/ \sqrt{G}_{Newton}) & for complex chemical potentials

[Hosseini-Hristov-Zaffaroni, Benini-Milan, Choi-Kim-Kim-Nahmgoong, CaboBizet-Cassani-Martelli-Murthy]

if BH solution embeds in AdS_{d+1} and has conformal horizon $\mathbb{R} \times M_{d-1}$, enumerate 1/4-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$.

When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, ...]

 $(S_{BH} = \log n)$

for AdS₅ BHs, entropy correctly reproduced by log of superconformal index^(*) of d=4 $\mathcal{N}=4$ SYM at large N (~1/ \sqrt{G}_{Newton}) & for complex chemical potentials

[Hosseini-Hristov-Zaffaroni, Benini-Milan, Choi-Kim-Kim-Nahmgoong, CaboBizet-Cassani-Martelli-Murthy]

if BH solution embeds in AdS_{d+1} and has conformal horizon $\mathbb{R} \times M_{d-1}$, enumerate 1/4-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$. When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, ...]

 $(S_{BH} = \log n)$

for AdS₅ BHs, entropy correctly reproduced by \log of superconformal index(*) of d=4 $\mathcal{N}=4$ SYM at large N (~1/ \sqrt{G}_{Newton}) & for complex chemical potentials.

[Hosseini-Hristov-Zaffaroni, Benini-Milan, Choi-Kim-Kim-Nahmgoong, CaboBizet-Cassani-Martelli-Murthy]

real order- N^2 quantity ~ $a_{N=4}$ central charge

associated w/ ang. momentum operators J_1 , J_2

$$\mathcal{I}_{sc} = \operatorname{Tr}|_{\mathcal{Q}=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)}$$

$$\mathcal{I}_{sc} = \text{Tr}|_{\mathcal{Q}=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)}$$

generalization of Witten index $Tr_H(-1)^F$ (bosons: F=0, fermions F=1)

$$\mathcal{I}_{sc} = \text{Tr}|_{\mathcal{Q}=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)}$$

generalization of Witten index $Tr_H(-1)^F$ (bosons: F=0, fermions F=1)

counts 1/16-BPS states w/ sign: different from counting ALL 1/16-BPS states (entropy: hard problem)

preserved supercharge
$${m Q}$$

$${\cal I}_{\rm sc} = {\rm Tr}\big|_{{\cal Q}=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)}$$

preserved supercharge ${\it Q}$ ${\it I}_{\rm sc} = {\rm Tr}\big|_{{\it Q}=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)}$ (complex) ${\it \Delta_a, \, \omega_i \, \rm chemical \, potentials}$

Computed via susy localization as $Z_{S^3xS^1}$. Agreement with gravity result for AdS₅ BH in two limits:

Computed via susy localization as $Z_{s_xs_1}$. Agreement with gravity result for AdS₅ BH in two limits:

$$\log \mathcal{I}_{\rm sc} \underset{N \to \infty}{\sim} -i \frac{16}{27} \frac{a(\vec{\Delta})}{\omega_1 \omega_2} \underset{\mathcal{N}=4}{=} -\frac{i}{2} N^2 \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_1 \omega_2}$$

large-N limit from exact evaluation of superconformal index via "Bethe Ansätz" formula $I_{SC} = \sum Z H^{-1}$

[Closset-Kim-Willett, Benini-Milan, Benini-Colombo-Soltani-Zaffaroni-Zhang]

Computed via susy localization as $Z_{s_xs_1}$. Agreement with gravity result for AdS₅ BH in two limits:

$$\log \mathcal{I}_{\rm sc} \underset{N \to \infty}{\sim} -i \frac{16}{27} \frac{a(\vec{\Delta})}{\omega_1 \omega_2} \underset{\mathcal{N}=4}{=} -\frac{i}{2} N^2 \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_1 \omega_2}$$

large-N limit from exact evaluation of superconformal index via "Bethe Ansätz" formula $I_{SC} = \sum Z H^{-1}$

[Closset-Kim-Willett, Benini-Milan, Benini-Colombo-Soltani-Zaffaroni-Zhang]

$$\log \mathcal{I}_{sc} \sim_{|\omega_i| \to 0} 4\pi^2 i \frac{3\omega_1 + 3\omega_2 \pm 2\pi}{27\omega_1 \omega_2} (3c - 5a) + 4\pi^2 i \frac{\omega_1 + \omega_2 \pm 2\pi}{\omega_1 \omega_2} (a - c) + \mathcal{O}(|\omega_i|^0)$$

"Cardy-like limit": small- $|\omega_i|$ limit from matrix model representation of superconformal index

[Choi-Kim-Kim-Nahmgoong, CaboBizet-Cassani-Martelli-Murthy]

Computed via susy localization as $Z_{s_xs_1}$. Agreement with gravity result for AdS₅ BH in two limits:

$$\log \mathcal{I}_{\rm sc} \underset{N \to \infty}{\sim} -i \frac{16}{27} \frac{a(\vec{\Delta})}{\omega_1 \omega_2} \underset{\mathcal{N}=4}{=} -\frac{i}{2} N^2 \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_1 \omega_2}$$

large-N limit from exact evaluation of superconformal index via "Bethe Ansätz" formula $I_{SC} = \sum Z H^{-1}$

[Closset-Kim-Willett, Benini-Milan, Benini-Colombo-Soltani-Zaffaroni-Zhang]

$$\log \mathcal{I}_{sc} \sim_{|\omega_i| \to 0} 4\pi^2 i \frac{3\omega_1 + 3\omega_2 \pm 2\pi}{27\omega_1 \omega_2} (3c - 5a) + 4\pi^2 i \frac{\omega_1 + \omega_2 \pm 2\pi}{\omega_1 \omega_2} (a - c) + \mathcal{O}(|\omega_i|^0)$$

"Cardy-like limit": small- $|\omega_i|$ limit from matrix model representation of superconformal index

[Choi-Kim-Kim-Nahmgoong, CaboBizet-Cassani-Martelli-Murthy]

New general formula when $\omega_1 = \omega_2 = \tau$

[Amariti-MF-Segati '21]

$$\log \mathcal{I}_{sc} \sim_{|\tau| \to 0} 4\pi i \, \frac{\pm 12\tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \, \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma_Z$$

New general formula when $\omega_1 = \omega_2 \equiv \tau$

[Amariti-MF-Segati '21]

$$\log \mathcal{I}_{sc} \sim_{|\tau| \to 0} 4\pi i \, \frac{\pm 12\tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \, \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma_Z$$

Captures τ^{-2} , τ^{-1} , τ^0 orders. Valid at finite rank N of gauge group

New general formula when $\omega_1 = \omega_2 \equiv \tau$

[Amariti-MF-Segati '21]

$$\log \mathcal{I}_{sc} \sim_{|\tau| \to 0} 4\pi i \, \frac{\pm 12\tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \, \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma_Z$$

Captures τ^{-2} , τ^{-1} , τ^0 orders. Valid at finite rank N of gauge group

Valid for generic $\mathcal{N}=1$ SCFT with **G=ABCD** gauge group

Valid for **holographic** & **non-holographic** theories (a=c or $a\neq c$ at large N)

New general formula when $\omega_1 = \omega_2 \equiv \tau$

[Amariti-MF-Segati '21]

$$\log \mathcal{I}_{sc} \sim_{|\tau| \to 0} 4\pi i \, \frac{\pm 12\tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \, \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma_Z$$

Captures τ^{-2} , τ^{-1} , τ^0 orders. Valid at finite rank N of gauge group

Valid for generic $\mathcal{N}=1$ SCFT with **G=ABCD** gauge group

Valid for **holographic** & **non-holographic** theories (a=c or $a\neq c$ at large N)

Finite log Γ_Z correction: minimal charge of matter under center Z(G) (order of character lattice modulo Weyl symmetry)

New general formula when $\omega_1 = \omega_2 \equiv \tau$

[Amariti-MF-Segati '21]

$$\log \mathcal{I}_{sc} \sim_{|\tau| \to 0} 4\pi i \, \frac{\pm 12\tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \, \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma_Z$$

Captures τ^{-2} , τ^{-1} , τ^0 orders. Valid at finite rank N of gauge group

Valid for generic $\mathcal{N}=1$ SCFT with **G=ABCD** gauge group

Valid for **holographic** & **non-holographic** theories (a=c or $a\neq c$ at large N)

Finite log Γ_Z correction: minimal charge of matter under center Z(G) (order of character lattice modulo Weyl symmetry)

explains & expands previous results

 \mathcal{N} =4 super-YM (adj matter): $\Gamma_Z = \dim Z(G)$

[SU: GonzalezLezcano-Hong-Liu-PandoZayas, USp, SO: Amariti-MF-Segati '20]

toric SU(N) quivers (bifundamental matter): $\Gamma_Z = N$

[GonzalezLezcano-Hong-Liu-PandoZayas]

$$\mathcal{I}_{\mathrm{sc}}(\tau,\Delta) = \frac{(q;q)_{\infty}^{2\,\mathrm{rk}_{G}}}{|\mathrm{Weyl}(G)|} \int \prod_{i=1}^{\mathrm{rk}_{G}} du_{i} \frac{\prod_{I=1}^{n_{\chi}} \prod_{\rho_{I}} \tilde{\Gamma}(\rho_{I}(\vec{u}) + \Delta_{I})}{\prod_{\alpha} \tilde{\Gamma}(\alpha(\vec{u}))} \equiv \frac{1}{|\mathrm{Weyl}(G)|} \int \prod_{i=1}^{\mathrm{rk}_{G}} du_{i} \, e^{S_{\mathrm{eff}}(\vec{u};\tau,\Delta)}$$

$$0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_{\chi}} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_{\tau})$$

$$n_{\chi} \text{ matter fields}$$

$$0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_{\chi}} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_{\tau})$$

$$\log \tilde{\Gamma}(u) \underset{|\tau| \to 0}{\sim} \frac{B_3(\{u\}_{\tau})}{\tau^2} + \frac{B_2(\{u\}_{\tau})}{\tau} + B_1(\{u\}_{\tau}) + \tau$$

$$n_{\chi} \text{ matter fields}$$

$$0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_{\chi}} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_{\tau})$$

$$B_n \text{ Bernoulli polynomials}$$

$$\log \tilde{\Gamma}(u) \underset{|\tau| \to 0}{\sim} \frac{B_3(\{u\}_{\tau})}{\tau^2} + \frac{B_2(\{u\}_{\tau})}{\tau} + B_1(\{u\}_{\tau}) + \tau$$

EOM of matrix model $\int [du] e^{Seff}$ at leading order:

$$0 = \frac{\partial S_{\text{eff}}(\vec{u};\tau,\Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_\chi} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_\tau)$$

$$B_n \text{ Bernoulli polynomials}$$

$$\log \tilde{\Gamma}(u) \underset{|\tau| \to 0}{\sim} \frac{B_3(\{u\}_\tau)}{\tau^2} + \frac{B_2(\{u\}_\tau)}{\tau} + B_1(\{u\}_\tau) + \tau$$

Ansatz for saddle points:

$$u_{i_a} = u_{*i_a} + v_{i_a}\tau , \quad v_{i_a} \sim \mathcal{O}(|\tau|^0)$$

 n_X matter fields \blacksquare .

EOM of matrix model $\int [du] e^{Seff}$ at leading order:

$$0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_\chi} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_\tau)$$

$$B_n \text{ Bernoulli polynomials}$$

$$\log \tilde{\Gamma}(u) \underset{|\tau| \to 0}{\sim} \frac{B_3(\{u\}_\tau)}{\tau^2} + \frac{B_2(\{u\}_\tau)}{\tau} + B_1(\{u\}_\tau) + \tau$$

 n_x matter fields

Ansatz for saddle points:

EOM of matrix model $\int [du] e^{Seff}$ at leading order:

$$0 = \frac{\partial S_{\text{eff}}(\vec{u};\tau,\Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_\chi} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_\tau)$$

$$B_n \text{ Bernoulli polynomials}$$

$$\log \tilde{\Gamma}(u) \underset{|\tau| \to 0}{\sim} \frac{B_3(\{u\}_\tau)}{\tau^2} + \frac{B_2(\{u\}_\tau)}{\tau} + B_1(\{u\}_\tau) + \tau$$

 n_x matter fields

Ansatz for saddle points:

plug Ansatz back into S_{eff} and impose **physical constraints** on matter chem. potentials Δ_l : superconformal index computed by **3d** pure Chern-Simons partition function & dependence on SCFT central charges $a(\Delta_l)$, $c(\Delta_l)$

[Amariti-MF-Segati '20]

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

Dominant saddle in BH 'region' (constraints on Δ_l): $u_i = m/2 + v_i \tau$; $m = \{0,1\} \Rightarrow \Gamma_Z = 2$

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

Dominant saddle in BH 'region' (constraints on Δ_l): $u_i = m/2 + v_i \tau$; $m = \{0,1\} \Rightarrow \Gamma_Z = 2$

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

Dominant saddle in BH 'region' (constraints on Δ_l): $u_i = m/2 + v_i \tau$; $m = \{0,1\} \Rightarrow \Gamma_Z = 2$

$$\log \mathcal{I}_{\mathrm{sc}}^{\mathrm{USp}(2N)} = -\frac{i\pi N(2N+1)}{\tau^2} \prod_{I=1}^{3} \left(\{\Delta_I\}_{\tau} - \frac{1+\eta}{2} \right) + \log 2 + \mathcal{O}(e^{-1/|\tau|})$$

with N holonomies at 0 or ½

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

Dominant saddle in BH 'region' (constraints on Δ_l): $u_l = m/2 + v_l \tau$; $m = \{0,1\} \Rightarrow \Gamma_Z = 2\}$

$$\log \mathcal{I}_{\mathrm{sc}}^{\mathrm{USp}(2N)} \underset{|\tau| \to 0}{=} -\frac{i\pi N(2N+1)}{\tau^2} \prod_{I=1}^{3} \left(\{\Delta_I\}_{\tau} - \frac{1+\eta}{2} \right) + \log 2 + \mathcal{O}(e^{-1/|\tau|})$$

with N holonomies at 0 or ½

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

subdominant saddles:

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

subdominant saddles: N at 1/4

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

subdominant saddles:

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

subdominant saddles: P at 0; P at 1/2; N-2P at 1/4

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

subdominant saddles: P at 0; P at 1/2; N-2P at 1/4

In both cases, S_{eff} (ie log index) evaluated at subdominant saddle is **subleading at large** N: hierarchy of saddles very important

[Amariti-MF-Segati '20]

 $\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

(focus on USp)
$$\begin{array}{ccccc}
P & N-2P & P \\
0 & & 1 \\
& & & \downarrow & \downarrow \\
1/4 & 1/2 & 3/4
\end{array}$$

subdominant saddles: P at 0; P at 1/2; N-2P at 1/4

In both cases, **S**_{eff} (ie log index) evaluated at subdominant saddle is **subleading at large N**: hierarchy of saddles very important

S-duality between USp and SO (identity of superconformal indices) nontrivially realized on saddles

We've looked at more complicated $\mathcal{N}=1$ models:

non-toric (toric: U(1)³ global symmetry), not all ranks equal, non-holographic (including subleading corrections and finite terms)

[Amariti-MF-Segati '21]

N D3's probing $\mathbb{C}^3 / \mathbb{Z}_2 \times \mathbb{Z}_2$ (toric model: U(1)³)

Seiberg-dual nontoric phase

N D3's probing $\mathbb{C}^3 / \mathbb{Z}_2 \times \mathbb{Z}_2$ (toric model: U(1)³)

Seiberg-dual nontoric phase

Cardy-like limit of superconformal indices computed independently in two phases from S_{eff} match precisely. Both given by our new formula with $\Gamma_Z = N$

Nontrivial **check of validity** of our formula

N D3's probing non-toric threefolds (& different ranks):

Cone over dP₄

4 flavor U(1)s

Laufer's theory

1 flavor U(1)

N D3's probing non-toric threefolds (& different ranks):

SU(N) in conformal window

SU(N) in conformal window

adjoint SU(N)

SU(N) in conformal window

adjoint SU(N)

USp(2N)

SU(N) in conformal window

adjoint SU(N)

USp(2N)

 $\mathcal{N}=2$ theories

family of $\mathcal{N}=1$ SU(n) Lagrangians enhancing to (A_1, A_{2n-1}) Argyres-Douglas $\mathcal{N}=2$ SCFT [Maruysohi-Song,...]

SU(N) in conformal window

adjoint SU(N)

USp(2N)

 $\mathcal{N}=2$ theories

family of $\mathcal{N}=1$ SU(n) Lagrangians enhancing to (A_1, A_{2n-1}) Argyres-Douglas $\mathcal{N}=2$ SCFT [Maruysohi-Song,...]

 $\mathcal{N}=2$ SCFT: SU(N) w/ hypers \blacksquare & \blacksquare

[Ennes-Lozano-Naculich-Schnitzer]

SU(N) in conformal window

adjoint SU(N)

USp(2N)

 $\mathcal{N}=2$ theories

family of $\mathcal{N}=1$ SU(n) Lagrangians enhancing to (A_1, A_{2n-1}) Argyres-Douglas $\mathcal{N}=2$ SCFT [Maruysohi-Song,...]

Cardy-like limit of log of SCI matches $S_{\rm BH}$ at large N

$$\mathcal{N}=2$$
 SCFT: SU(N) w/ hypers

[Ennes-Lozano-Naculich-Schnitzer]

[Hosseini-Zaffaroni]

Non-holographic $\mathcal{N}=1$ theories ($a\neq c$ at large N): SQCD

SU(N) in conformal window

adjoint SU(N)

USp(2N)

 $\mathcal{N}=2$ theories

family of $\mathcal{N}=1$ SU(n) Lagrangians enhancing to (A_1, A_{2n-1}) Argyres-Douglas $\mathcal{N}=2$ SCFT [Maruysohi-Song,...]

Cardy-like limit of log of SCI matches S_{BH} at large N

 $\mathcal{N}=2$ SCFT: SU(N) w/ hypers \blacksquare & \blacksquare

[Ennes-Lozano-Naculich-Schnitzer]

[Hosseini-Zaffaroni]

peculiarity: $\Gamma_Z = (3+(-1)^N)/2$ depends on parity of N (reflected in degeneracy of saddles)

Conclusions

Formula for Cardy-like limit of superconformal index for generic $\mathcal{N}=1$ ABCD SCFTs: extends previous results valid at lowest order and/or for non-generic theories (super-YM, toric)

Conclusions

Formula for Cardy-like limit of superconformal index for generic $\mathcal{N}=1$ ABCD SCFTs: extends previous results valid at lowest order and/or for non-generic theories (super-YM, toric)

Includes leading & subleading contributions (from 3*d* pure Chern-Simons term) and finite log correction from minimal charge of matter = degeneracy of matrix model saddle

[3d EFT interpretation of result given by Cassani-Komargodski]

Conclusions

Formula for Cardy-like limit of superconformal index for generic $\mathcal{N}=1$ ABCD SCFTs: extends previous results valid at lowest order and/or for non-generic theories (super-YM, toric)

Includes leading & subleading contributions (from 3*d* pure Chern-Simons term) and finite log correction from minimal charge of matter = degeneracy of matrix model saddle

[3d EFT interpretation of result given by Cassani-Komargodski]

No 'rigorous' proof but can explicitly determine leading & subleading contributions with very general Ansatz $u_i = u_{*i} + v_i \tau$ for matrix model saddle point

Outlook

AdS/CFT derivation/interpretation of finite log correction (i.e. quantum gravity corrections to asymptotically-AdS BH entropy)

[Bobev-Charles-Gang-Hristov-Reys, Bobev-Charles-Hristov-Reys for AdS₄ BHs]

'Derivation' of new formula from 3d EFT for SU case: applicable to generic $\mathcal{N}=1$ SCFTs too?

[Cassani-Komargodski for SU case]

Extend formula to 2 different angular momenta: $\omega_1 \neq \omega_2 = \tau$

(Structure of) other subleading saddles?

[ArabiArdehali-Hong-Liu, CaboBizet-Cassani-Martelli-Murthy]

Bethe Ansätz approach in generic case is *terra incognita*; match large-N limit to Cardy-like limit. Very nontrivial: eg 'basic solutions' don't work for Laufer SU(N) x SU(2N)

[Benini-Colombo-Soltani-Zaffaroni-Zhang for SU(N) holographic quivers dual to AdS₅ x S⁵]

Beyond τ^0 , exponentially suppressed orders in τ^{-1} vs in N^{-1} from Bethe Ansätz. Match? Meaning?

[Aharony-Benini-Mamroud-Milan]

Index as matrix model

$$q = e^{i\tau} \blacktriangleleft \cdots$$

$$\mathcal{I}_{\mathrm{sc}}(\tau, \Delta) = \frac{(q; q)_{\infty}^{2 \operatorname{rk}_{G}}}{|\operatorname{Weyl}(G)|} \int \prod_{i=1}^{\operatorname{rk}_{G}} du_{i} \frac{\prod_{I=1}^{n_{\chi}} \prod_{\rho_{I}} \tilde{\Gamma}(\rho_{I}(\vec{u}) + \Delta_{I})}{\prod_{\alpha} \tilde{\Gamma}(\alpha(\vec{u}))} \equiv \frac{1}{|\operatorname{Weyl}(G)|} \int \prod_{i=1}^{\operatorname{rk}_{G}} du_{i} \, e^{S_{\operatorname{eff}}(\vec{u}; \tau, \Delta)}$$

ρι gauge weigh

$$u_i \in (0,1]$$

$$u_i \sim u_i + 1$$

ui gauge holonomies

$$(z_i = e^{2\pi i u_i} \in S^1)$$

$\Delta_I = \nu_I(\vec{\xi}) + R_I v_R$

 ξ flavor holonomies

 v_l flavor weight; v_R R-sym chem pot; R_I R-charge

Index as matrix model

For $a=1,...,n_G$ gauge groups and $l=1,...,n_X$ matter fields, effective action:

$$S_{\mathrm{eff}}(\vec{u};\tau,\Delta) = \sum_{I=1}^{n_{\chi}} \sum_{\rho_{I}} \log \tilde{\Gamma} \left(\rho_{I}(\vec{u}) + \Delta_{I} \right) + \sum_{a=1}^{n_{G}} \sum_{\alpha_{a}} \log \theta_{0} \left(\alpha_{a}(\vec{u});\tau \right) + \sum_{a=1}^{n_{G}} 2 \operatorname{rk}_{G_{a}} \log(q;q)_{\infty}$$
 matter contribution
$$\underset{[-\log \Gamma(u) = \log \theta_{0}(u)]}{\operatorname{gauge}} \qquad \underset{[-\log \Gamma(u) = \log \theta_{0}(u)]}{\operatorname{q-Pochhammer}}$$

Saddles:

Expand all functions in S_{eff} for small τ ; eg matter fields contribute as

Saddles:

Expand all functions in S_{eff} for small τ ; eg matter fields contribute as

EOM of matrix model at leading order:

$$0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_{\chi}} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_{\tau})$$

Ansatz for saddle points of the form:

$$u_{i_a} = u_{*i_a} + v_{i_a}\tau , \quad v_{i_a} \sim \mathcal{O}(|\tau|^0)$$

Saddles:

Expand all functions in S_{eff} for small τ ; eg matter fields contribute as

EOM of matrix model at leading order:

$$0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_{\chi}} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_{\tau})$$

Ansatz for saddle points of the form:

$$u_{i_a} = u_{*i_a} + v_{i_a}\tau , \quad v_{i_a} \sim \mathcal{O}(|\tau|^0)$$

It **captures** up to **finite terms in** τ : goes beyond preexisting results up to τ^{-2} , τ^{-1} .

Number of inequivalent ways of selecting constants u_{*i} given by Γ_z

Superpotential constraint:

$$\left(\hat{\Delta}_I = \frac{2}{2\tau - \eta} \{\Delta_I\}_{\tau}\right)$$

Matter fields in each superpotential term

$$\sum_{I \in \mathcal{W}} \hat{\Delta}_I = 2 \quad \Rightarrow \quad \sum_{I \in \mathcal{W}} \{\Delta_I\}_{\tau} = 2\tau - \eta$$

Superpotential constraint:

$$\left(\hat{\Delta}_I = \frac{2}{2\tau - \eta} \{\Delta_I\}_{\tau}\right)$$

Matter fields in each superpotential term

$$\sum_{I \in \mathcal{W}} \hat{\Delta}_I = 2 \quad \Rightarrow \quad \sum_{I \in \mathcal{W}} \{\Delta_I\}_{\tau} = 2\tau - \eta$$

R-sym anomaly freedom in the Δ_l variables:

Matter fields charged under a-th gauge group

$$T(G) + \sum_{I \in G_a} T(\mathcal{R}_I) (\hat{\Delta}_I - 1) = 0$$
 index of irrep

Superpotential constraint:

 $\left(\hat{\Delta}_I = \frac{2}{2\tau - \eta} \{\Delta_I\}_{\tau}\right)$

Matter fields in each superpotential term

$$\sum_{I \in \mathcal{W}} \hat{\Delta}_I = 2 \quad \Rightarrow \quad \sum_{I \in \mathcal{W}} \{\Delta_I\}_{\tau} = 2\tau - \eta$$

R-sym anomaly freedom in the Δ_l variables:

Matter fields charged under a-th gauge group

$$T(G) + \sum_{I \in G_a} T(\mathcal{R}_I)(\hat{\Delta}_I - 1) = 0$$
 index of irrep

Superpotential constraint:

 $\left(\hat{\Delta}_I = \frac{2}{2\tau - \eta} \{\Delta_I\}_{\tau}\right)$

Matter fields in each superpotential term

$$\sum_{I \in \mathcal{W}} \hat{\Delta}_I = 2 \quad \Rightarrow \quad \sum_{I \in \mathcal{W}} \{\Delta_I\}_{\tau} = 2\tau - \eta$$

R-sym anomaly freedom in the Δ_l variables:

Matter fields charged under a-th gauge group

$$T(G) + \sum_{I \in G_a} T(\mathcal{R}_I) (\hat{\Delta}_I - 1) = 0$$
 index of irrep

CONSEQUENCE #1: linear term in holonomies u_i in S_{eff} vanishes for all ABCD algebras

Superpotential constraint:

$$\left(\hat{\Delta}_I = \frac{2}{2\tau - \eta} \{\Delta_I\}_{\tau}\right)$$

Matter fields in each superpotential term

$$\sum_{I \in \mathcal{W}} \hat{\Delta}_I = 2 \quad \Rightarrow \quad \sum_{I \in \mathcal{W}} \{\Delta_I\}_{\tau} = 2\tau - \eta$$

R-sym anomaly freedom in the Δ_l variables:

Matter fields charged under a-th gauge group

$$T(G) + \sum_{I \in G_a} T(\mathcal{R}_I)(\hat{\Delta}_I - 1) = 0$$
 index of irrep

CONSEQUENCE #1: linear term in holonomies u_i in S_{eff} vanishes for all ABCD algebras

CONSEQUENCE #2: quadratic term reconstructs 3d G=**ABCD** pure **CS** partition function at **level** - $\eta T(G)$

GR calculation of BH \subset AdS₅ x S⁵ entropy:

$$S_{\text{BH}}(q_a, j_i) = 2\pi \sqrt{q_1 q_2 + q_1 q_3 + q_2 q_3 - \frac{\pi}{4G_{\text{N}}^{(5)} g_{\text{AdS}}^3}} (j_1 + j_2)$$

$$N^2 = \frac{\pi}{2G_{\rm N}^{(5)}g_{\rm AdS}^3}$$

Asymptotically AdS₅ BH:

Near the horizon:

$$ds_{r \sim r_c}^2 \sim -(r - r_c)^2 dt^2 + \frac{dr^2}{(r - r_c)^2} + \text{const } ds_{\mathcal{M}_{d-1}}^2$$

Asymptotically AdS₅ (with $\mathbb{R} \times M_{d-1}$ conformal boundary):

$$ds_{r\to\infty}^2 \sim \frac{dr^2}{r^2} + r^2(-dt^2 + ds_{\mathcal{M}_{d-1}}^2) + \dots$$