The Cardy-like limit of the $\mathcal{N}=1$ superconformal index

Marco Fazzi

INFN Milano-Bicocca
Based on 2012.15208 & 2103.15853
with Antonio Amariti (INFN Milano) and Alessia Segati (Milano Uni)

[see also Cassani-Komargodski 2104.01464
& Arabi Ardehali-Murthy 2104.13932]
Based on 2012.15208 & 2103.15853
with Antonio Amariti (INFN Milano) and Alessia Segati (Milano Uni)

[see also Cassani-Komargodski 2104.01464
& Arabi Ardehali-Murthy 2104.13932]

Here focus on $d=4$ (field theory dimension).
A lot of work in $d=3$, some results in $d=5,6$
This talk:

Black hole entropy & superconformal index

New general formula for the Cardy-like limit

Examples (including & beyond $\mathcal{N}=4$ super-YM)
The problem: counting the microstates for susy black holes (BHs); possibly identify them
The problem: counting the microstates for susy black holes (BHs); possibly identify them

microstates are at the origin of Bekenstein-Hawking entropy formula:

$$S_{BH} = k_B \frac{c^3 A_{BH}}{4 \hbar G_N}$$
The problem: counting the microstates for susy black holes (BHs); possibly identify them.

Microstates are at the origin of Bekenstein-Hawking entropy formula:

$$S_{BH} = k_B \frac{c^3 A_{BH}}{4 \hbar G_N}$$

Why is it true? Derivation as statistical entropy?

$$S_{BH} = k_B \log n$$
The problem: counting the microstates for susy black holes (BHs); possibly identify them

microstates are at the origin of Bekenstein-Hawking entropy formula:

$$S_{\text{BH}} = k_B \frac{c^3 A_{\text{BH}}}{4\hbar G_N}$$

Why is it true? Derivation as statistical entropy?

$$S_{\text{BH}} = k_B \log n$$

Incarnation of holographic principle:

n microscopic \textbf{dof} concentrated \textbf{on the boundary} (A_{BH} dependence)
The problem: counting the microstates for susy black holes (BHs); possibly identify them

microstates are at the origin of Bekenstein-Hawking entropy formula:

\[S_{BH} = k_B \frac{c^3 A_{BH}}{4 \hbar G_N} \]

Why is it true? Derivation as statistical entropy?

\[S_{BH} = k_B \log n \]

Incarnation of holographic principle:

\(n \) microscopic \textbf{dof} concentrated \textbf{on the boundary} \((A_{BH} \) dependence)
For asymptotically flat BHs, string theory gives right answer

[Strominger-Vafa, ...]
For asymptotically flat BHs, string theory gives right answer

[Strominger-Vafa,…]

What about asymptotically curved BHs? Like anti-de Sitter (AdS). Can string theory help?
For asymptotically flat BHs, string theory gives right answer

[Strominger-Vafa,...]

What about asymptotically curved BHs? Like **anti-de Sitter** (AdS).
Can string theory help?

In AdS$_5$, 1/16-BPS BH embedded in AdS$_5 \times S^5$ vacuum of string theory

[Gutowski-Reall,...]
For asymptotically flat BHs, string theory gives right answer

[Strominger-Vafa,...]

What about asymptotically curved BHs? Like **anti-de Sitter** (AdS). Can string theory help?

In AdS$_5$, 1/16-BPS BH embedded in AdS$_5 \times S^5$ vacuum of string theory

Extremal: zero temp
“1/16-BPS”: 2 out of 32 supercharges

[Gutowski-Reall,...]
For asymptotically flat BHs, string theory gives right answer

[Strominger-Vafa,...]

What about asymptotically curved BHs? Like anti-de Sitter (AdS). Can string theory help?

In AdS$_5$, 1/16-BPS BH embedded in AdS$_5$ x S5 vacuum of string theory

Extremal: zero temp

“1/16-BPS”: 2 out of 32 supercharges

$\mathbb{R} \times S^3$
conformal boundary

[Gutowski-Reall,...]
For asymptotically flat BHs, string theory gives right answer

[Strominger-Vafa,…]

What about asymptotically curved BHs? Like anti-de Sitter (AdS). Can string theory help?

In AdS$_5$, 1/16-BPS BH embedded in AdS$_5 \times S^5$ vacuum of string theory

Extremal: zero temp
“1/16-BPS”: 2 out of 32 supercharges

$\mathbb{R} \times S^3$
conformal boundary

3 electric charges q_a
2 angular momenta j_i
(constrained by susy)

[Gutowski-Reall,…]
AdS/CFT: weakly-coupled string theory on $\text{AdS}_5 \times S^5 \leftrightarrow 4d \mathcal{N}=4 \ \text{SU}(N) \ \text{super-YM}$

[Maldacena]
AdS/CFT: weakly-coupled string theory on $\text{AdS}_5 \times S^5 \leftrightarrow 4d \mathcal{N}=4 \text{ SU}(N)$ super-YM

[C. Maldacena]

CFT provides definition of microscopical theory, with its dof.

BH microstates correspond to states in CFT
AdS/CFT: weakly-coupled string theory on $\text{AdS}_5 \times S^5 \leftrightarrow 4d \, \mathcal{N}=4 \, \text{SU}(N) \, \text{super-YM}$

[Maldacena]

CFT provides definition of microscopical theory, with its dof.
BH microstates correspond to **states in CFT**

Ensemble of states in dual $\mathcal{N}=4$ on $\mathbb{R} \times S^3$?

Susy & charges suggest BH entropy should be given by
$1/16$-BPS states of $\mathcal{N}=4$ super-YM w/ spins j_i & $\text{U}(1)$ charges q_a
For more general $\mathcal{N} = 1$ SCFTs, count 1/4-susy states (1 supercharge Q)
For more general $\mathcal{N}=1$ SCFTs, count 1/4-susy states (1 supercharge Q)

if BH solution embeds in AdS$_{d+1}$ and has conformal horizon $\mathbb{R} \times M_{d-1}$, enumerate 1/4-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$.

When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, …]
For more general $\mathcal{N}=1$ SCFTs, count $1/4$-susy states (1 supercharge Q)

if BH solution embeds in AdS_{d+1} and has conformal horizon $\mathbb{R} \times M_{d-1}$, enumerate $1/4$-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$.

When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, …]

for AdS_5 BHs, entropy correctly reproduced by log of superconformal index (*) of $d=4 \mathcal{N}=4$ SYM at large N ($\sim 1/\sqrt{G_{\text{Newton}}}$) & for complex chemical potentials

(*) Legendre transform of log of index
For more general $\mathcal{N}=1$ SCFTs, count 1/4-susy states (1 supercharge Q)

if BH solution embeds in AdS$_{d+1}$ and has conformal horizon $\mathbb{R} \times M_{d-1}$,
enumerate 1/4-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$.
When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, …]

$(S_{\text{BH}} = \log n)$

for AdS$_5$ BHs, entropy correctly reproduced by log of superconformal index(*)
of $d=4 \mathcal{N}=4$ SYM at large N ($\sim 1/\sqrt{G_{\text{Newton}}}$) & for complex chemical potentials

(*) Legendre transform of log of index
For more general $\mathcal{N}=1$ SCFTs, count 1/4-susy states (1 supercharge Q)

if BH solution embeds in AdS_{d+1} and has conformal horizon $\mathbb{R} \times M_{d-1}$,
enumerate 1/4-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$.
When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, ...]

for AdS_5 BHs, entropy correctly reproduced by log of superconformal index\(^{(*)}\)
of $d=4 \mathcal{N}=4$ SYM at large N ($\sim 1/\sqrt{G_{\text{Newton}}}$) & for complex chemical potentials

\[S_{\text{BH}} \sim -\frac{i}{2} N^2 \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_1 \omega_2} \]

real order-N^2 quantity $\sim a, \mathcal{N}=4$ central charge

associated w/ charge operators $Q_a, a=1,2,3$

associated w/ ang. momentum operators J_1, J_2

\(^{(*)}\) Legendre transform of log of index
For more general $\mathcal{N}=1$ SCFTs, count $1/4$-susy states (1 supercharge Q)

if BH solution embeds in AdS$_{d+1}$ and has conformal horizon $\mathbb{R} \times M_{d-1}$, enumerate $1/4$-susy states in dual CFT on $\mathbb{R} \times M_{d-1}$.

When $M_{d-1} = S^{d-1}$, enumeration given by superconformal index

[Römelsberger, Kinney-Maldacena-Minwalla-Raju, …]

for AdS$_5$ BHs, entropy correctly reproduced by log of superconformal index$^($ for $d=4 \ \mathcal{N}=4$ SYM at large N ($\sim 1/\sqrt{G_{\text{Newton}}}$) & for complex chemical potentials

$S_{\text{BH}} = \log n$

$S_{\text{BH}} \sim -\frac{i}{2} N^2 \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_1 \omega_2}$

real order-N^2 quantity $\sim a_{,\mathcal{N}=4}$ central charge

associated w/ charge operators Q_a, $a=1,2,3$

associated w/ ang. momentum operators J_1, J_2

$^($ Legendre transform of log of index
The superconformal index of $\mathcal{N}=4$ super-YM

$$
\mathcal{I}_{sc} = \operatorname{Tr}|_{Q=0} (-1)^{F} e^{i(\Delta a Q_a + \omega_i J_i)}
$$
The superconformal index of $\mathcal{N}=4$ super-YM

\[\mathcal{I}_{sc} = \text{Tr}\big|_{Q=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)} \]

generalization of Witten index $\text{Tr}_{H} (-1)^F$ (bosons: $F=0$, fermions $F=1$)
The superconformal index of $\mathcal{N}=4$ super-YM

$$I_{sc} = \left. \text{Tr} \right|_{Q=0} (-1)^F e^{i(\Delta a Q_a + \omega_i J_i)}$$

generalization of Witten index $\text{Tr}_H (-1)^F$ (bosons: $F=0$, fermions $F=1$)

counts 1/16-BPS states w/ sign: different from counting ALL 1/16-BPS states (entropy: hard problem)
The superconformal index of $\mathcal{N}=4$ super-YM

\[\mathcal{I}_{sc} = \text{Tr} \Big|_{Q=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)} \]
The superconformal index of $\mathcal{N}=4$ super-YM

\[\mathcal{I}_{sc} = \text{Tr}_{Q=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)} \]

preserved supercharge Q

(complex)

Δ_a, ω_i chemical potentials
The superconformal index of $\mathcal{N}=4$ super-YM

Computation via susy localization as $Z_{S^3 \times S^1}$. Agreement with gravity result for AdS$_5$ BH in two limits:
The superconformal index of $\mathcal{N}=4$ super-YM

Computation via \textit{susy localization} as $Zs^3 x S^1$. Agreement with gravity result for AdS$_5$ BH in two limits:

$$\log I_{sc} \sim -\frac{i}{27} \frac{16 a(\Delta)}{\omega_1 \omega_2} \quad \text{large-} N \text{ limit from exact evaluation of superconformal index via “Bethe Ansätz” formula } I_{sc} = \sum Z H^{-1}$$

[Closset-Kim-Willett, Benini-Milan, Benini-Colombo-Soltani-Zaffaroni-Zhang]
The superconformal index of $\mathcal{N}=4$ super-YM

Composed via super localization as $Z_{\mathbb{S}^3\times \mathbb{S}^1}$. Agreement with gravity result for AdS$_5$ BH in two limits:

$$\log I_{sc} \sim N \to \infty \ -i \frac{16 a(\vec{\Delta})}{27 \omega_1 \omega_2} = -i \frac{N^2 \Delta_1 \Delta_2 \Delta_3}{2 \omega_1 \omega_2}$$

large-N limit from exact evaluation of superconformal index via “Bethe Ansätze” formula $I_{sc} = \sum Z H^{-1}$

[Closset-Kim-Willett, Benini-Milan, Benini-Colombo-Soltani-Zaffaroni-Zhang]

$$\log I_{sc} \sim |\omega_i| \to 0 \ 4 \pi^2 i \frac{3 \omega_1 + 3 \omega_2 \pm 2\pi(3c - 5a)}{27 \omega_1 \omega_2} (3c - 5a) + \frac{4\pi^2}{\omega_1 \omega_2} \left(\frac{\omega_1 + \omega_2 \pm 2\pi}{\omega_1 \omega_2} (a - c) + O(|\omega_i|^0) \right)$$

“Cardy-like limit”: small-$|\omega_i|$ limit from matrix model representation of superconformal index

[Choi-Kim-Nahmgoong, CaboBizet-Cassani-Martelli-Murthy]
The superconformal index of $\mathcal{N}=4$ super-YM

$$\mathcal{I}_{sc} = \text{Tr} \left|_{Q=0} (-1)^F e^{i(\Delta_a Q_a + \omega_i J_i)} \right.$$

Computed via **susy localization** as $Z^3 s^1 x s^1$. Agreement with gravity result for AdS$_5$ BH in two limits:

$$\log \mathcal{I}_{sc} \sim_{N \to \infty} -i \frac{16 a(\bar{\Delta})}{27 \omega_1 \omega_2} = -i \frac{N^2}{2} \frac{\Delta_1 \Delta_2 \Delta_3}{\omega_1 \omega_2}$$

large-N limit from exact evaluation of superconformal index via “Bethe Ansatz” formula $I_{sc} = \sum Z H^{-1}$

[Closet-Kim-Willett, Benini-Milan, Benini-Colombo-Soltani-Zaffaroni-Zhang]

$$\log \mathcal{I}_{sc} \sim_{|\omega_i| \to 0} 4\pi^2 i \frac{3\omega_1 + 3\omega_2 \pm 2\pi}{27\omega_1 \omega_2} (3c - 5a) + 4\pi^2 i \frac{\omega_1 + \omega_2 \pm 2\pi}{\omega_1 \omega_2} (a - c) \left(\mathcal{O}(|\omega_i|^0) \right)$$

“Cardy-like limit”: small-$|\omega|$ limit from matrix model representation of superconformal index

[Choi-Kim-Nahmgoong, CaboBizet-Cassani-Martelli-Murthy]
New general formula when $\omega_1 = \omega_2 = \tau$

[Amariti-MF-Segati '21]

\[
\log I_{sc} \sim 4\pi i \frac{\pm 12\tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma_Z
\]
New general formula when $\omega_1 = \omega_2 \equiv \tau$

[Amariti-MF-Segati '21]

\[
\log \mathcal{I}_{sc} \sim_{|\tau| \to 0} 4\pi i \frac{\pm 12 \tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma \!
\]

Captures $\tau^{-2}, \tau^{-1}, \tau^0$ orders. Valid at finite rank N of gauge group.
New general formula when $\omega_1 = \omega_2 \equiv \tau$

\[\log \mathcal{I}_{sc} \bigg|_{|\tau| \to 0} \sim 4\pi i \frac{ \pm 12\tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma_Z \]

Captures τ^{-2}, τ^{-1}, τ^0 orders. Valid at finite rank N of gauge group

Valid for generic $\mathcal{N}=1$ SCFT with $G=\text{ABCD}$ gauge group

Valid for holographic & non-holographic theories ($a=c$ or $a\neq c$ at large N)
New general formula when $\omega_1 = \omega_2 \equiv \tau$

Valid for \textit{generic} $\mathcal{N}=1$ SCFT with $G=ABCD$ gauge group

Valid for \textit{holographic} & \textit{non-holographic} theories ($a=c$ or $a\neq c$ at large N)

Finite \textit{log Γ_Z correction}: \textbf{minimal charge} of matter under center $Z(G)$
(order of character lattice modulo Weyl symmetry)

\[
\log \mathcal{I}_{sc}|_{|\tau|\to 0} \sim 4\pi i \frac{\pm 12\tau^2 - 6\tau \pm 1}{27\tau^2} (3c - 2a) + 4\pi i \frac{\mp 5\tau + 2}{3\tau} (c - a) + \log \Gamma_Z
\]
New general formula when $\omega_1 = \omega_2 \equiv \tau$

[Amariti-MF-Segati '21]

$$\log \mathcal{I}_{sc} \mid_{|\tau| \to 0} \sim 4\pi i \left(\frac{\pm 12\tau^2 - 6\tau + 1}{27\tau^2} (3c - 2a) + \frac{\mp 5\tau + 2}{3\tau} (c - a) \right) + \log \Gamma_Z$$

Captures $\tau^{-2}, \tau^{-1}, \tau^0$ orders. Valid at finite rank N of gauge group

Valid for generic $\mathcal{N}=1$ SCFT with $G=ABCD$ gauge group

Valid for holographic & non-holographic theories ($a=c$ or $a\neq c$ at large N)

Finite log Γ_Z correction: minimal charge of matter under center $Z(G)$ (order of character lattice modulo Weyl symmetry)

explains & expands previous results

$\mathcal{N}=4$ super-YM (adj matter): $\Gamma_Z = \text{dim } Z(G)$

toric SU(N) quivers (bifundamental matter): $\Gamma_Z = N$

[GonzalezLezcano-Hong-Liu-PandoZayas]
\[I_{sc}(\tau, \Delta) = \frac{(q; q)_{\infty}^{2rk_G}}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rk_G} du_i \frac{\prod_{I=1}^{n_{\chi}} \prod_{\rho_I} \tilde{\Gamma}(\rho_I(\bar{u}) + \Delta_I)}{\prod_{\alpha} \tilde{\Gamma}(\alpha(\bar{u})))} \equiv \frac{1}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rk_G} du_i e^{S_{\text{eff}}(\bar{u}; \tau, \Delta)} \]
One-slide proof: index as matrix model

\[q = e^{i \tau} \]

\[I_{sc}(\tau, \Delta) = \frac{(q; q)^{2rk_G}}{|\text{Weyl}(G)|} \left(\prod_{i=1}^{rk_G} du_i \right) \left(\prod_{l=1}^{n_\chi} \prod_{\rho_l} \tilde{\Gamma}(\rho_l(\bar{u}) + \Delta_I) \right) \]

\[\equiv \frac{1}{|\text{Weyl}(G)|} \left(\prod_{i=1}^{rk_G} du_i \right) e^{S_{\text{eff}}(\bar{u}; \tau, \Delta)} \]

\(e^{2\pi i u_i} \in S^1 \)

\(u_i \) gauge holonomies

\(\rho_l \) gauge weights

\(\alpha \) gauge roots

\(\Delta_I = \nu_l(\xi) + R_l v_R \)

\(\nu_l \) flavor weights;

\(\xi \) flavor holonomies

\(v_R \) R-sym chem potential

\(R_l \) R-charges
One-slide proof: index as matrix model

\[\mathcal{I}_{\text{sc}}(\tau, \Delta) = \frac{(q, q)_\infty^{2r_k G}}{|\text{Weyl}(G)|} \int \prod_{i=1}^{r_k G} du_i \frac{\Pi_{I=1}^{n_x} \rho_I \Gamma(\rho_I(\bar{u}) + \Delta_I)}{\Pi_\alpha \Gamma(\alpha(u))} \equiv \frac{1}{|\text{Weyl}(G)|} \int \prod_{i=1}^{r_k G} du_i e^{S_{\text{eff}}(\bar{u}; \tau, \Delta)} \]

effective action

\[\Delta_I = \nu_I(\xi) + R_I v_R \]

matter chemical potentials

EOM of matrix model \(\int [du] e^{S_{\text{eff}}} \) at leading order:
One-slide proof: index as matrix model

\[I_{\text{sc}}(\tau, \Delta) = \frac{(q; q)^{2rkG}}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rkG} du_i \frac{\prod_{I=1}^{n_X} \prod_{\rho_I} \bar{\Gamma}(\rho_I(\bar{u}) + \Delta_I)}{\prod_{\alpha} \Gamma(\alpha(\bar{u}))} \equiv \frac{1}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rkG} du_i e^{S_{\text{eff}}(\bar{u}; \tau, \Delta)} \]

\[q = e^{i\tau} \]

\[e^{2\pi i u_i} \in S^1 \]

\[u_i \text{ gauge holonomies} \]

\[\rho_I \text{ gauge weights} \]

\[\alpha \text{ gauge roots} \]

\[\Delta_I = \nu_I(\xi) + R_I v_R \]

\[\nu_I \text{ flavor weights;} \]

\[\xi \text{ flavor holonomies} \]

\[v_R \text{ R-sym chem potential} \]

\[R_I \text{ R-charges} \]

EOM of matrix model \[\int [du] e^{S_{\text{eff}}} \text{ at leading order:} \]

\[0 = \frac{\partial S_{\text{eff}}(\bar{u}; \tau, \Delta)}{\partial u_{ia}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_X} \sum_{\rho_I} \frac{\partial \rho_I(\bar{u})}{\partial u_{ia}} B_2(\{\rho_I(\bar{u}) + \Delta_I\}_{\tau}) \]
One-slide proof: index as matrix model

\[\mathcal{I}_{sc}(\tau, \Delta) = \frac{(q;q)^{2r_k G}}{|\text{Weyl}(G)|} \int_0^{\pi} du \prod_{i=1}^{r_k G} \prod_{\alpha} \frac{\Gamma(\alpha(\bar{u}))}{\Gamma(\rho_I(\bar{u}) + \Delta_I)} \]

\[\equiv \frac{1}{|\text{Weyl}(G)|} \int_0^{\pi} du e^{S_{\text{eff}}(\bar{u}, \tau, \Delta)} \]

\[e^{2\pi i u_i} \in S^1 \quad u_i \text{ gauge holonomies} \]

\[\rho_I \text{ gauge weights} \quad \alpha \text{ gauge roots} \]

\[\Delta_I = \nu_I(\xi^I) + R_I v_R \quad \nu_I \text{ flavor weights; } \xi^I \text{ flavor holonomies} \]

\[v_R \text{ R-sym chem potential} \quad R_i \text{ R-charges} \]

\[n_x \text{ matter fields} \]

\[0 = \frac{\partial S_{\text{eff}}(\bar{u}, \tau, \Delta)}{\partial u_{i a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_x} \sum_{\rho_I} \frac{\partial \rho_I(\bar{u})}{\partial u_{i a}} B_2(\{\rho_I(\bar{u}) + \Delta_I\}_{\tau}) \]

\[B_n \text{ Bernoulli polynomials} \]

\[\log \tilde{\Gamma}(u) \sim \frac{B_3(u_{\tau})}{\tau^2} + \frac{B_2(u_{\tau})}{\tau} + B_1(u_{\tau}) + \tau \]
One-slide proof: index as matrix model

\[I_{sc}(\tau, \Delta) = \frac{\Pi_{1}^{\infty}}{\text{Weyl}(G)} \int \frac{(q; q)_{2rG}^{2 \rho}}{} \prod_{i=1}^{n} du_i \prod_{\rho_i} \tilde{\Gamma}(\rho_i(\bar{u}) + \Delta_1) \frac{1}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rG} du_i \ e^{S_{\text{eff}}(\bar{u}; \tau, \Delta)} \]

\[q = e^{i\tau} \]

\[e^{2\pi i u_i} \in S^1 \]

\[u_i \] gauge holonomies

\[\rho_i \] gauge weights

\[\alpha \] gauge roots

\[\Delta_1 = \nu_I(\xi) + R_I v_R \]

\[\nu_I \] flavor weights;

\[\xi \] flavor holonomies

\[v_R \] R-sym chem potential

\[R_I \] R-charges

\[n_x \] matter fields

EOM of matrix model \[\int [du] \ e^{S_{\text{eff}}} \text{ at leading order:} \]

\[0 = \frac{\partial S_{\text{eff}}(\bar{u}; \tau, \Delta)}{\partial u_{i\alpha}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_x} \sum_{\rho_i} \frac{\partial \rho_i(\bar{u})}{\partial u_{i\alpha}} B_2(\{\rho_i(\bar{u}) + \Delta_1\}_\tau) \]

\[B_n \] Bernoulli polynomials

\[\log \tilde{\Gamma}(u) \sim \frac{B_3(u_\tau)}{\tau^2} + \frac{B_2(u_\tau)}{\tau} + B_1(u_\tau) + \tau \]
One-slide proof: index as matrix model

\[I_{sc}(\tau, \Delta) = \frac{(q; q)^{2rG}}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rG} du_i \frac{\prod_{I=1}^{n_x} \hat{\Gamma}(\rho_I(\vec{u}) + \Delta_I)}{\prod_{\alpha} \hat{\Gamma}(\alpha(\vec{u}))} \equiv \frac{1}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rG} du_i e^{S_{\text{eff}}(\vec{u}; \tau, \Delta)} \]

Effective action

Matter chemical potentials

\[\Delta_I = \nu I(\xi) + R_I v_R \]

\(e^{2\pi i u_i} \in S^1 \)

\(u_i \) gauge holonomies

\(\rho_I \) gauge weights

\(\alpha \) gauge roots

\(n_x \) matter fields

EOM of matrix model \(\int [du] e^{S_{\text{eff}}} \) at leading order:

\[0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{ia}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_x} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{ia}} B_2\left(\{\rho_I(\vec{u}) + \Delta_I\}_{\tau}\right) \]

\[\log \hat{\Gamma}(u) \big|_{\tau \to 0} \sim \frac{B_3\{u\}_{\tau}}{\tau^2} + \frac{B_2\{u\}_{\tau}}{\tau} + B_1\{u\}_{\tau} + \tau \]

Ansatz for saddle points:

\[u_{i_a} = u_{*i_a} + v_{i_a} \tau , \quad v_{i_a} \sim O(|\tau|^0) \]
One-slide proof: index as matrix model

\[\mathcal{I}_{sc}(\tau, \Delta) = \frac{(q; q)^{2 \text{rk}_G}}{|\text{Weyl}(G)|} \int du_i \prod_{I=1}^{\text{rk}_G} \prod_{I} \rho_I(\bar{u}) \Gamma(\alpha(\bar{u})) \prod_{I=1}^{\text{rk}_G} \Delta_I \]

\[= \frac{1}{|\text{Weyl}(G)|} \int du_i \ e^{S_{\text{eff}}(\bar{u}; \tau, \Delta)} \]

Effective action

Matter chemical potentials

\[\Delta_I = \nu_I(\xi) + R_I v_R \]

\(q = e^{i \tau} \)

\(e^{2 \pi i u_i} \in S^1 \)

\(u_i \) gauge holonomies

\(\rho_i \) gauge weights

\(\alpha \) gauge roots

\(n_x \) matter fields

\(\mathcal{E}_{\text{O.M.}} \) of matrix model \(\int [du] \ e^{S_{\text{eff}}} \) at leading order:

\[0 = \frac{\partial S_{\text{eff}}(\bar{u}; \tau, \Delta)}{\partial u_{ia}} = -\frac{i \pi}{\tau^2} \sum_{I=1}^{n_x} \sum_{\rho_I} \frac{\partial \rho_I(\bar{u})}{\partial u_{ia}} B_2(\{\rho_I(\bar{u}) + \Delta_I\}_\tau) \]

\[\log \Gamma(u) \mid_{\tau \to 0} \sim B_3(\{u\}_\tau) + \frac{B_2(\{u\}_\tau)}{\tau} + B_1(\{u\}_\tau) + \tau \]

Ansatz for saddle points:

\[u_{ia} = u_{*ia} + v_{ia} \tau \]

\(v_{ia} \sim O(1) \)

\(n_x \) matter fields

Captures up to finite terms in \(\tau \)

(goes beyond preexisting results up to \(\tau^{-2}, \tau^{-1} \))

\# inequivalent ways of selecting \(u_{*i} \) given by \(\Gamma_z \)
One-slide proof: index as matrix model

\[q = e^{i\tau} \]

\[\mathcal{I}_{sc}(\tau, \Delta) = \frac{(q; q)_{2rG}}{|\text{Weyl}(G)|} \int \prod_{I=1}^{rk_G} du_i \prod_{I=1}^{n_x} \frac{\hat{\Gamma}(\rho_I(\bar{u}) + \Delta_I)}{\hat{\Gamma}(\alpha(\bar{u}))} = \frac{1}{|\text{Weyl}(G)|} \int \prod_{I=1}^{rk_G} du_i e^{S_{\text{eff}}(\bar{u}; \tau, \Delta)} \]

effective action

matter chemical potentials

\[\Delta_I = \nu_I(\xi) + R_I v_R \]

\[e^{2\pi i u_i} \in S^1 \]

\[u_i \text{ gauge holonomies} \]

\[\rho_I \text{ gauge weights} \]

\[\alpha \text{ gauge roots} \]

\[n_x \text{ matter fields} \]

EOM of matrix model \(\int [du] e^{S_{\text{eff}}} \) at leading order:

\[0 = \frac{\partial S_{\text{eff}}(\bar{u}; \tau, \Delta)}{\partial u_{i_a}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_x} \sum_{\rho_I} \frac{\partial \rho_I(\bar{u})}{\partial u_{i_a}} B_2(\{\rho_I(\bar{u}) + \Delta_I\}) \]

\[B_n \text{ Bernoulli polynomials} \]

\[\log \hat{\Gamma}(u) \overset{\tau \to 0}{\sim} B_3(\{u\}) \tau^3 + \frac{B_2(\{u\})}{\tau^2} + B_1(\{u\}) + \tau \]

Ansatz for saddle points:

\[u_{i_a} = u_{i_a}^* + v_{i_a} \tau, \quad v_{i_a} \sim O(|\tau|^0) \]

captures up to finite terms in \(\tau \)

(goes beyond preexisting results up to \(\tau^{-2}, \tau^{-1} \))

inequivalent ways of selecting constants \(u_{i_a} \) given by \(\Gamma_Z \)

plug Ansatz back into \(S_{\text{eff}} \) and impose physical constraints on matter chem. potentials \(\Delta_i \):

superconformal index computed by 3d pure Chern-Simons partition function &

dependence on SCFT central charges \(a(\Delta_i), c(\Delta_i) \)
$\mathcal{N}=4$ SYM: USp(2N) and SO(N) gauge groups

[Amariti-MF-Segati ’20]
$\mathcal{N}=4$ SYM: USp($2N$) and SO(N) gauge groups

[Amariti-MF-Segati '20]

$\Gamma_Z = \dim Z(G) = 2 \text{ or } 4$; careful analysis of saddles:

\[\begin{array}{c}
\frac{1}{4} \quad \frac{1}{2} \quad \frac{3}{4} \\
0 \quad 1
\end{array} \]

(focus on USp)
$\mathcal{N}=4$ SYM: USp($2N$) and SO(N) gauge groups

[Amari-MF-Segati '20]

$\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

Dominant saddle in BH ‘region’ (constraints on Δ): $u_i = m/2 + v_i \tau^j$; $m = \{0,1\} \Rightarrow \Gamma_Z = 2$
$\mathcal{N}=4$ SYM: USp($2N$) and SO(N) gauge groups

[Amiriti-MF-Segati '20]

$\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

(focus on USp)

Dominant saddle in BH ‘region’ (constraints on Δ): $u_i = m/2 + v_i \tau$; $m = \{0,1\} \Rightarrow \Gamma_Z = 2$
\(\mathcal{N}=4 \) SYM: USp\((2N)\) and SO\((N)\) gauge groups

\[\Gamma_Z = \dim Z(G) = 2 \text{ or } 4; \text{ careful analysis of saddles:} \]

\[\begin{align*}
L &\leftarrow 0 \quad 0 \quad L-N \quad 1 \\
0 &\quad \frac{1}{4} \quad \frac{1}{2} \quad \frac{3}{4} \quad u_i
\end{align*} \]

L=N: all \(u_i = 0 \)

L=0: all \(u_i = \frac{1}{2} \)

Dominant saddle in BH ‘region’ (constraints on \(\Delta I \)): \(u_i = m/2 + v_i \tau; m = \{0, 1\} \Rightarrow \Gamma_Z = 2 \)

\[\log I_{sc}^{USp(2N)} = \frac{i\pi N(2N + 1)}{\tau^2} \prod_{I=1}^{3} \left(\{\Delta_I\}_\tau - \frac{1 + \eta}{2} \right) + \log 2 + O(e^{-1/|\tau|}) \]

with \(N \) holonomies at 0 or \(\frac{1}{2} \).
$\mathcal{N}=4$ SYM: USp(2N) and SO(N) gauge groups

[Amariti-MF-Segati '20]

$\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

Dominant saddle in BH ‘region’ (constraints on Δ): $u_i = m/2 + v_i \tau$; $m = \{0,1\} \rightarrow \Gamma_Z = 2$

$$\log \mathcal{I}^{\text{USp}(2N)}_{\text{sc}} \bigg|_{|\tau| \rightarrow 0} = -\frac{i\pi N(2N + 1)}{\tau^2} \prod_{I=1}^{3} \left(\{\Delta_I\}_\tau - \frac{1 + \eta}{2} \right) + \log 2 + \mathcal{O}(e^{-1/|\tau|})$$

with N holonomies at 0 or $\frac{1}{2}$
$\mathcal{N}=4$ SYM: USp($2N$) and SO(N) gauge groups

[Amariti-MF-Segati ’20]

$\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

(focus on USp)
\(\mathcal{N}=4 \) SYM: USp\((2N)\) and SO\((N)\) gauge groups

\[\Gamma_Z = \dim Z(G) = 2 \text{ or } 4; \text{ careful analysis of saddles:} \]

(focus on USp)

![Diagram of subdominant saddles](focus on USp)

subdominant saddles:
$\mathcal{N}=4$ SYM: USp($2N$) and SO(N) gauge groups

Amariti-MF-Segati ’20

$\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

(focus on USp)

subdominant saddles: N at $\frac{1}{4}$
$\mathcal{N}=4$ SYM: $\text{USp}(2N)$ and $\text{SO}(N)$ gauge groups

[Amariti-MF-Segati '20]

$\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

(focus on USp)

subdominant saddles:
$\mathcal{N}=4$ SYM: USp($2N$) and SO(N) gauge groups

$\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

(focus on USp)

subdominant saddles: P at 0; P at $\frac{1}{2}$; $N-2P$ at $\frac{1}{4}$
$\mathcal{N}=4$ SYM: $\text{USp}(2N)$ and $\text{SO}(N)$ gauge groups

$\Gamma_Z = \dim Z(G) = 2 \text{ or } 4$; careful analysis of saddles:

(focus on USp)

subdominant saddles: P at 0; P at $\frac{1}{2}$; $N-2P$ at $\frac{1}{4}$

In both cases, S_{eff} (ie log index) evaluated at subdominant saddle is \textbf{subleading at large N}:

hierarchy of saddles very important
$\mathcal{N}=4$ SYM: USp($2N$) and SO(N) gauge groups

$\Gamma_Z = \dim Z(G) = 2$ or 4; careful analysis of saddles:

(focus on USp)

In both cases, S_{eff} (ie log index) evaluated at subdominant saddle is subleading at large N:

hierarchy of saddles very important

S-duality between USp and SO (identity of superconformal indices) nontrivially realized on saddles
We’ve looked at more complicated $\mathcal{N}=1$ models:
non-toric (toric: $U(1)^3$ global symmetry), not all ranks equal, non-holographic
(including subleading corrections and finite terms)

[Amariti-MF-Segati ’21]
N D3’s probing $\mathbb{C}^3 / \mathbb{Z}_2 \times \mathbb{Z}_2$
(toric model: $U(1)^3$)

Seiberg-dual nontoric phase

groups not all $SU(N)$; middle is $SU(2N)$
N D3’s probing $\mathbb{C}^3 / \mathbb{Z}_2 \times \mathbb{Z}_2$
(toric model: $U(1)^3$)

Seiberg-dual nontoric phase

Cardy-like limit of superconformal indices computed independently in two phases from S_{eff} match precisely.
Both given by our new formula with $\Gamma_Z = N$

Nontrivial **check of validity** of our formula
N D3’s probing non-toric threefolds (& different ranks):

Cone over dP_4

Laufer’s theory

4 flavor U(1)s

1 flavor U(1)
\(N \) D3’s probing non-toric threefolds (\& different ranks):

- Cone over \(dP_4 \)
- Laufer’s theory

4 flavor \(U(1) \)s

Groups not all \(SU(N) \); some \(SU(2N) \): nontrivial ‘complication’
Non-holographic $\mathcal{N}=1$ theories ($a \neq c$ at large N): SQCD

$\mathcal{N}=2$ theories
Non-holographic $\mathcal{N}=1$ theories ($a\neq c$ at large N): SQCD

SU(N) in conformal window

$\mathcal{N}=2$ theories
Non-holographic $\mathcal{N}=1$ theories ($a\neq c$ at large N): SQCD

SU(N) in conformal window \hspace{1cm} \text{adjoint SU(N)}

$\mathcal{N}=2$ theories
Non-holographic $\mathcal{N}=1$ theories ($a\neq c$ at large N): SQCD

SU(N) in conformal window adjoint SU(N) USp(2N)

$\mathcal{N}=2$ theories
Non-holographic $\mathcal{N}=1$ theories ($a \neq c$ at large N): SQCD

SU(N) in conformal window \hspace{1cm} \text{adjoint SU(N)} \hspace{1cm} \text{USp(2N)}

$\mathcal{N}=2$ theories

family of $\mathcal{N}=1$ SU(n) Lagrangians
enhancing to (A_1, A_{2n-1}) Argyres-Douglas $\mathcal{N}=2$ SCFT

[Maruyoshi-Song, ...]
Non-holographic $\mathcal{N}=1$ theories ($a \neq c$ at large N): SQCD

$SU(N)$ in conformal window \hspace{1cm} \text{adjoint } SU(N) \hspace{1cm} USp(2N)$

$\mathcal{N}=2$ theories

family of $\mathcal{N}=1$ $SU(n)$ Lagrangians

enhancing to (A_1, A_{2n-1}) Argyres-Douglas $\mathcal{N}=2$ SCFT

[Maruysohi-Song, …]

$\mathcal{N}=2$ SCFT: $SU(N)$ w/ hypers \square \hspace{0.2cm} & \hspace{0.2cm} \square

[Ennes-Lozano-Naculich-Schnitzer]
Non-holographic $\mathcal{N}=1$ theories ($a \neq c$ at large N): SQCD

$\mathcal{N}=2$ theories

family of $\mathcal{N}=1$ SU(n) Lagrangians

enhancing to (A_1, A_{2n-1}) Argyres-Douglas $\mathcal{N}=2$ SCFT

[Maruyoshi-Song,…]

$\mathcal{N}=2$ SCFT: SU(N) w/ hypers

[Ennes-Lozano-Naculich-Schnitzer]

Cardy-like limit of log of SCI matches S_{BH} at large N

$$S_{BH} = 2\pi \sqrt{Q_2^2 - Q_\ell^2 - Q_\bar{\ell}^2 + 2Q_1(Q_2 - Q_\ell - Q_\bar{\ell})} - \frac{a}{4}(J_1 + J_2)$$

[Hosseini-Zaffaroni]
Non-holographic $\mathcal{N}=1$ theories ($a \neq c$ at large N): SQCD

$\mathcal{N}=2$ theories

family of $\mathcal{N}=1$ SU(n) Lagrangians

enhancing to (A_1, A_{2n-1}) Argyres-Douglas $\mathcal{N}=2$ SCFT

[Maruyoshi-Song,…]

$\mathcal{N}=2$ SCFT: SU(N) w/ hypers \square & \blacksquare

[Ennes-Lozano-Naculich-Schnitzer]

Cardy-like limit of log of SCI matches S_{BH} at large N

$$S_{BH} = 2\pi \sqrt{Q_2^2 - Q_{\ell}^2 - Q_{\ell}^2 + 2Q_1(Q_2 - Q_{\ell} - Q_{\ell}) - \frac{a}{4}(J_1 + J_2)}$$

[Hosseini-Zaffaroni]

peculiarity:

$$\Gamma_Z = (3+(-1)^N)/2$$

depends on parity of N

(reflected in degeneracy of saddles)
Conclusions

Formula for Cardy-like limit of superconformal index for generic $\mathcal{N}=1$ ABCD SCFTs: extends previous results valid at lowest order and/or for non-generic theories (super-YM, toric)
Conclusions

Formula for Cardy-like limit of superconformal index for generic $\mathcal{N}=1$ ABCD SCFTs:
extends previous results valid at lowest order and/or for non-generic theories (super-YM, toric)

Includes leading & subleading contributions (from 3d pure Chern-Simons term) and
finite log correction from minimal charge of matter = degeneracy of matrix model saddle

[3d EFT interpretation of result given by Cassani-Komargodski]
Conclusions

Formula for Cardy-like limit of superconformal index for generic $\mathcal{N}=1$ ABCD SCFTs: extends previous results valid at lowest order and/or for non-generic theories (super-YM, toric)

Includes leading & subleading contributions (from 3d pure Chern-Simons term) and finite log correction from minimal charge of matter = degeneracy of matrix model saddle

[3d EFT interpretation of result given by Cassani-Komargodski]

No ‘rigorous’ proof but can explicitly determine leading & subleading contributions with very general Ansatz $u_i = u_{\star i} + v_i \tau$ for matrix model saddle point
Outlook

AdS/CFT derivation/interpretation of finite log correction (i.e. quantum gravity corrections to asymptotically-AdS BH entropy)

[Bobev-Charles-Gang-Hristov-Reys, Bobev-Charles-Hristov-Reys for AdS$_4$ BHs]

‘Derivation’ of new formula from 3d EFT for SU case: applicable to generic $\mathcal{N}=1$ SCFTs too?

[Cassani-Komargodski for SU case]

Extend formula to 2 different angular momenta: $\omega_1 \neq \omega_2 = \tau$

(Structure of) other subleading saddles?

[ArabiArdehali-Hong-Liu, CaboBizet-Cassani-Martelli-Murthy]

Bethe Ansätz approach in generic case is terra incognita; match large-N limit to Cardy-like limit. Very nontrivial: eg ‘basic solutions’ don’t work for Laufer SU(N) x SU(2N)

[Benini-Colombo-Soltani-Zaffaroni-Zhang for SU(N) holographic quivers dual to AdS$_5$ x S5]

Beyond τ^0, exponentially suppressed orders in τ^{-1} vs in N^{-1} from Bethe Ansätz. Match? Meaning?

[Aharony-Benini-Mamroud-Milan]
Thanks
\[I_{sc}(\tau, \Delta) = \frac{(q; q)^{2rkG}_\infty}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rkG} du_i \prod_{I=1}^{n_x} \prod_{\alpha} \tilde{\Gamma}(\alpha_i(\bar{u})) \prod_{I} \tilde{\Gamma}(\rho_I(\bar{u}) + \Delta_I) \]

\[\equiv \frac{1}{|\text{Weyl}(G)|} \int \prod_{i=1}^{rkG} du_i e^{S_{\text{eff}}(\bar{u}; \tau, \Delta)} \]

\[\Delta_I = \nu_I(\vec{\xi}) + R_I \nu_R \]

- \(q = e^{i\tau} \)
- \(u_i \in (0, 1] \)
- \(u_i \sim u_i + 1 \)
- \(u_i \) gauge holonomies
- \(z_i = e^{2\pi i u_i} \in S^1 \)
- \(\rho_i \) gauge weight
- \(\nu_i \) flavor weight; \(\xi \) flavor holonomies
- \(\nu_R \) R-sym chem pot; \(R_i \) R-charge
For $a=1,\ldots,n_G$ gauge groups and $l=1,\ldots,n_X$ matter fields, effective action:

$$S_{\text{eff}}(\vec{u}; \tau, \Delta) = \sum_{l=1}^{n_X} \sum_{I} \log \tilde{\Gamma}(\rho_I(\vec{u}) + \Delta_I) + \sum_{a=1}^{n_G} \sum_{\alpha} \log \theta_0(\alpha_a(\vec{u}); \tau) + \sum_{a=1}^{n_G} 2 r_{k_{G_a}} \log(q; q_\infty)$$

- matter contribution
- gauge
- q-Pochhammer
Saddles:

Expand all functions in S_{eff} for small τ; eg matter fields contribute as

$$\log \tilde{\Gamma}(u) \sim \frac{B_3(u_\tau)}{\tau^2} + \frac{B_2(u_\tau)}{\tau} + \frac{B_1(u_\tau)}{\tau^0} + \tau$$

Bernoulli polynomials B_n

$$u_\tau \equiv u - [\text{Re}(u) - \cot(\arg \tau) \text{Im}(u)]^{\tau\text{-modded value}}$$
Saddles:

Expand all functions in S_{eff} for small τ; eg matter fields contribute as

$$
\log \tilde{\Gamma}(u) \bigg|_{|\tau|\to 0} \sim \frac{B_3(\{u\}_\tau)}{\tau^2} + \frac{B_2(\{u\}_\tau)}{\tau} + \frac{B_1(\{u\}_\tau)}{\tau^0} + \tau
$$

Bernoulli polynomials B_n

EOM of matrix model **at leading order**:

$$
0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{i_a}} = -\frac{i \pi}{\tau^2} \sum_{I=1}^{\mathcal{N}_X} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i_a}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_\tau)
$$

Ansatz for saddle points of the form:

$$
 u_{i_a} = u_{*i_a} + v_{i_a} \tau , \quad v_{i_a} \sim \mathcal{O}(|\tau|^0)
$$
Saddles:

Expand all functions in S_{eff} for small τ; eg matter fields contribute as

$$\log \tilde{\Gamma}(u) \bigg|_{\tau \to 0} \sim \frac{B_3(\{u\}_\tau)}{\tau^2} + \frac{B_2(\{u\}_\tau)}{\tau} + \frac{B_1(\{u\}_\tau)}{\tau^0} + \tau$$

Bernoulli polynomials B_n

EOM of matrix model \textbf{at leading order}:

$$0 = \frac{\partial S_{\text{eff}}(\vec{u}; \tau, \Delta)}{\partial u_{i\alpha}} = -\frac{i\pi}{\tau^2} \sum_{I=1}^{n_X} \sum_{\rho_I} \frac{\partial \rho_I(\vec{u})}{\partial u_{i\alpha}} B_2(\{\rho_I(\vec{u}) + \Delta_I\}_\tau)$$

\textbf{Ansatz} for saddle points of the form:

$$u_{i\alpha} = u_{*i\alpha} + v_{i\alpha} \tau, \quad v_{i\alpha} \sim \mathcal{O}(|\tau|^0)$$

It \textbf{captures} up to \textbf{finite terms in} τ: goes beyond preexisting results up to τ^{-2}, τ^{-1}.

Number of \textbf{inequivalent} ways of selecting \textbf{constants} u_{*i} given by Γ_Z
Plug Ansatz back into S_{eff} and impose physical constraints on matter charges Δ_i.
Plug Ansatz back into S_{eff} and impose physical constraints on matter charges Δ_I

Superpotential constraint:

$$
\left(\hat{\Delta}_I = \frac{2}{2\tau - \eta} \{\Delta_I\}_\tau \right)
$$

Matter fields in each superpotential term:

$$
\sum_{I \in \mathcal{W}} \hat{\Delta}_I = 2 \quad \Rightarrow \quad \sum_{I \in \mathcal{W}} \{\Delta_I\}_\tau = 2\tau - \eta
$$
Plug Ansatz back into S_{eff} and impose physical constraints on matter charges Δ_I

Superpotential constraint:

$$\begin{align*}
\hat{\Delta}_I &= \frac{2}{2\tau - \eta} \{\Delta_I\}_\tau \\
\sum_{I \in W} \hat{\Delta}_I &= 2 \quad \Rightarrow \quad \sum_{I \in W} \{\Delta_I\}_\tau = 2\tau - \eta
\end{align*}$$

R-sym anomaly freedom in the Δ_I variables:

$$T(G) + \sum_{I \in G_a} T(R_I) (\hat{\Delta}_I - 1) = 0$$

Matter fields in each superpotential term

Matter fields charged under a-th gauge group

index of irrep
Plug Ansatz back into S_{eff} and impose physical constraints on matter charges Δ_I

Superpotential constraint:

Matter fields in each superpotential term

$$\sum_{I \in W} \hat{\Delta}_I = 2 \Rightarrow \sum_{I \in W} \{\Delta_I\}_\tau = 2\tau - \eta$$

R-sym anomaly freedom in the Δ_I variables:

Matter fields charged under a-th gauge group

$$T(G) + \sum_{I \in G_a} T(R_I)(\hat{\Delta}_I - 1) = 0$$

$$\left(\hat{\Delta}_I = \frac{2}{2\tau - \eta} \{\Delta_I\}_\tau \right)$$

Index of irrep

Toric theories
Plug Ansatz back into S_{eff} and impose physical constraints on matter charges Δ_I

Superpotential constraint:

$$\sum_{I \in W} \hat{\Delta}_I = 2 \Rightarrow \sum_{I \in W} \{\Delta_I\}_\tau = 2\tau - \eta$$

R-sym anomaly freedom in the Δ_I variables:

$$T(G) + \sum_{I \in G_a} T(\mathcal{R}_I)(\hat{\Delta}_I - 1) = 0$$

CONSEQUENCE #1: linear term in holonomies u_i in S_{eff} vanishes for all ABCD algebras
Plug Ansatz back into S_{eff} and impose physical constraints on matter charges Δ_I

Superpotential constraint:

$$\sum_{I \in W} \hat{\Delta}_I = 2 \Rightarrow \sum_{I \in W} \{\Delta_I\}_\tau = 2\tau - \eta$$

R-sym anomaly freedom in the Δ_I variables:

$$T(G) + \sum_{I \in G_a} T(R_I)(\hat{\Delta}_I - 1) = 0$$

CONSEQUENCE #1: linear term in holonomies u_i in S_{eff} vanishes for all ABCD algebras

CONSEQUENCE #2: quadratic term reconstructs 3d $G=$ABCD pure CS partition function at level $-\eta T(G)$

[See also Cassani-Komargodski for 3d EFT interpretation. 3d CS term previously observed in GonzalezLezcano-Hong-Liu-PandoZayas & Amariti-MF-Segati ’20]
GR calculation of BH \subset AdS$_5 \times$ S5 entropy:

$$S_{\text{BH}}(q_a, j_i) = 2\pi \sqrt{q_1 q_2 + q_1 q_3 + q_2 q_3 - \frac{\pi}{4G_N^{(5)} g_{\text{AdS}}^3}} (j_1 + j_2)$$

$$N^2 = \frac{\pi}{2G_N^{(5)} g_{\text{AdS}}^3}$$
Asymptotically AdS$_5$ BH:

Near the horizon:

$$ds^2_{r \sim r_c} \sim -(r - r_c)^2 dt^2 + \frac{dr^2}{(r - r_c)^2} + \text{const} \ ds^2_{\mathcal{M}_{d-1}}$$

Asymptotically AdS$_5$ (with $\mathbb{R} \times M_{d-1}$ conformal boundary):

$$ds^2_{r \to \infty} \sim \frac{dr^2}{r^2} + r^2 (-dt^2 + ds^2_{\mathcal{M}_{d-1}}) + \ldots$$