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Here focus on d=4 (field theory dimension).
A lot of work in d=3, some results in d=5,6



This talk:

Black hole entropy & superconformal index

New general formula for the Cardy-like limit

Examples (including & beyond =4 super-YM)
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For asymptotically flat BHs, string theory gives right answer

[Strominger-Vafa,...]

What about asymptotically curved BHs? Like anti-de Sitter (AdS).
Can string theory help?

In AdSs, 1/16-BPS BH embedded in AdSs x S® vacuum of string theory

3 electric charges ga
2 angular momenta jj
(constrained by susy)

Extremal: zero temp
“1/16-BPS”: 2 out of 32 supercharges

R x S3
conformal boundary

[Gutowski-Reall,...]
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AdS/CFT: weakly-coupled string theory on AdSs x S5« 4d #'=4 SU(N) super-YM

[Maldacena]

CFT provides definition of microscopical theory, with its dof.
BH microstates correspond to states in CFT

Ensemble of states in dual /=4 on R x S37

Susy & charges suggest BH entropy should be given by
1/16-BPS states of ./'=4 super-YM w/ spins ji & U(1) charges @qa
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ISC — Tr‘QZO(_l)FCi<AaQa+wiJi)

generalization of Witten index Try (-1)F (bosons: F=0, fermions F=1)

1/16-BPS states w/ . different from counting ALL 1/16-BPS states (entropy: hard problem)
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New general formula when wi=w2=T
[Amariti-MF-Segati ’21]

CF127%2 —67 £ 1 CFHT + 2
log Zs. e 47rq 5 (3¢ — 2a) + 4mi o (c—a)+logly
Captures . Valid at of gauge group

Valid for generic ./'=1 SCFT with G=ABCD gauge group
Valid for holographic & non-holographic theories (a=c or a=c at large N)

Finite log Iz correction: minimal charge of matter under center Z(G)
(order of character lattice modulo Weyl symmetry)

A =4 super-YM (adj matter): [z = dim Z(G) toric SU(N) quivers (bifundamental matter): [ z=N

[SU: GonzalezlL.ezcano-Hong-Liu-PandoZayas, ,
USp, SO: Amariti-MF-Segati *20] [Gonzalezlezcano-Hong-Liu-PandoZayas]
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One-slide proof: index as matrix model

q—=E¢
2rk rka f — 1 A rka
SC(T A ¢ /Hd 1HpI ~<pf(_’u) I _ /Hduz Sesr(U;T,A)
|Weyl )| [, T(a(@)) IWeyl )|
2 o gl A7 = yf(g) + Rrvp
EOM of matrix model [[du] eSef at leading order:
_ OSeq(t; 7, A) i f[é . Plu) ~ 1 B30utr) | Ba({u}r)
O, R Z p1(d) + Ar}r) BTl . Phle
ZCL : p a
Ansatz for saddle points:
captures up to finite termsint
(goes beyond preexisting results up to 72, 7-1)
uia — ’U,*Z + UZ ) ’Uia ~ O(‘T‘O) . - :
# inequivalent ways of selecting
constants u.; given by 'z
plug Ansatz back into Sef and impose on matter chem. potentials Ar:

superconformal index computed by 3d pure Chern-Simons partition function &
dependence on SCFT central charges a(4)), c(4))
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[Amariti-MF-Segati '20]

[z =dim Z(G) = 2 or 4; careful analysis of saddles:

P N2P P
0 1
(focus on USp) - - : ) > U
Va Vo %,

subdominant saddles: P at 0; P at 72; N-2P at 4

In both cases, Sett (ie log index) evaluated at subdominant saddle is subleading at large N.
hierarchy of saddles very important

S-duality between USp and SO (identity of superconformal indices) nontrivially realized on saddles



We’ve looked at more complicated 4#'=1 models:

non-toric (toric: U(1)3 global symmetry), not all ranks equal, non-holographic
(including subleading corrections and finite terms)

[Amariti-MF-Segati "21]
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N D3’s probing €3/ Zo x Z>
(toric model: U(1)3)

Seiberg-dual nontoric phase

@181%

Cardy-like limit of superconformal indices computed independently in two phases from Seff match precisely.
Both given by our new formula with Iz =N
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[Ennes-Lozano-Naculich-Schnitzer]

[Hosseini-Zaffaroni]
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Non-holographic =1 theories (a=c at large N): SQCD

SU(N) in conformal window adjoint SUN) USp(2N)

N =2 theories

family of /=1 SU(n) Lagrangians
enhancing to (A1, Azn-1) Argyres-Douglas #'=2 SCFT
[Maruysohi-Song,...]

Cardy-like limit of log of SCI matches Sgn at large N

=2 SCFT: SU(N) w/ hypers H & [T _
SBH = 27T\/Q% — Q] — Q2 +2Q1(Q2— Qr — Q) — Z(Jl + J2)
[Ennes-Lozano-Naculich-Schnitzer]

[Hosseini-Zaffaroni]

o6
I peculiarity:
NS5 NS5 [z = (8+(-1)N)/2 depends on parity of N
| N D4’s (reflected in degeneracy of saddles)
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Conclusions

Formula for Cardy-like limit of superconformal index for generic /=1 ABCD SCFTs:
extends previous results valid at lowest order and/or for non-generic theories (super-YM, toric)

Includes leading & subleading contributions (from 3d pure Chern-Simons term) and
finite log correction from minimal charge of matter = degeneracy of matrix model saddle

[3d EFT interpretation of result given by Cassani-Komargodski]

No ‘rigorous’ proof but can explicitly determine leading & subleading contributions
with very general Ansatz u; = u«+ vi T for matrix model saddle point



Outlook

AdS/CFT derivation/interpretation of finite log correction
(i.e. guantum gravity corrections to asymptotically-AdS BH entropy)

[Bobev-Charles-Gang-Hristov-Reys, Bobev-Charles-Hristov-Reys for AdSs BHS]

‘Derivation’ of new formula from 3d EFT for SU case: applicable to generic #'=1 SCFTs too?

[Cassani-Komargodski for SU case]

Extend formula to 2 different angular momenta: w1 # w2 =T

(Structure of) other subleading saddles?

[ArabiArdehali-Hong-Liu, CaboBizet-Cassani-Martelli-Murthy]

Bethe Ansatz approach in generic case is terra incognita; match large-N limit to 8%{%@ limit.
Very nontrivial: eg ‘basic solutions’ don’t work for Laufer SU(N) x SU(2N)

[Benini-Colombo-Soltani-Zaffaroni-Zhang for SU(N) holographic quivers dual to AdSs x S°]

Beyond 19, exponentially suppressed orders in 7-1 vs in N-1 from Bethe Ansatz. Match? Meaning?

[Aharony-Benini-Mamroud-Milan]



Thanks
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Index as matrix model

q==¢€
2rk rkg r = rka
Teo (T, A) = - /H du, =11, lj(pf(u) +A1) _ 1 /H s ST
|Weyl )| [I,T'(afw)) [Weyl(G)| J -~
< (0,1]

(Zz’ _ 62772'11,1- c Sl)

Fora=1,...

,NG gauge groups and /=1,...,ny matter fields, effective action:
Ty ~ ng ng
Z Z logT'(pr (@) + Ar) + Z Z log 0o (e (@); T) + Z 21k, log(q; q) oo

a=1



Saddles:

Expand all functions in Seff for small 7; eg matter fields contribute as

lng(u) N B3({u}7) 4 BQ({U}T) n Bl({u}T) Ly

17| —0 T2 T 70

{u}, =u— |Re(u) — cot(arg 7) Im(u) |
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lng(u) N B3({u}7) 4 BQ({U}T) n Bl({u}T) Ly

17| —0 T2 T 70
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EOM of matrix model at leading order:

OSer(U; T, A) Opr (U .
o= OB A) _ 35 0D gy i) )

ta I=1 p;g

Ansatz for saddle points of the form:

Wi, = Usj + Vi, T 5 Vi, ~ O(\T!O)
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Saddles:

Expand all functions in Seff for small 7; eg matter fields contribute as

lng(u) N B3({u}7) 4 BQ({U}T) n Bl({u}T) Ly

17| —0 T2 T 70

{u}, =u— |Re(u) — cot(arg 7) Im(u) |

EOM of matrix model at leading order:

OSer(U; T, A) Opr (U .
o= OB A) _ 35 0D gy i) )

ta I=1 p;g

Ansatz for saddle points of the form:

Us, = Usxj, —+ Vi, T Vi, ™~ O(‘T’O)

a

It captures up to finite terms In T: goes beyond preexisting results up to 72, 71,

Number of inequivalent ways of selecting constants u.; given by 'z
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Superpotential constraint: 97 _
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R-sym anomaly freedom in the A, variables:

T(G)+ Y TR)(A;—1)=0
Ied,




Plug Ansatz back into Sef and impose physical constraints on matter charges 4,

. , Ay =
Superpotential constraint: 9
D Ar=2 = ) (A} =2r—y
Iew Iew
toric
theories

R-sym anomaly freedom in the A, variables:

T(G)+ Y TR)(A;—1)=0
Ied,




Plug Ansatz back into Sef and impose physical constraints on matter charges 4,

. . AI — {AI}T
Superpotential constraint: 27 — 1
Y Ar=2 = D {A}=2r-1
Iew Iew
toric
theories

R-sym anomaly freedom in the A, variables:

T(G)+ Y TR)(A;—1)=0
Ied,

CONSEQUENCE #1: linear term in holonomies u; in Sert vanishes for all ABCD algebras



Plug Ansatz back into Sef and impose physical constraints on matter charges 4,

A 2
. . AI — {AI}T
Superpotential constraint: 27 — 1
Y Ar=2 = ) {A;},=2r—7
Iew Iew
toric
theories

R-sym anomaly freedom in the A, variables:

T(G)+ Y TR)(A;—1)=0
Ied,

CONSEQUENCE #1: linear term in holonomies u; in Sert vanishes for all ABCD algebras

CONSEQUENCE #2: quadratic term reconstructs 3d G=ABCD pure CS partition function at level -nT(G)

[See also Cassani-Komargodski for 3d EFT interpretation.
3d CS term previously observed in Gonzalezl ezcano-Hong-Liu-PandoZayas & Amariti-MF-Segati "20]



GR calculation of BH ¢ AdSs x S® entropy:

Se1(qa, ji) = 2 + + i (j1 + J2)
BH\Ga,)i) — 47, [q142 T 143 T 243 — J1 T ]2
4G g3

N 9JAds

T

N? =
5)
2G1(\I )gidS



Asymptotically AdSs BH:

Near the horizon:

s> 224 A7 £ ds?
Sprre T _(T o TC) | (T‘ _ Tc)z - CONSL ASpq,

Asymptotically AdSs (with R x Mqy-1 conformal boundary):

d 2
d82 ~ r | T2(—dt2—|—d83\/1d_1)—|—...

—
T O T2




