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«“Scientist is the one who knows how to get a solution out qf an enigma”

Karl Kraus
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A paradigmatic example




Square-free numbers

= prshe = :Pp

What is the density of square-free numbers among the integers?

* assuming no correlation between numbers, 1/p is the probability that a number x
is divisible by the prime p

« hence (1-1/p?) is the probability that a number x is NOT divisible by the prime p
more than one time
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Randomness of Mobius coefficents and brownian motion:

growth of the Mertens function and the Riemann Hypothesis &

Giuseppe Mussardo! and André LeClair?

!8ISSA and INFN, Sezione di Trieste, via Bonomea 265, I-34136, Trieste, Italy
2Cornell University, Physics Department, Ithaca, NY 14850

The validity of the Riemann Hypothesis (RH) on the location of the non-trivial zeros of the Riemann

(-function is directly related to the growth of the Mertens function M(z) = Y ;_; u(k), where pu(k) o -

is the Mcbius coefficient of the integer k: the RH is indeed true if the Mertens function goes Yy t'me
asymptotically as M(z) ~ z'/*. We show that this behavior can be established on the basis of a
new probabilistic approach based on the global properties of Mertens function. To this aim, we focus
the attention on the square-free numbers and we derive a series of probabilistic results concerning
the prime number distribution along the series of square-free numbers, the average number of prime
divisors, the Erdés-Kac theorem for square-free numbers, etc. These results lead us to the conclusion
that the Mertens function is subject to a normal distribution as much as any other random walk,
therefore with an asymptotic behaviour given by z'/2*¢. This represents a theoretical advance in
the field. We also argue how the Riemann Hypothesis implies the Generalised Riemann Hypothesis
for the Dirichlet L-functions. Next we study the local properties of the Mertens function dictated
by the Mébius coefficients restricted to the square-free numbers. Motivated by the natural curiosity
to see how close to a purely random walk is any sub-sequence extracted by the sequence of the
Mobius coefficients for the square-free numbers, we perform a massive statistical analysis on these
coefficients, applying to them a series of randomness tests of increasing precision and complexity:

together with several frequency tests within a block, the list of our tests include those for the CrossMark
longest run of ones in a block, the binary matrix rank test, the Discrete Fourier Transform test,

the non-overlapping template matching test, the entropy test, the cumulative sum test, the random

excursion tests, etc. The successful outputs of all these tests (with a level of confidence of 99% “neralizt;
that all the sub-sequences analyzed are indeed random) can be seen as impressive “experimental” 1S and g atjz?ys
confirmations of the brownian nature of the restricted Mobius coefficients and the probabilistic OVer prime
normal law distribution of the Mertens function analytically established earlier. In view of the lesis relatiye
theoretical probabilistic argument and the large battery of statistical tests, we can conclude that tudying tpe

while a violation of the RH is strictly speaking not impossible, it is however ridiculously improbable. or 'fmduct,
¢ behavigy
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Topics of the semnar
o Randomness vs Determinism
o Divichler characters, L~ fanctions and all that
o The Genevalised Ricaann Hopothesis

o Tore Whome the Bell Tolls






Number Theory is usually considered as a field rigidily
ruled by the “military” deterministic laws of arithmetic,

where randomness seems to play no role.



But, is it really so??



I would like to undermine this certainty of yours



Two examples

 Arithmetic tales from the world of 7

* The strange realm of large numbers



Law and (dis)order in &




Law and (dis)order in &
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Law and (dis)order in &
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F is the k-th Fibonacci number



3.141592653589793238462643383279502
88419716939937510582097494459230781
64062862089986280348253421170679821
48086513282306647093844609550582231
72535940812848111745028410270193852
11055596446229489549303819644288109
75665933446128475648233786783165271

20190914564856692346034861045432664
82133936072602491412737245870066063
15588174881520920962829254091715364
36789259036001133053054882046652138
41469519415116094330572703657595919
53092186117381932611793105118548074
46237996274956735188575272489122793
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2
3
4
5
6
7
8
9

Law and (dis)order in &

5
9999
10137
9908
10025
9971
10026
10029
10025
9978
9902

6
99959
99758

100026
100229
100230
100359
99548
99800
99985
100106

é
999440
999333

1000306
999964
1001093
1000466
999337
1000207
999814
1000040

8
9999922
10002475
10001092
9998442
10003863
9993478
9999417
9999610
10002180
9999521

9
99993942
99997334

100002410
99986911
100011958
99998885
100010387
99996061
100001839
100000273

10
999967995
1000037790
1000017271
999976483
999937688
1000007928
999985731
1000041330
999991772
1000036012

1
10000104750
9999937631
10000026432
9999912396
10000032702
9999963661
9999824088
10000084530
10000157175
9999956635

12
99999485134
99999945664

100000480057
99999787805
100000357857
99999671008
99999807503
99999818723
100000791469

99999854780




Law and (dis)order in &

500000

400000

300000

200000

100000

First 5.000.000 digits



3.1415M26535M9793284626M33832M9502
84197193993 M51058M097491 59230781
6462862899868 0348M53421 7067921
4806513282306647093844609550582231
72535940812848111745028410270193852
11055596446229489549303819644288109
75665933446128475648233786783165271

20190914564856692346034861045432664
82133936072602491412737245870066063
15588174881520920962829254091715364
36789259036001133053054882046652138
41469519415116094330572703657595919
53092186117381932611793105118548074
46237996274956735188575272489122793




Law and (dis)order in &

100000

80000

60000

40000

20000

First 60.000.000 digits



3.1415M2653597932384624338M279502
884197169399375105M20974944592M0781
6406282089986280348253421170679821
48086513282306647093844609%9M50M82231
7235940812848111745028410270193852
110555964462294895493038196442881M9
7566593344612M475648233786783165271

2019091456485669M346034861045432664
821339360726024914127372M5870066063
15518174881520920962829254091715364
3678925903600113305305488204665M138
4146951941511M094330572703657595919
5309218611738193261179310511548074
46237996274956735188575272489122793




Law and (dis)order in &

100000

80000

60000

40000

20000

First 60.000.000 digits



Displacement function of the digits of ©

d =45



Displacement function of the digi'rs' of

o e Z(di —d) di=td.h

1=1

How is the S(n) distributed?

i
;
r 1

20.000 digits



The strange realm of large numbers

* Number of distict prime divisors

g o G a2 as a
n_pl .p2 .p3 pk

win) =k

What is the average of w(n) and how w(n) is distributed?



The strange realm of large numbers

n ~ 10°Y

w=1{...,6,56,51,6,7,2,7,5,3,3,2,6,3,6,4,4,3,2,2,5,5,5,2,5,4,...}



The strange realm of large numbers

w >~ loglogn

So, the factorization of integer numbers

of order 101000

have in average, only 7 different primes!!



The strange realm of large numbers

For large n, the variable
w(n) — loglogn
v1og logn

i Y

is normal distributed! (Erdos-Kac theorem)



Dre Riermarnsn
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gilinlS very/moﬁaﬁ(e that tﬁey are all a(ong this [ine. Of COUTSe,

it would be desirable to have a m’gorous Jm'ocf of this ...



Innumerable consequences of the Riemann Hypothesis

e Distribution of the primes (large gap, etc.)
* Growth of some arithmetic functions

* Zoo of zeta functions

 Random Matrices and Quantum Chaos

* General Theory of Phase Transitions (Fisher’s zeros, etc.)



Riemann's
zetaction
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The Riemann zeta Function

O

C(S) = —1— = H - Fv ey > 4
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The Riemann zeta Function

o0
1 :
C(S) = DS T I I 1
e : 1 — g
Nast p P
Grand canonical Micro canonical

Ensemble Ensemble



The Riemann zeta Function




The Riemann zeta Function

o

1
o) = 2 ST

T
n=1

Analytic continuation

271 et — 1




The Riemann zeta Function

Functional equation

(st Deat sin(

S

S IP - 5)c(1-0)




The Riemann zeta Function

n=1 D p°

conjectured
O O O (non-trivial zeros)
certain

(trivial zeros)




The Riemann zeta Function

n=1 P p®




Number of zeros in the critical strip

(Riemann; von Mangoldt)

¥ 7A s 1
N(T) = —1 | | i
(T) 27 OgQwe- 8 O( )




Number of zeros in the critical strip

(Riemann; von Mangoldt)

¥ 7A s 1
N(T) = —1 | | i
(T) 27 OgQwe- 8 O( )
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Year Number of zeros Computed by

1859 (approx.) 1 B. Riemann

1903 15 J. P. Gram

1914 79 R. J. Backlund

1925 138 J. I. Hutchinson

1935 1,041 E. C. Titchmarsh

1953 1,104 A. M. Turing D ———
1956 15,000 D. H. Lehmer

1956 25,000 D. H. Lehmer

1958 35,337 N. A. Meller

1966 250,000 R. S. Lehman

1968 3,500,000 J. B. Rosser, et al.

1977 40,000,000 R. P. Brent

1979 81,000,001 R. P. Brent

1982 200,000,001 R. P. Brent, et al.

1983 300,000,001 J. van de Lune, H. J. J. te Riele
1986 1,500,000,001 J. van de Lune, et al.

2001 10,000,000,000 J. van de Lune (unpublished)
2004 900,000,000,000 S. Wedeniwski

2004

10,000,000,000,000

X. Gourdon
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Inverse of the Riemann zeta function




Inverse of the Riemann zeta function

o= (- )

Square-free numbers

fn =aDEDo 0 - P



The beauty of the Mellin transform
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Location of the first singularity

{05 g )
G T

If M( ) 1/2 the integral diverges at Re(s) = %

1
G(s)

has its first singularities at Re(s) = %!



The Direchtet’s L - functions






Arithmetic Progressions
S, =qgn-+ h
q,h € N

q = modulus h = residue

Dirichlet question:  Under which conditions on ¢ and h, the sequence
contains infinite number of primes?

Dirichlet theorem: ¢ and h must be coprime! Necessary but also
sufficient condition




Examples

of NG e

S, =18, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 83,
88, 93, 98, 103,...}

S, = 5n + 2

S.=17,12,17, 22,27,32,37,42,47,52,57,62,67,72,77,
8288 7192597, 102 TO 7511657 MR ey A28 |
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Modular Arithmetic




Modular Arithmetic

; (:Jiepaéw & Restovations
. _ Cst 1863
‘-




Group Multiplication Table

1 Db ]
5 1 @11 gesy
e SRS O
LT el &b |

5x5=25=2+1
Sk Pmds =24 - 11
5x 11 =55 = 4§+ 7

X




The abelian group of prime residue classes modulo g

(Z/QZ)* .= {amodqg:gcd(a,g)=1}

1
# elements = — B
elements = ¢(q) QH ( p)

plq

Examples

q=7 (Z/7Z) = {1,2,3,4,5,6}  (o-1)
q=20 (Z7/207) = {1, 3,7, 9:8 4 38F7, 19}



Characters

* These are 1-d representation of the residue class group

* There are as many characters as many elements, i.e. ¢(q)

Xaln) =5 558 a=1,2,...0(q)

 These arithmetic functions satisfy a series of properties



Characters

. x(n+q) = x(n).
 x(nm) = x ()
. x(n) #0if (n,q) = 1.

- Oclahigt =

namely x(n) have to be ©(q)-roots of unity.






Character Table for q=7

Principal character ‘

x3(n)
Xa(n)
x5(n)
X6(7)




Dirichlet L-functions
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Partition functions of free bosons with an extra
Z,(q) @belian charge



Dirichlet L-functions

o - UG 20

The Riemann function is a very special case

of a Dirichlet function (g=1)



Dirichlet L-functions

Functional equation

L(l1 —s,x) = A L(s,X)

i)
2n)°

cos(ms/2)



Dirichlet L-functions
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Generalised Riemann Hypothesis

(Piltz 1884)

The non-trivial zeros of ALL Dirichlet functions

(i.e. for any modulus q and any character)

are ALL along the critical line placed at

Res = —



Today, in this talk, we discuss the

Generalised Riemann Hypothesis

for non-principal characters



Randomness of Mobius coefficents and brownian motion:
growth of the Mertens function and the Riemann Hypothesis

Giuseppe Mussardo! and André LeClair?

!8ISSA and INFN, Sezione di Trieste, via Bonomea 265, I-34136, Trieste, Italy
2Cornell University, Physics Department, Ithaca, NY 14850

The validity of the Riemann Hypothesis (RH) on the location of the non-trivial zeros of the Riemann
(-function is directly related to the growth of the Mertens function M(z) = Y ;_; u(k), where pu(k)
is the Mcbius coefficient of the integer k: the RH is indeed true if the Mertens function goes
asymptotically as M (z) ~ z'/27¢. We show that this behavior can be established on the basis of a
new probabilistic approach based on the global properties of Mertens function. To this aim, we focus
the attention on the square-free numbers and we derive a series of probabilistic results concerning
the prime number distribution along the series of square-free numbers, the average number of prime
divisors, the Erdés-Kac theorem for square-free numbers, etc. These results lead us to the conclusion
that the Mertens function is subject to a normal distribution as much as any other random walk,
therefore with an asymptotic behaviour given by z'/2*¢. This represents a theoretical advance in
the field. We also argue how the Riemann Hypothesis implies the Generalised Riemann Hypothesis
for the Dirichlet L-functions. Next we study the local properties of the Mertens function dictated
by the Mébius coefficients restricted to the square-free numbers. Motivated by the natural curiosity
to see how close to a purely random walk is any sub-sequence extracted by the sequence of the
Mobius coefficients for the square-free numbers, we perform a massive statistical analysis on these
coefficients, applying to them a series of randomness tests of increasing precision and complexity:
together with several frequency tests within a block, the list of our tests include those for the
longest run of ones in a block, the binary matrix rank test, the Discrete Fourier Transform test,
the non-overlapping template matching test, the entropy test, the cumulative sum test, the random
excursion tests, etc. The successful outputs of all these tests (with a level of confidence of 99%
that all the sub-sequences analyzed are indeed random) can be seen as impressive “experimental”
confirmations of the brownian nature of the restricted Mébius coefficients and the probabilistic
normal law distribution of the Mertens function analytically established earlier. In view of the
theoretical probabilistic argument and the large battery of statistical tests, we can conclude that
while a violation of the RH is strictly speaking not impossible, it is however ridiculously improbable.

submit/3573971 [cond-mat.stat-mech] 25 Jan 2021

arXiv
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The main idea

* We will look at enlarging the domain of convergence of the
Mellin fransform of the L-functions

P(s.Jog :ﬁl((S, )%3?)1

* The singularities of this quantity depend ONLY on the zeros
of the L-functions of non-principal characters

S =0 -+ 1t



The main idea

The angles 8(p,) are computed along the sequence of the primes p,



The main idea of our areument

5 cos 6(p,,) __/ > B(u)
log P(o) = ,,; e — 0/2 5
BN ) N
If a=1/2, i.e.
B ~+/N

then all zeros are on the critical line!




Corrections by logarithms to this scaling law
do not spoil the conclusion

B(N) ~ VN log" N

1 o+1

osrio = 7 B0 St

MNa+1)
(0 —1/2)a+1




The large asymptotic behaviour of the series B(N)
B(N) ~ [N&

is an ideal diagnosis for the real part of the zeros




2 3



4,6,3,5,2,1,3,2,6,1,5,4,3,5,4,1,3,2,6,5,6,3,5,2,4,1,1,5,4,6,2,4,3,2,6,5,4,6, 2,4, 1
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1.2

1.0

0.8

0.6

0.4

0.2

0.0




1

200000 400000 600 000




Properties of the series B(N)

N N
Z cos O(pn) = Z a:
o2 ' n=1

B(N)

* All terms are of the same order (order 1)

* All the angles are equiprobable (Dirichlet theorem)







Properties of the series B(N)

N N
Z cos O(pn) = Z a:
o2 ' s !

B(N)

* All terms are of the same order (order 1)

* All the angles are equiprobable (Dirichlet theorem)

* As consequence, the mean of the series B(N) vanishes

N

, 1
(BN)) = lim <> ¢, =0

=



Properties of the series B(N)

N N
Z cos O(pn) = Z a:
o3 ' n=1

B(N)

All terms are of the same order (order 1)

All the angles are equiprobable (Dirichlet theorem)

As consequence, the mean of the series B(N) vanishes

N
, 1
(BEN) = By > e = 0

The variable ¢, are very weakly correlated



Correlation Function of lag j

G(j) = Z’]j:_ll(cn — 1) (Cnyj — 1)

xf/]j—l (Cn — ,U)2




1.0

0.8
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Correlation Function of lag j
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As a matter of fact, at finite size we have a very clear idea of
all their correlations!




As a matter of fact, at finite size we have a very clear idea of
all their correlations! (Lemke Oliver-Soundararajan)




As a matter of fact, at finite size we have a very clear idea of
all their correlations! (Lemke Oliver-Soundararajan)




As a matter of fact, at finite size we have a very clear idea of
all their correlations! (Lemke Oliver-Soundararajan)

(N k) = #{pn < PN 1 Pn = he (mod q) , ppyr = by (mod q)}




As a matter of fact, at finite size we have a very clear idea of

all their correlations! (Lemke Oliver-Soundararajan)
fo(N.q k) = FPn SPN i pn = ha (m0d q) , Pk = hy (mod )}
a Y ) N
1
faa(N,q, k) =
(v(q))?
fur(N.q.k) = —
ab » 5 —
(el N o0

FOR LARGE N,
THE RESIDUES ARE UNCORRELATED !l




Time Series

N
B(N) = ch Cp = cosf,
n=1

B(N) grows as a brownian motion !

. (B(N)) = 0
. (B*(N)) = b* N

e <BQk(N)> _ b2k Nk:



Law of iterated logarithms

(Khinchin —Kolmogorov)

B(N) = » ¢

n=1

For a brownian motion we have to control the tails




Experimental Mathematics

All previous considerations lead to conclude

B(N) N N1/2 C

CBnt,wan tad scffyadiy cheakcodshrsyont ?



Problem of single Brownian trajector

-

o CENN BCRCRY DTS B NTTE O (NN PN SO0 O BN NTUET TS N NPTY SR WU B VYT R SN PR DUTE DYDY BN CIRTET U N D BOE

< N >



Problem of single Brownian trajectory

Very common problem in Data Analysis which
arises when we cannot turn back time...

e Prediction of the meteo

e Evolution of the stock market

e Single particle tracking in living cell



qvar N rdlund (1914)



Problem of single Brownian trajectory

We can use parts of the infinite time series to generate
the statistical ensembles!

With an abuse of language, the time series gives rise to
its own “thermal bath”


















Block Variables




If the original series goes as

BNS\/N

the same should happen for any of its subsets!






Huge battery of highly sophisticate statistical tests

/ \ / \ / \\
\

Longest run of positive values /N

/// ' \ ///// \ \\\ /// \ / /
Matrix rank test H t : 5 F
u
M 1 M. 2 M, k

Discrete Fourier Transform distribution

Min-max time distribution

Entropy test -
1x107 .#’.',....
Cumulative sum test v

Random excursion test

1000

1% 107 5 x 107 1x10%



Min-max distribution




P (tmin/T)

2.5 |

2.0

15 | |

" LTI AL
Y Y 1.([)'

tmin/T

:T 1
T \/z(1 — )

P(x|T)

(E.T. Jaynes, The Theory of Probability)



P(tmin/T)

2.5

2.0

1.5 |

1.0 N
0.0 0.5 1.0

tmzn/q‘
* Pearson y? =33.35 with d = 35 degrees of freedom
P-value = 0.66

* Kolmogorov-Smirnov test =» 99.99%



0.3
0.2 F
0.1 |

00 ¢

fla) =

~- v v . . - v v ' S —

T \\
\
N
b
—1.00 —0.50 0.00 0.50 1'1.00
2(1 — |z) i 2m + 1
2 — |
T7 . sinh ((2m + 1)y / 1ok ')

(Mori, Majumdar, Schehr, 2019)



0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T

—-1.00 —0.50

Pearson y? =31.12

P-value

Kolmogorov-Smirnov test

0.00

0.50

11.00

with d = 35 degrees of freedom

=0.77

>

99.99%



Variance of the block variables




Hence, for ANY ensemble made of sub-interval of
length L

2
oy,

NL)

indipendent of the modulus g
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Huge battery of highly sophisticate statistical tests

/ \ / \ / \\
\

Longest run of positive values /N

/// ' \ ///// \ \\\ /// \ / /
Matrix rank test H t : 5 F
u
M 1 M. 2 M, k

Discrete Fourier Transform distribution

Min-max time distribution

Entropy test -
1x107 .#’.',....
Cumulative sum test v

Random excursion test
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To Whom the Bell Tolls: Universal distribution of the B(N) Function

Statistic
Anderson-Darling | 0.260545
Baringhaus-Henze | 0.487976
Cramér-von Mises | 0.0461625
Jarque-Bera ALM | 0.107547
Mardia Combined | 0.107547
Mardia Kurtosis 0.287978
Mardia Skewness | 0.000700638

Pearson )(2 30.4856
Shapiro-Wilk 0.99919




Singularity of the Mellin Transform of L-functions

log P(s) = 0/200 Blu) du

ua—l—l

N
B(N) = ZCOSHpn ~ N1/2Fe

n=1

The integral is then singular at 0 =1/2

Namely, all zeros are on the critical line!



Conclusions

There are infinitely many functions which, as the Riemann
zeta function, has all their zeros along Re(s) = 1/2

This properties can be traced back to some
random properties of the primes

The validity of the GRH relies on probability theorems
involving the residues and the absence of their correlations

Hence, the (Generalised) Riemann Hypothesis is just

“Random Walk theorem” 111



