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* We want to introduce now interactions with the environment that can “disturb” the system

The system is open:

it can exchange energy, matter, ... with the environment

The universe (system+environment) is closed,

i.e. completely isolated

environment
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> System=classical bit: 0 l—p 0
p
the environment can interact with it, resulting in a flipping of the bit with a probability p ><
p
1 = 1

Let's discretize time, and denote with
Po(0), p;(0) the probability that the bitis in 0/1 attime t =0
Po(1), p;(1) the probability that the bitis in 0/1 attime ¢ =1

(38)=('57 15) ()

We can repeat this for successive times steps, assuming each of them is independent from the previous one

then



CLASSICAL NOISE /2 52

* For a more general system described by the probability vector p’(), we assume its evolution to be
described by a stochastic Markov process, for which

- each time step is independent form the previous ones

_ the evolution is given by the law of conditional probability p(Y =y) = Z pY=y|X=x)p(X=x)

where X, Y represent the possible states of the system at time ¢, 7 + 1 respectively.

* In other words:

& is the Evolution matrix , whose coefficients are the transition
— —
P (t + 1) =& pP (t) probabilities p(Y = y| X = x), satisfying:

positivity = all coefficients are positive

completeness = entires in each column sum to 1
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* For our universe we assume that at initial time, the density matrix
is a product of a state of the system and a state of the environment

The system and the environment interact: the total system is closed and

hence undergoes a unitary evolution, that might produce entanglement between the two parts.

At the final time, the system does no longer interact with the environment and its density matrix is obtained
by taking the partial trace over the degrees of freedom of the environment

------------------------

Pu0) = p ® pon, = UMP,0) = p,(1) > Tr [0, (D] = E(P)(®)

.
------------

A 0
-----------

* Theorem: the state of the system is mixed iff the finale state of the universe is entangled
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Example: system=qubit environment= qubit unitary evolution=CNOT

&(p) = |al’|10)0| + |b|*| 1)(1]

_( lal* 0
S\ 0 o

100,,,,) = al00,) +b|11,)

2 b*
1) =al0) +b]1), pg = ( al B )

| Qenv) = |06> ’penv = |0e><oe|

Remark 1. The off-diagonal terms have been lost: passing from a quantum to a classical mixture

Remark 2. A measure of the environment gives the coefficients/probability of the final mixed state of the system
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" Let { | )}, be an (orthonormal) set of states of the environment and suppose that at the initial time the
environment is in the state | ¢;):

------------------------

N E, = (e |U|ey)
pi— —i&(p); k k U
=il ep){€: — k

------------------------
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* Notice that &(p), as mixed density matrix, can be written as:

&)= ) EpE =) pipy
k k

B EpE]
TrlEwpE]]

Pk

P = TriEpE;]

Thus, making a measurement of the environment in the basis { | ;) };, gives us the probabilities p,.

p— &)

L

| €o)

96
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More general definition (that does not refer to the environment):

* The (super)operator &, on the space of density matrices defines a quantum operation iff:
- 0L Tr[&(p)] <1 Vp (if Tr[&(p)] =1 Vp, we say & is trace-preserving)
_ itis a convex linear map, %’(ijpj) = ij%(pj)

J J

- it is completely positive (i.e. the operator (I @ &)(A) is positive for any positive operator A for any extension)
. Such a map is of the kind: &(p) = Z EpE', with 2 EkEIj <lI
k k

* Twosets E = {E,,---,E, }, F = {F,, -+, F,,} of operators define the same super-operator & iff

E = 2 uyF, where U’ = [u;] is a unitary transformation
k

p— E(p)

\\\
/-

€0} (eol d
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(g(p) = Z Eka]j ; ZE"E;;: | with Ek — akl] + Z akJO}
k ¢ :

Since p=

J
l+7 -7 ., ., . .
with | 7| < 1, one can represent & via the affine map on the bloch sphere:
. — — — —
M. n—n"=Mn+c
where

— * % 2 * . * *
M, = E [a,ljalk tagan t <|al| — E alpa,lp) djp T E €ikp(Ouay, — ajay)
P P

l

— . »
cL = 21 E E €jpk Q1 Ay
L gp
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1_

0 P

P
=

1 =5

Ey=/pl , E,=\/T-pX

giving the only non-zero coefficients: o, = \/ﬁ , @11 =1/ 1 — p which yield

M = diag(1,1 —2p,1 —=2p), ¢c =0
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giving the only non-zero coefficients: o, = \/ﬁ , @11 =1/ 1 — p which yield

M = diag(1 —2p,1 —2p,1), ¢ =0
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EO=\/EI],E1=\/1—pY ZX =Y)

giving the only non-zero coefficients: o, = \/ﬁ , @11 =1/ 1 — p which yield

M = diag(1 —2p,1,1 —=2p) , € =0
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DEPOLARIZING CHANNEL /1

X
Q,

— 4+ 1_
P (

&(p) =

3
N
+
S
~
+
3
e
+
Q
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[
&E(p) =p5+ (1-p)p
input p

(A =p)|0)0] +pl1)(1]

control qubit that swaps p, [/2 with probability p
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ae (i) me(8)

~( |a]* ab* ; i la]+7[b]* 1 —yab*
O R B T B (/e i

|0) =al|0)+b|1) , |0) =vacuum , |1) =1 photon
E, leaves |0) unchanged but reduces the coefficient of | 1)

it is more unlikely to find 1 photon
E; transforms | 1) into |0)

Remark. This can be realised, e.g. with a beamsplitter
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Circuit representation

y = sin?(6/2)

input

al0)+b|1) T Qf

Pout
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Time-evolution of an open system is given by a differential equations (that replaces Schroedinger equation)

0 1

)= — — oLT —{LTL.

== lH.pl+ ¥, (2L ~ (LL;.p) )
J

which is called Lindblad equation.

1
Example. 2-level atom with H = - —hwo L=L =+/yo"
2 ¢ :

1)
0) ——

equivalent to amplitude damping with y=1—¢™27
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