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Topologically-ordered phases

• Phases that support anyons (' support topology dependent ground state
degeneracy)

• Not described by the symmetry-breaking paradigm. (I.e., Landau-Ginzburg
type of theories) Instead, characterized by properties of anyons (fusion,
braiding, etc.) (I.e., topological quantum field theories)

SSB phases Topologically-ordered phases
Ground states Degeneracy w/ SSB Topological degeneracy

Excitations Nambu-Goldstone bosons Anyons
Effective theory Landau-Ginzburg TQFT

• E.g., fractional quantum Hall states, Z2 quantum spin liquid, Kitaev spin
liquid, etc.
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Topologically-ordered phases in (2+1)D

• (bosonic) Topological order is believed to be fully characterized by a
unitary modular tensor category (UMTC).

• Characterized by a finite set of anyons {1, a, b, . . .}, fusion, and braiding;
(Nc

ab, F
abc
d , Rabc ).

etc.

• E.g.

Toric code : 1× e = e, 1×m = m, 1× f = f,

e×m = f, e× f = m, m× f = e,

e× e = 1, m×m = 1, f × f = 1
Ising : 1× a = a, σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1

(1)
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(bosonic) Topological order in (2+1)D
• Quantum dimensions {1, da, db, . . .} (da ≥ 1) for each anyon:

da = (2)

Total quantum dimension D :=
√∑

a
d2
a.

• Modular T matrix, T = diag (1, θa, θb, . . .) where

θa = e2πiha = (3)

is the self-statistical angle of a; θa(ha): the topological spin of a.
• Modular S matrix encodes the braiding between anyons, and defined by

Sab = (4)

• Chiral central charge mod 8

e2πic/8 = 1
D
∑
a

d2
aθa (5)
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Modular data (S and T ) and ground states
• Ground state degeneracy depending on the topology of the space

(topological ground state degeneracy), related to the presence of anyons.
[Wen (89-90)] E.g., Ground state degeneracy on a spatial torus, {|Ψi〉}.

• Large diffeomorphism of the torus induces a transformation within
degenerate multiplet.

• The modular data may largely determine underlying topological order, but
see [Mignard-Schauenburg (17);Wen-Wen (19)]
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Chiral central charge

• There may be topologically ordered phases with the same braiding
properties, but different values of c, the chiral central charge of the edge
modes. They cannot be smoothly deformed to each other without closing
the energy gap.

• Can be measured by the thermal conductance in the edge [Kane-Fisher (96)] :

κ = πk2
BT

6 × c

E.g. half-filled Landau level [Banerjee (18)] , Kitaev spin liquid [Kasahara (18)]
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Other data

• With symmetry, there are other data. E.g., σxy

• Data for symmetry-enriched topologically-ordered phases (SET) =
G-crossed braided tensor category C×G [Barkeshli et al (14), Etingof et al (10), ... ]

Fusion and braiding properties of symmetry defects together with anyons

• Geometrical data (Wen-Zee term, shift, Hall viscosity, ...).

• Other data?
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Some questions

• What are the data characterizing topological phases of matter? Are there
relations between different pieces of the data?

• How can we extract/measure such data? C.f. Direct observation of abelian
braiding statistics [Nakamura et al (20)] Topological invariants? [C.f. Bonderson (21)]

• Can we extract these data from ground states? E.g., modular data [ Wen

(90); Keski-Vakkuri-Wen (93); Bais-Romers (11); Zhang et al (12); Cincio-Vidal (13); Moradi-Wen (15);

You-Cheng (15); Zhu et al (17); Zhu et al (18) ...]

• Entanglement entropy (partial trace)
• Entanglement negativity (partial transpose)

• Negativity for anyons
• (partial rotation)
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Topological entanglement entropy

[Levin-Wen, Kitaev-Preskill (05)]

• For topologically ordered phases in 2 spatial dimensions,

SA = −Tr ρA log ρA (ρA = TrB |GS〉〈GS|)
= const.× `− logD

[Jiang-Wang-Balents (12)]
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Bulk calculations

• TEE from surgery [Dong et al (08)]

Tr ρnA
(Tr ρA)n = Z(S3)

[Z(S3)]n = [Z(S3)]1−n = [S0
0]1−n (6)

• UV divergent term is missing.
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Bulk-boundary correspondence

• Bulk wfn |Ψi〉 ←→ boundary partition function χi
• Bulk anyon ←→ twisted boundary conditions at edge:

• Bulk S and T matrices acting on |Ψi〉 on spatial torus ←→
S and T matrices acting on boundary partition function χa on spacetime
torus

χa
(
e−

4πβ
l
)

=
∑
a′

Saa′χa′
(
e
−πl
β
)

(7)

[Witten (89), Moore-Seiberg (89), Elitzur-Moore-Schwimmer-Seiberg (89), Bos-Nair (89), Murayama (89),

Dunne-Jackiw-Trugenberger (89), Cappelli-Zemba (96), ...]
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Edge theory approach

• The reduced density matrix ρA obtained from a ground state |GS〉 by
tracing out half-space can be obtained from conformal boundary state:
[Qi-Katsura-Ludwig (12)]

(Ln − L−n)|B〉 = 0 (∀n ∈ Z) (8)

• Near the entangling boundary,

|GS〉 ∼ e−εHedge |B〉 (9)

so that the reduced density matrix is

ρA ∝ TrB
[
e−εHedge |B〉〈B|e−εHedge

]
(10)

• “Physical picture”: healing the cut; gapped edge by potential “Formal
picture”: gauge invariance
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Boundary states as gapped states

• Boundary states represent a highly excited state within the Hilbert space
of a gapless CFT and can be viewed as gapped ground states.
[Calabrese-Cardy (06), Miyaji-SR-Takayanagi-Wen (14), Cardy (17)]

• Boundary states are short-range correlated: Spatial correlation function
〈B|e−εHO1(x1) · · · On(xn)e−εH |B〉/〈B|e−2εH |B〉 factorizes in the limit
of ε→ 0.

• The GS of the free fermion H =
∫
dx[−iψ†σz∂xψ +mψ†σxψ] is given by

|GS〉 ∝ e

∑
k>0

m

[m2+k2]
1
2 +k

[
ψ
†
Lk
ψ
Rk

+ψ†
R−kψL−k

]
|0L〉 ⊗ |0R〉 (11)

where |0L,R〉 is the Fock vacuum of the left- and right-moving sector. In
the limit m/k →∞, |GS〉 reduces to the boundary state.

• BCFT can be used to study (1+1)d SPTs to extract H2(G,U(1))
[Cho-Shiozaki-SR-Ludwig (16)]
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TEE from edge

• Ishibashi boundary state:

|ha〉〉 ≡
∞∑
N=0

dha (N)∑
j=1

|ha, N ; j〉 ⊗ |ha, N ; j〉 (12)

Different (Ishibashi) boundary states correspond to different ground states

• Topological sector dependent normalization (regularization):

|ha〉〉 = e−εH√
na
|ha〉〉 so that 〈〈ha|hb〉〉 = δab. (13)

• Reduced density matrix:

ρA,a = TrB(|ha〉〉〈〈ha|) =
∑
N,j

1
na
e−

8πε
l

(ha+N− c
24 )|ha, N ; j〉〈ha, N ; j|.

(14)
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TEE from edge

• Trace of the reduced density matrix:

TrA (ρA,a)n = 1
nna
χa
(
e−

8πnε
l
)

=
χa
(
e−

8πnε
l

)
χa
(
e−

8πε
l

)n (15)

• Modular transformation

χa
(
e−

8πnε
l
)

=
∑
a′

Saa′χa′
(
e−

πl
2nε
)
→ Sa0 × e

πcl
48nε (l/ε→∞), (16)

i.e., only the identity field I, labeled by “0” here, survives the limit. [C.f.

Boundary entropy (Affleck-Ludwig g); Kitaev-Preskill(05), Fendley-Fisher-Nayak(06)]

• Hence, in the thermodynamic limit l/ε→∞:

TrA (ρA,a)n =
∑

a′ Saa′χa′
(
e−

πl
2nε
)[∑

a′ Saa′χa′
(
e−

πl
2ε
)]n → e

πcl
48ε ( 1

n
−n)(Sa0)1−n, (17)
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• Final result:

S
(n)
A = 1 + n

n
· πc48 ·

l

ε
− lnD + 1

1− n ln d1−n
a

SvN
A = πc

24 ·
l

ε
− lnD + ln da (18)

where Sa0 = da/D is the quantum dimension.
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Entanglement in mixed states?

• How to quantify quantum entanglement between A and B when ρA∪B is
mixed ? E.g., finite temperature; A,B is a part of bigger system.

• The entanglement entropy is an entanglement measure only for pure
states. It is not monotone under LOCC.

• Entanglement negativity and logarithmic negativity, using partial transpose
[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

N (ρ) :=
∑
λi<0

|λi| =
1
2
(
||ρTB ||1 − 1

)
,

E(ρ) := log(2N (ρ) + 1) = log ||ρTB ||1.

• Good entanglement measure since LOCC monotone.

• For mixed states, negativity can extract quantum correlations only.
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Partial transpose (bosonic case)

• Definition: for an operator M , its partial transpose MTB is

〈e(A)
i e

(B)
j |M

TB |e(A)
k e

(B)
l 〉 := 〈e(A)

i e
(B)
l |M |e

(A)
k e

(B)
j 〉

where |e(A,B)
i 〉 is the basis of HA,B .
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Negativity for topological liquid

[Lee-Vidal (13), Castelnovo (13), Wen-Matsuura-SR (16), Wen-Chang-SR (16) Lim-Asasi-Teo-Mulligan (21)]

• Generic state on a torus: |ψ〉 =
∑

a
ψa|ha〉〉

• Mutual information and negativity:

IA1A2 = πc

12
l2
ε
− 2 lnD + 2

∑
a

|ψa|2 ln da −
∑
a

|ψa|2 ln |ψa|2 (19)

EA1A2 = lim
ne→1

ln Tr (ρT2
A1∪A2

)ne

= πc

16
l2
ε
− lnD + ln

(∑
a

|ψa|2 ln da
)

(20)

E is dependent on ψa only for non-Abelian topological order.
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Finite T negativity for topological liquid

• At finite T, topological order may be destroyed by proliferation of
excitations. (2+1)d toric code supports no TO at T > 0 while (4+1)d
toric code does support TO at T > 0 [Dennis-Kitaev-Landahl-Preskill (02)]

• Unlike entropy, negativity exhibits area law: [Hart-Castelnovo (18), Lu-Hsieh-Grover

(19)]

E = Area law− Etop (21)

Etop is sensitive to finite T topological transition.
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Quantum entanglement by diagramatics

• Penrose’s graphical calculus for SU(2):

• EPR (Bell) pair |EPR〉:
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Quantum entanglement by diagramatics

• Density matrix ρ:

• Partial trace and reduced density matrix TrBρ:

• Entanglement for anyonic systems [Hikami (08), Kato-Furrer-Murao (14), Pfeifer (14),

Bonderson-Knapp-Patel (17)]
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Partial transpose and negativity

• Partial transpose ρTB :

• Entanglement negativity E :

E = ln Tr
√
ρTBρTB† = ln 2
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Partial transpose for anyons?

• World lines for anyons

• “EPR pair” for anyons

• Density matrix and partial transpose [Shapourian-Mong-SR (20)]
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Anyonic partial transpose

• Density matrix of anyons

• Proposal: define partial transpose for anyons as: [Shapourian-Mong-SR (20)]
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The Kitaev chain

• The Kitaev chain

H =
∑
j

[
− tc†jcj+1 + ∆c†j+1c

†
j + h.c.

]
− µ
∑
j

c†jcj

• Phase diagram: there are only two phases:

• Topologically non-trivial phase is realized when 2|t| ≥ |µ|.

27 / 34



The Kitaev chain

• Setup:

• Negativity can be calculated as E = log
√

2:
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Numerics

• Numerics: fermionic v.s. bosonic partial transpose

• (Blue circles and Red crosses) are computed by using Jordan-Wigner
transformation and bosonic partial transpose

• (Green and Orange triangles) are computed by using fermionic partial
transpose

• At critical point: agrees with the CFT prediction by [Calabrese-Cardy-Tonni].
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Aside: partial transpose and SPT invariant

• Using the same setup of the Kitaev chain, but considering

Z = Tr[ρA1∪A2ρ
T1
A1∪A2

] = e2πiν/8

gives the Z8 topological invariant of time-reversal symmetric topological
superconductors. [Fidkowski-Kitaev(10)]

• Numerics:

• The effective action interpretation: Z(RP 2, η) = e2πiBrown(η)/8 where η is
one of two Pin− structures on RP 2.
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Anyonic entanglement negativity

• Negativity E for two spin 1/2 anyons in su(2)k [Shapourian-Mong-SR]

• C.f. Broken curve: ρ = 4p−1
3 |EPR〉〈EPR|+ 1−p

3 I for regular spin 1/2

• The subspace of vanishing anyonic negativity forms a zero measure set (in
particular when no multiplicity fusion).

• The anyonic negativity is LOCC monotone.
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Partial rotation and lens space
• The expectation value of partial n-fold rotation acting on a subregion D is

given by the partition function on the lens space [Shiozaki-Shapourian-SR(17)] :

〈Cn,D〉 = 〈GS |Cn,D|GS〉 ∼ Z(L(n, 1)) (22)

C.f. higher-central charges [Kaidi et al (21)]

• “Cut-and-glue” calculation: C.f. momentum polarization [Tu-Zhang-Qi (12)]

〈Cn,D〉 ∼
Tr
[
e−iP

L
n e−εH

]
Tr [e−εH ] =

e
2πi
n (〈L0〉− c

24 )∑
a
χa
(
iε
L
− 1

n

)∑
a
χa
(
iε
L

)
=
e

2πi
n (〈L0〉− c

24 )∑
a,b

(ST nS)abχb
(
iL
n2ε + 1

n

)∑
a,b
Sabχb

(
iL
ε

) (23)
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• Example: chiral p-wave SC

〈Cn,D〉 ∼

{
e−

(n2+2)πi
24n +··· n : even

√
2−1

e−
(n2−1)πi

24n +··· n : odd
(24)

• Can be used to study crystalline SPTs [Shiozaki-Shapourian-SR(17)]; Can detect
SPTs classified by H3(G,U(1)); [Tiwari-Chen-Shiozaki-SR(17)]
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Summary/Outlook

• Using partial operations, we can put topological phases on interesting
spacetime manifolds to extract topological data.

• We can compute these by using either bulk or edge theory.

• Other entanglement measures; Charged entanglement/Symmetry-resolved
entanglement, Linking entanglement, Reflected entropy, odd entropy, etc.

• Experiments [Islam et al (15)] [Kaufman et al (16)] [Lukin et al (18)] [Brydges (19)]
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