

Higher-rank chirality in semi-metallic systems

Fiona J Burnell
With
Taylor Hughes, Oleg Dubinkin

arXiv:2102.08959
(and forthcoming)

• Part 2: Quadrupolar responses of semi-metals

Part 1: Chirality, the axial anomaly, and a higher-rank analog

Recall: the axial anomaly and band theory

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \phi)^2 \right]$$

Visualisation, as bosonized representation of 1D fermionic band structure:

Recall: the axial anomaly and band theory

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \phi)^2 \right]$$

Clasically, two conserved densities:

Charge:

$$\rho = n_R + n_L$$

Momentum:

$$\rho_k = k_F(n_R - n_L)$$

СООН

СООН

Two classically conserved currents:

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \phi)^2 \right]$$

EM current:
$$J_0 = \frac{1}{\sqrt{\pi}} \partial_x \phi$$
, $J_x = \frac{1}{\sqrt{\pi}} \partial_t \phi$

Conserved!

Axial current:
$$\tilde{J}_0 = \frac{1}{\sqrt{\pi}} \partial_t \phi$$
, $\tilde{J}_x = \frac{1}{\sqrt{\pi}} \partial_x \phi$

Conserved due to equations of motion.

$$\partial_t^2 \phi - \partial_x^2 \phi = 0$$

... but not in the presence of external fields!

(Argument due to Fradkin)

Apply a (classical) electric field

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \phi)^2 \right] + J_\mu A^\mu$$

Modified equations of motion:

$$\partial_t^2 \phi - \partial_x^2 \phi - \frac{1}{\sqrt{\pi}} (\partial_t A_x - \partial_x A_0)$$

$$\partial_{\mu}\tilde{J}^{\mu} = \frac{1}{\pi}E_{x}$$

Image credit: Burkov '15

... but not in the presence of external fields!

(Argument due to Fradkin)

Apply a (classical) electric field

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \phi)^2 \right] + J_\mu A^\mu$$

Modified equations of motion:

$$\partial_t^2 \phi - \partial_x^2 \phi - \frac{1}{\sqrt{\pi}} (\partial_t A_x - \partial_x A_0)$$

$$\partial_{\mu}\tilde{J}^{\mu} = \frac{1}{\pi}E_{x}$$

Image credit: Burkov '15

 Interpretation: momentum is not conserved in an applied electric field!

A similar anomaly, inspired by fractonic models

You, Burnell, Hughes ('19); Gorantla, Lam, Seiberg, Shao ('21)

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \partial_y \phi)^2 \right]$$

Free boson!

Unusual dispersion with lines of zeroes:

Subsystem symmetry: invariant under

$$\phi \to \phi + f(x) + g(y)$$

A similar anomaly, inspired by fractonic models

You, Burnell, Hughes ('19); Gorantla, Lam, Seiberg, Shao ('21)

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \partial_y \phi)^2 \right]$$

Free boson!

Unusual dispersion with lines of zeroes:

Caution: energy cutoff is not the same as momentum cutoff!

Subsystem symmetry: invariant under

$$\phi \to \phi + f(x) + g(y)$$

Two classically conserved currents:

You, Burnell, Hughes ('19); Gorantla, Lam, Seiberg, Shao ('21)

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \partial_y \phi)^2 \right]$$

$$J_0 = \frac{1}{\sqrt{\pi}} \partial_x \partial_y \phi , \quad J_{xy} = \frac{1}{\sqrt{\pi}} \partial_t \phi$$

• Conserved! $\partial_t J_0 - \partial_x \partial_y J_{xy} = 0$

$$\tilde{J}_0 = \frac{1}{\sqrt{\pi}} \partial_t \phi \ , \quad \tilde{J}_{xy} = -\frac{1}{\sqrt{\pi}} \partial_x \partial_y \phi$$

Conserved due to equations of motion.

... but not in the presence of external applied fields!

You, Burnell, Hughes ('19); Gorantla, Lam, Seiberg, Shao ('21)

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \partial_y \phi)^2 \right] + A_0 J_0 + A_{xy} J_{xy}$$

Modified equations of motion:

$$\partial_t^2 \phi - (\partial_x \partial_y)^2 \phi - (\partial_t A_{xy} - \partial_x \partial_y A_0) = 0$$
$$\partial_t \tilde{J}_0 - \partial_x \partial_y \tilde{J}_{xy} = \frac{1}{\pi} E_{xy}$$

Can this anomaly tell us anything about band theory?

• A Hamiltonian with the same "Fermi surface"

$$H = \psi^{\dagger} \partial_x \partial_y \psi$$

Can this anomaly tell us anything about band theory?

- Conserved quantities:
 - Charge
 - Momentum in x
 - Momentum in y

• A Hamiltonian with the same "Fermi surface"

$$H = \psi^{\dagger} \partial_x \partial_y \psi$$

Can this anomaly tell us anything about band theory?

- Conserved quantities:
 - Charge
 - Momentum in x
 - Momentum in y

(If we impose a reflection symmetry about y=x, we could think of these as a single additional conserved current)

• A Hamiltonian with the same "Fermi surface"

$$H = \psi^{\dagger} \partial_x \partial_y \psi$$

Conserved currents vs. external applied fields

Momentum anomaly: electric fields in y violate conservation of k_X

Apply an electric field in y-direction

 Creates particles at k_X and destroys them at -k_X

Image credit: Burkov '15

Momentum anomaly: electric fields in y violate conservation of k_x

Apply an electric field in y-direction

 Creates particles at k_X and destroys them at -k_X

- Total charge is conserved! But ...
- Total momentum in x is not conserved!

Charge anomaly: certain (unphysical) lattice defects violate charge conservation

Twisted boundary conditions on the torus:

$$e^{i(k_x L + k_y \delta)} = 1 , \quad e^{ik_y L} = 1$$

$$k_y = \frac{2\pi n_y}{L}$$

$$k_x = \frac{2\pi n_x}{L} - \frac{2\pi n_y}{L} \frac{\delta}{L}$$

Twisting by L takes

$$k_x \rightarrow k_x - k_y$$

Twist and violation of charge conservation!

Higher-rank chiral anomaly: a comparison

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \partial_y \phi)^2 \right] + A_0 J_0 + A_{xy} J_{xy}$$

- 2 U(1) currents.
- Applied electric field violates momentum current conservation
- Applied flux of "momentum gauge field" violates electric current conservation

(If we impose a reflection symmetry about y=x, we could think of these as a single additional conserved current)

- 3 U(1) currents (charge, momenta in x and y).
- Applied electric field in x violates y- momentum current conservation
- Applied flux of "momentum gauge field" (twist in x or y) violates electric current conservation

Cancelling the anomaly via the bulk

 This cannot possibly be a 2D lattice system; the Fermi surface is not closed!

What can it be?

Cancelling the anomaly via the bulk

- This cannot possibly be a 2D lattice system; the Fermi surface is not closed!
- What can it be? The surface of a (quadrupolar) Weyl semi-metal!

Part 2: Quadrupolar responses of semi-metals

Review: dipolar response of Weyl semi-metals

• Fermi surface dipole moment:

$$P^{\lambda} = \sum_{\alpha} \chi^{(\alpha)} k_{\alpha}^{\lambda}$$
 Form Arc Surface BZ
$$\chi = -1$$

$$\chi = +1$$
 Bulk BZ
$$k_{\nu}$$

Review: dipolar response of Weyl semi-metals

Zyuzin & Burkov '12

Fermi surface dipole moment determines EM response:

$$P^{\lambda} = \sum_{\alpha} \chi^{(\alpha)} k_{\alpha}^{\lambda}$$

$$\rho = \frac{e^2}{\pi h} \vec{P} \cdot \vec{B}$$

$$\vec{j} = \frac{e^2}{\pi h} \left(\vec{P} \times \vec{E} - b_0 \vec{B} \right)$$

Review: dipolar response of Weyl semi-metals

Zyuzin & Burkov '12

Topological response theory:

$$\mathcal{L} = -\frac{e^2}{2\pi h} \epsilon^{\mu\nu\rho\lambda} P_{\mu} (A_{\nu} \partial_{\rho} A_{\lambda})$$

 ${\cal L} - J_{\mu} A^{\mu}$ has equations of motion:

$$\rho = \frac{e^2}{\pi h} \vec{P} \cdot \vec{B}$$

$$\vec{j} = \frac{e^2}{\pi h} \left(\vec{P} \times \vec{E} - b_0 \vec{B} \right)$$

Summary: dipolar response of Weyl semi-metals

Zyuzin & Burkov '12

Fermi surface dipole moment

$$P^{\lambda} = \sum_{\alpha} \chi^{(\alpha)} k_{\alpha}^{\lambda}$$

determines EM response via:

$$\mathcal{L} = -\frac{e^2}{2\pi h} \epsilon^{\mu\nu\rho\lambda} P_{\mu} (A_{\nu} \partial_{\rho} A_{\lambda})$$

- Note: not gauge invariant in the presence of a boundary.
- Must add surface Fermi arc to ensure gauge invariance!

Quardupolar response

Dubinkin, FJB, Hughes '21 (and forthcoming) Gaoia, Wang, Burkov '21

> Time-reversal invariant Weyl semi-metal: dipolar response vanishes!

$$P^{\lambda} = \sum_{\alpha} \chi^{(\alpha)} k_{\alpha}^{\lambda}$$
$$= 0$$

 No net charge response to external fields. Contribution of timereversed pairs of Weyl nodes cancels!

Dubinkin, FJB, Hughes '21

Electromagnetic currents:

Current-current response vanishes (in clean system):

$$\langle J^{\mu}J^{\nu}\rangle = 0$$

Mixed current - momentum current response is non-vanishing:

$$\lim_{\omega \to 0} \langle \tau_a^{\nu} j^{\mu} \rangle = t_a^{\mu \nu}$$

Momentum current:

$$\tau_a^{\nu}(\mathbf{k}) = \frac{h}{e} k_a j^{\nu}(\mathbf{k})$$

Dubinkin, FJB, Hughes '21

Electromagnetic currents:

$$j^{\mu} = \frac{1}{8\pi^2} \epsilon^{\mu\nu\rho\lambda} Q_{\nu a} \partial_{\rho} e^{a}_{\lambda}$$

Quadrupole moment of Weyl nodes

Chirality of Weyl node $Q_{i\alpha} = \sum_{\alpha = \text{Weyl Nodes}} \chi(\alpha) K_i(\alpha) K_a(\alpha)$

Dubinkin, FJB, Hughes '21

Electromagnetic currents:

$$j^{\mu} = \frac{1}{8\pi^2} \epsilon^{\mu\nu\rho\lambda} Q_{\nu a} \partial_{\rho} e^{a}_{\lambda}$$

Gauge field for momentum current (gauged translational symmetry)

$$j^{\mu}=rac{1}{8\pi^2}\epsilon^{\mu
u
ho\lambda}Q_{
u a}\partial_{
ho}e^a_{\lambda}$$
 Dubinkin, FJB, Hughes '21

- No net electromagnetic response to E-M fields.
- But there are EM responses to lattice defects.
- E.g. charge bound to screw dislocations

Dubinkin, FJB, Hughes '21

Momentum currents:

$$\tau_a^{\mu} = \frac{1}{8\pi^2} \epsilon^{\mu\nu\rho\lambda} Q_{\nu a} \partial_{\rho} A_{\lambda}$$

EM gauge field

Dubinkin, FJB, Hughes '21

$$\tau_a^{\mu} = \frac{1}{8\pi^2} \epsilon^{\mu\nu\rho\lambda} Q_{\nu a} \partial_{\rho} A_{\lambda}$$

- No net electromagnetic response to E-M fields. Instead, we see a momentum current response!
- E.g. momentum density bound to magnetic flux tubes!

Topological Response theory

$$\mathcal{L} = \frac{e}{8\pi^2} \epsilon^{a\mu\nu\rho} Q_{ab} A_{\mu} \partial_{\nu} e_{\rho}^b$$

$${\cal L} - J^\mu A_\mu - au_a^\mu e_\mu^a$$
 has equations of motion:

$$j^{\mu} = \frac{1}{8\pi^2} \epsilon^{\mu\nu\rho\lambda} Q_{\nu a} \partial_{\rho} e^{a}_{\lambda}$$

$$\tau_a^{\mu} = \frac{1}{8\pi^2} \epsilon^{\mu\nu\rho\lambda} Q_{\nu a} \partial_{\rho} A_{\lambda}$$

Include a mirror symmetry that enforces

$$Q_{yy} = -Q_{xx} \equiv Q \ , \quad Q_{xy} = 0$$

Obtain:

$$\mathcal{L} = -\frac{Q}{8\pi^2} \left[A_z \left(\varepsilon_x^y + \varepsilon_y^x \right) - A_y \varepsilon_z^x - A_x \varepsilon_z^y + A_0 (\mathcal{B}_y^y - \mathcal{B}_x^x) \right]$$

$$\varepsilon_i^a = \partial_i \mathbf{e}_0^a - \partial_0 \mathbf{e}_i^a$$
$$\mathcal{B}_i^a = \epsilon^{ijk} \partial_i \mathbf{e}_k^a$$

$$\mathcal{L} = -\frac{Q}{8\pi^2} \left[A_z \left(\varepsilon_x^y + \varepsilon_y^x \right) - A_y \varepsilon_z^x - A_x \varepsilon_z^y + A_0 (\mathcal{B}_y^y - \mathcal{B}_x^x) \right]$$

 Partial re-writing in terms of symmetric tensor gauge fields:

$$\mathcal{E}_{xy} \to \varepsilon_y^x + \varepsilon_x^y$$
$$e_{xy} \to e_y^x + e_x^y$$

$$\mathcal{L} = -\frac{Q}{8\pi^2} \left[A_z \varepsilon_{xy} - A_0 \partial_z e_{xy} \right. \\ \left. - A_y \varepsilon_z^x - A_x \varepsilon_z^y + A_0 (\partial_y e_z^x + \partial_x e_z^y) \right]$$
 The remaining terms

Symmetric tensor gauge theory coupled to rank 1 gauge field
$$\mathcal{L} = -\frac{Q}{8\pi^2} \left[A_z \varepsilon_{xy} - A_0 \partial_z e_{xy} - A_0 \partial_z e_{xy} - A_y \varepsilon_z^x - A_x \varepsilon_z^y + A_0 (\partial_y e_z^x + \partial_x e_z^y) \right]$$

- Gauge-invariant up to a boundary term
- For a boundary orthogonal to z, only the first line contributes to this anomaly

Symmetric tensor gauge theory coupled to rank 1 gauge field
$$\mathcal{L}=-\frac{Q}{8\pi^2}\left[A_z\varepsilon_{xy}-A_0\partial_z e_{xy}\right]$$

 Anomaly inflow to the boundary is exactly what is needed to cancel the mixed 't Hooft anomaly of our subsystemsymmetric scalar field theory

$$\mathcal{L} = \frac{1}{2} \left[(\partial_t \phi)^2 - (\partial_x \partial_y \phi)^2 \right]$$

FJB, Devakul, Lam, Shao (to appear)

Quadrupolar response in 3D Weyl semi-metals: some morals

- Leading order linear EM response of semi-metals= Fermi surface dipole moment
- When this vanishes, we instead obtain mixed momentumcharge responses, proportional to the Fermi surface quadrupole moment
- These responses can have boundary anomalies, indicating surface states that resemble those encountered in the study of higher-rank gauge theories

Quadrupolar responses in other systems

 2D Dirac semi-metals: Recall Berry curvature dipole

$$\mathcal{L} = \frac{e}{8\pi} \epsilon^{\mu\nu\rho} P_{\mu} F_{\nu\rho}$$

 Equations of motion predict boundary flat bands, along edges orthogonal to the dipole moment

$$\rho = -\frac{e}{4\pi} \epsilon^{ij} \partial_i P_j$$

Ramamurthy, Hughes '15

Quadrupolar responses in other systems

• 2D gapped systems: Berry curvature quadrupole

Quadrupolar responses in other systems

• 2D gapped systems: Berry curvature quadrupole

$$\mathcal{L} = \frac{\hbar}{16\pi} \epsilon^{\mu\nu\rho} Q_{\mu\sigma} \partial_{\nu} e_{\rho}^{\sigma}$$

 Boundary flat bands, with no net charge response, but a net momentum response

Summary

- Part 1: Chirality, the axial anomaly, and a higher-rank analog
 - A new kind of "chiral anomaly" associated with lack of momentum conservation in 2D
 - Realization in band theory, after imposing reflection symmetry
- Part 2: Quadrupolar responses of semi-metals
 - With extra symmetry, leading-order (dipolar) terms in EM response may vanish.
 - Next leading terms are quadrupolar, and describe a mixed response between EM and lattice effects
 - With appropriate symmetry, 3D response theory has the same anomalies as a symmetric tensor gauge theory, which cancels the anomaly of a subsystem-symmetric surface state.
 - Quadrupolar responses not only interesting for Weyl semimetals