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e Part 1: Chirality, the axial anomaly, and a higher-rank
analog

e Part 2: Quadrupolar responses of semi-metals



Part 1: Chirality, the axial anomaly,
and a higher-rank analog




Recall: the axial anomaly
and band theory
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Visualisation, as bosonized representation of
1D fermionic band structure:
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Recall: the axial anomaly
and band theory
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Clasically, two conserved densities:
Charge: p="NRr-+ny
Momentum: PE — ]{JF (nR — TLL
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Two classically conserved
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currents:
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Axial current: Jy = %(%gb g, = % 0

e Conserved due to equations of motion.
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... but not In the presence
of external fields!

(Argument due to Fradkin)
e Apply a (classical) electric field

1
L= L[@0f - @) + JAr ;
e Modified equations of motion: R k {L
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... but not In the presence
of external fields!

(Argument due to Fradkin)
e Apply a (classical) electric field
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 Modified equations of motion: """JF;:::‘" k ..:::;;;;{L::: ....
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Image credit: Burkov ‘15

* |nterpretation: momentum is not conserved in an applied
electric field!



A similar anomaly, inspired
by fractonic models

You, Burnell, Hughes (’19);
Gorantla, Lam, Seiberg, Shao ('21)
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Free boson!

1
£=5

Unusual dispersion with lines of zeroes:

T~ w? = (kyk,)? =0

-

Subsystem symmetry:
invariant under
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A similar anomaly, inspired
by fractonic models

You, Burnell, Hughes (’19);
Gorantla, Lam, Seiberg, Shao ('21)
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Free boson!
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Unusual dispersion with lines of zeroes:

T~ w? = (kyk,)? =0
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Subsystem symmetry:

_ _ invariant under
Caution: energy cutoff is not the

same as momentum m ¢»— o+ f(x)+g9y)




Two classically conserved
currents:

You, Burnell, Hughes (’19);
Gorantla, Lam, Seiberg, Shao ('21)
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e Conserved!  0iJy — 0,0,J5y =0
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e Conserved due to equations of motion.



... but not in the presence
of external applied fields!

You, Burnell, Hughes (’19);
Gorantla, Lam, Seiberg, Shao ('21)

L= [(at¢)2 — (away¢)2] + AoJo + AzyJay
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 Modified equations of motion:
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Can this anomaly tell us
anything about band theory?

e A Hamiltonian with the same “Fermi surface”

H =70,0,9



Can this anomaly tell us
anything about band theory?

e Conserved quantities:
e Charge
e Momentum in X
e Momentum iny

e A Hamiltonian with the same “Fermi surface”

H = 10,0,



Can this anomaly tell us
anything about band theory?

e Conserved quantities:
e Charge
e Momentum in X
e Momentum iny

(If we impose a reflection symmetry about y=x,
we could think of these as a single additional
conserved current)

A Hamiltonian with the same “Fermi surface”

H = 10,0,



Conserved currents vs.
external applied fields
- K

* Apply an electric field in y-direction

Left-movers in
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Momentum anomaly: electric fields

In y violate conservation of kx
- K A

* Apply an electric field in y-direction

e Creates particles at kx and
destroys them at -kx

Right
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Momentum anomaly: electric fields
In y violate conservation of kx

* Apply an electric field in y-direction

e Creates particles at kx and
destroys them at -kx

K A

Left-movers iny

* Total charge is conserved! But ...

e Jotal momentum in X is not conserved!

Right-movers iny



Charge anomaly: certain (unphysical)
lattice defects violate charge conservation

* Twisted boundary conditions on the torus:
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e Twisting by L takes
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Twist and violation of
charge conservation!

\ e Kx of each (left-moving)

state decreases: more
\ fermions!
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Higher-rank chiral anomaly:
a comparison

L (0:9)” — (0:040)°| + AoJo + AuyJuy
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e 2 U(1) currents.
* Applied electric field violates momentum current conservation

* Applied flux of “momentum gauge field” violates electric current conservation

L =

(If we impose a reflection symmetry about
y=X, we could think of these as a single
additional conserved current)

e 3 U(1) currents (charge, momenta in x and y).
* Applied electric field in x violates y- momentum current conservation

e Applied flux of “momentum gauge field” (twist in x or y) violates electric
current conservation



Cancelling the anomaly via
the bulk

e This cannot possibly be a 2D lattice system; the Fermi surface is not
closed!

* What can it be?




Cancelling the anomaly via
the bulk

e This cannot possibly be a 2D lattice system; the Fermi surface is not closed!

e What can it be? The surface of a (Qquadrupolar) Weyl semi-metal!

Bulk: Weyl quadrupole.
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Part 2: Quadrupolar
responses of semi-metals
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Review: dipolar response of
Weyl semi-metals

 Fermi surface dipole moment:

P =Y )




Review: dipolar response of
Weyl semi-metals

Zyuzin & Burkov ’12

* Fermi surface dipole moment determines EM response:

P = 3R,

2
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Charge density: P = —P-B
mh
Current density: J = % X B —byB



Review: dipolar response of
Weyl semi-metals

Zyuzin & Burkov ’12
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Topological o € LvpA
response theory: L=— 2 € PM (AVaPAA)

L — J,u AH has equations of motion:
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Summary: dipolar response
of Weyl semi-metals

Zyuzin & Burkov ’12

* Fermi surface dipole moment

P = 3R,

e determines EM response via:

62

L= —%—hGWW‘PM(AyﬁpAA)

* Note: not gauge invariant in the presence of a boundary.
e Must add surface Fermi arc to ensure gauge invariance!



Quardupolar response

T Dubinkin, FJB, Hughes ’21 (and forthcoming)
Gaoia, Wang, Burkov ‘21
k, 9 .74.
- 0 s e Time-reversal invariant
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Weyl semi-metal:

, dipolar response
- i vanishes!
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 No net charge response to external fields. Contribution of time-
reversed pairs of Weyl nodes cancels!



Quadrupolar response
(via Kubo formula)

Dubinkin, FJB, Hughes 21
e Electromagnetic currents:

Current-current response Mixed current - momentum current
vanishes (in clean system): response is hon-vanishing:
. | V4 ',Ll/ . ILLI/
(JHTV) =0 lim (7, 7%) = t,
w—0

Momentum current:

(k) = L hag (K)
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Quadrupolar response
(via Kubo formula)

Dubinkin, FJB, Hughes 21
e Electromagnetic currents:

1
- VP a
],u = " Ql/aape)\

872 /

Quadrupole moment of Weyl nodes

/irality of Weyl node

Q=Y xaKi()K.(a)

a=Weyl Nodes



Quadrupolar response
(via Kubo formula)

Dubinkin, FJB, Hughes 21
e Electromagnetic currents:
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Gauge field for momentum current (gauged translational symmetry)



Quadrupolar response
(via Kubo formula)

1 Dubinkin, FJB, Hughes 21

J UV P a

* No net electromagnetic response to E-M fields.
e But there are EM responses to lattice defects.

 E.g. charge bound to screw dislocations



Quadrupolar response
(via Kubo formula)

Dubinkin, FJB, Hughes 21

¢ Momentum currents:

1
TH = —e“”pAQmﬁpAA
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EM gauge field



Quadrupolar response
(via Kubo formula)

Dubinkin, FJB, Hughes 21
1
no_ PV pA
Ta = 3 3¢ Quva0pAx
* No net electromagnetic response to E-M fields. Instead, we see
a momentum current response!

e E.g. momentum density bound to magnetic flux tubes!




Topological Response
theory

e
auv b
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L — J’LLAM — Tgeu has equations of motion:
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Topological Response theory:
connection to higher-rank case

e Include a mirror symmetry that enforces

ny:_waEQa wa:O
e Obtain:



Topological Response theory:
connection to higher-rank case

Q . z z

e Partial re-writing in terms of symmetric tensor gauge
fields:
Exy — €y + €1

X
exy — €, + €5

Symmetric tensor gauge theory
Q / coupled to rank 1 gauge field
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The remaining terms



Topological Response theory:
connection to higher-rank case

Symmetric tensor gauge theory
Q /oupled to rank 1 gauge field
L = A Epy — ApgOey
87T [ Yy Yy
X

e Gauge-invariant up to a boundary term

* For a boundary orthogonal to z, only the first line
contributes to this anomaly



Topological Response theory:
connection to higher-rank case

Symmetric tensor gauge theory
0 /oupled to rank 1 gauge field

872

e Anomaly inflow to the boundary is exactly what is needed
to cancel the mixed 't Hooft anomaly of our subsystem-
symmetric scalar field theory

L= [0 ~ (0.0,0)]

FJB, Devakul, Lam, Shao (to appear)




Quadrupolar response in 3D
Weyl semi-metals: some morals

* Leading order linear EM response of semi-metals= Fermi
surface dipole moment

e \When this vanishes, we instead obtain mixed momentum-
charge responses, proportional to the Fermi surface
quadrupole moment

* These responses can have boundary anomalies,
iIndicating surface states that resemble those encountered

In the study of higher-rank gauge theories



Quadrupolar responses in
other systems

2D Dirac semi-metals: Recall Berry
curvature dipole

€ |4
L= P PF,,

Equations of motion predict
boundary flat bands, along edges o 0,
orthogonal to the dipole moment

e
47

Ramamurthy, Hughes ‘15

P = eij(‘)&-Pj



Quadrupolar responses in
other systems

e 2D gapped systems: Berry curvature quadrupole




Quadrupolar responses in
other systems

e 2D gapped systems: Berry curvature quadrupole

h v o
L = 16—7T€'u pQ/w@,/ep

 Boundary flat bands, with no net
charge response, but a net
momentum response

Dubinkin, FJB, Hughes



Summary

e Part 1: Chirality, the axial anomaly, and a higher-rank analog

e A new kind of “chiral anomaly” associated with lack of
momentum conservation in 2D

e Realization in band theory, after imposing reflection symmetry
e Part 2: Quadrupolar responses of semi-metals

e With extra symmetry, leading-order (dipolar) terms in EM
response may vanish.

e Next leading terms are quadrupolar, and describe a mixed
response between EM and lattice effects

e With appropriate symmetry, 3D response theory has the same
anomalies as a symmetric tensor gauge theory, which cancels
the anomaly of a subsystem-symmetric surface state.

e Quadrupolar responses not only interesting for Weyl semi-
metals



