#### SPT Phases and Beyond

GGI Workshop: Topological Properties of Gauge Theories

August 31, 2021

Alex Turzillo

メロト メタト メヨト メヨト



[taken from last week's review talk by Shinsei]

| Alex Turzillo | SPT Phases and Beyond | August 31, 2021 | 2 / 54 |
|---------------|-----------------------|-----------------|--------|

- Entanglement in Gapped Systems
- Invertible Phases and SPTs
- Detecting Invertible Phases
- Free Fermions

メロト メタト メヨト メヨト

#### Entanglement in Gapped Systems

イロト イロト イヨト イヨト

• Lattice: State space is

$$\mathcal{H} = \bigotimes_{v} \mathcal{H}_{v} \; .$$

• Locality: Hamiltonian is

$$H=\sum h_{\mathcal{R}}$$
 .

- Assume translation invariance: the data  $\mathcal{H}_v$  and  $h_{\mathcal{R}}$  are independent of  $v, \mathcal{R}$ .
- Data  $(\mathcal{H}_{\nu}, \{h_{\mathcal{R}}\})$  defines a family of systems on various lattices.
- Gapped: the energy gap between the ground and first excited states remains nonzero in the thermodynamic limit (large system size N ≫ |R|).

イロト 不得 トイヨト イヨト

## Area law for entanglement entropy

- Gapped ground states are thought to have an area law for ent. entropy.
  - One dimension. [Hastings 07] [Arad, Kitaev, Landau, Vazirani 13]
  - Two dimensions. [Kitaev, Preskill 05]

$$\rho = \operatorname{Tr}_{\mathcal{B}}(|\psi\rangle\langle\psi|) , \qquad S = -\operatorname{Tr}(\rho\log\rho)$$
$$S \to \alpha|\partial A| - \gamma + \dots$$



- Suggests that entanglement is "short-range" (except for the constant term  $\gamma$ ).
- Ground states of gapped systems occupy a small corner of the exponentially large Hilbert space. Hope for a more efficient description than  $d^L$  values

$$\langle i_1,\ldots,i_L|\psi
angle=c_{i_1\cdots i_L}$$
 .

#### Tensor network diagrams

• Tensor  $X_{i_1 \cdot i_n}$  is an *n*-dimensional array of numbers



- Tensor contraction: indices on internals are summed over.
  - e.g. Trace of a matrix
  - e.g. Matrix multiplication



• Schmidt decomposition captures the entanglement between sites:

$$|\psi\rangle = \sum_{\mu \in V} \lambda_{\mu} |\psi_{L}^{\mu}\rangle \otimes |\psi_{R}^{\mu}\rangle$$

• Repeated Schimdt decomposition yields



・ロト ・回 ト ・ ヨト ・

• The result is a matrix product state (MPS) built out of a tensors

•  $A^i$  is a matrix of rank D, the bond dimension.

• D can be recovered from the 0<sup>th</sup> Renyi entropy  $S_0(
ho) = \log D$  .

• Wavefunction is given by a product of matrices

$$\langle i_1 \cdots i_N | \psi_T 
angle = \mathsf{Tr} \left[ \mathcal{A}_1^{i_1} \cdots \mathcal{A}_N^{i_N} 
ight]$$
 (closed chain)

$$\langle i_1 \cdots i_N | \psi_T \rangle = \langle \mu_L | A_1^{i_1} \cdots A_N^{i_N} | \mu_R \rangle$$
 (open chain)

• Represented by  $NdD^2$  numbers, rather than  $d^N$ 

イロト イポト イヨト イ

- The bond dimension D required to represent a generic state on N sites grows exponentially in N (since  $d^N = NdD^2$  implies  $D = \sqrt{N}e^{(N-1)\log d/2}$ ).
- Ground states of gapped local Hamiltonians have less entanglement.
  - ... their approximate MPS have D finite. [White 1992] [Hastings, 2007]
    - Therefore entanglement entropy is bounded by a constant, reflecting an area law.
- Given a *translation-invariant* system, there is an MPS realization of its ground states with A<sub>s</sub> independent of the site s. [Perez-Garcia, Verstraete, Wolf, Cirac 2007]
- Conversely, each MPS arises as a ground state of a parent Hamiltonian.
  - Assuming translation invariance, this Hamiltonian is gapped.
  - Assuming translation invariance, the ground state degeneracy is constant in N.
  - It is K-local with  $K \sim 2 \log D / \log d$ . By blocking sites, achieve K = 2.

イロト イロト イヨト イヨト

- The MPS representation of a given state is not unique.
  - This "gauge freedom" is partially fixed by a canonical form. Remaining freedom is conjugation of  $A^i$  by a unitary matrix. [Perez-Garcia, Verstraete, Wolf, Cirac 2007]
- Transfer matrix

$$\mathbb{E} = \sum_{i} A^{i^{\dagger}} \otimes A^{i}$$



- Canonical form: 1 is a left fixed point of  $\mathbb{E}$ .
- Injective: 1 is the unique fixed point of  $\mathbb{E}$ .
  - $\bullet\,$  Implies there is a unique right fixed point  $\rho,$  full rank.

イロト イポト イヨト イヨ

#### Finite correlation length



$$\langle \mathcal{O}_1 \mathcal{O}_2 
angle = \langle L(\mathcal{O}_1) | \mathbb{E}^j | R(\mathcal{O}_2) 
angle \sim e^{j \log \lambda}$$

メロト メロト メヨトメ

# MPS as a 1D PEPS

Ingredients:

- physical Hilbert space  $\mathcal{H} \simeq \mathbb{C}^d$
- **②** virtual space  $V \simeq \mathbb{C}^D$
- $I ensor A : \mathcal{H} \to V \otimes V^*$



Image: A match a ma

• Construction:

- ullet maximally entangled pair  $|\omega
  angle\in V^*\otimes V$  on each edge
- act on each vertex by  $A^{\dagger}: V \otimes V^* \to \mathcal{H}.$

The result is a the MPS state

$$\begin{split} |\psi\rangle &= (A_1^{\dagger} \otimes A_2^{\dagger} \otimes \cdots \otimes A_N^{\dagger}) (|\omega\rangle_{12} \otimes |\omega\rangle_{23} \otimes \cdots \otimes |\omega\rangle_{N1}) \\ &= \sum_{i_1 \dots i_N} \operatorname{Tr} \left[ A^{i_1} \cdots A^{i_N} \right] |i_1 \cdots i_N\rangle \,. \end{split}$$

• Maximally entangled pairs on edges. Projector on vertices.



• Entanglement between two regions is characterized by the number of virtual legs across the cut  $\implies$  Area law.

イロト イヨト イヨト イ

#### Invertible Phases and SPTs

|  | _ |       |
|--|---|-------|
|  |   | _     |
|  |   |       |
|  |   | III O |
|  |   |       |

メロト メロト メヨトメ

- Ancillas:  $H = \sum_{v} h_{v}$  with unique ground state a product state  $\otimes_{v} |0\rangle_{v}$ .
- Phase equivalence: Two systems are in the same phase if they are related by appending ancillas and smoothly deforming without closing the gap.
  - Fragile phases: defined by deformations without ancillas.



• Intuition: observables suffer discontinuities at degeneracies in the spectrum. A gapped phase groups microscopic systems with identical low-energy physics.

イロト イボト イヨト イヨ

• Equivalently, two states are in the same phase if they are related by appending ancillas and evolving by a local quantum circuit of low depth.



Image: A match a ma

#### No phases in one dimension

- All 1D gapped ground states belong to the trivial phase. [Chen, Gu, Wen 10]
- Argument from MPS [Bridgeman, Chubb 17]

$$\mathbb{E}^k = |
ho\rangle \langle \mathbb{1}| + \mathcal{O}(\lambda^k)$$

 $\Longrightarrow$  the MPS looks like

Disentangled by the circuit whose gates satisfy

 In 2D, there are many nontrivial phases. A large class of them (string-net models) have PEPS representations. [Williamson, Bultinck, Marien, Sahinoglu, Haegeman, Verstraete 16]

・ロト ・ 日 ・ ・ ヨ ・ ・

# Stacking

• Two gapped systems may be stacked to produce a third gapped system:

$$A+B=C,$$

with

$$H_C = H_A \otimes \mathbb{1}_B + \mathbb{1}_A \otimes H_B$$
.

- Commutative.
- Ground state degeneracy (GSD) is multiplicative:

$$gsd(A+B) = gsd(A)gsd(B)$$
.

• Stacking is compatible with phase equivalence:

$$A \sim A', B \sim B' \Rightarrow A \otimes B \sim A' \otimes B'$$
,

so phases can be stacked

$$[A] + [B] = [C]$$

イロト イヨト イヨト イ

#### Invertible Phases

• Trivial phase: contains the ancilla. The unit of stacking:

$$[0] + [A] = [A]$$
.

• Invertible phase: has in inverse

$$[A] + [A^{-1}] = [0] .$$

- Invertible phases form an abelian group.
- $\bullet \ {\sf Invertibility} \Longrightarrow {\sf non-degenerate \ ground \ state}$ 
  - In 2+1d, no bulk anyonic excitations.
  - Almost trivial. However, has nontrivial (anomalous) boundary physics and response to probes.
  - Sometimes called "short-range entangled."
- Perhaps surprisingly, nontrivial invertible phases exist!
  - 2+1d bosonic  $E_8$  state (chiral with c = 8)
  - $\bullet\,$  In fermionic systems (where superselction enforced), 1+1d and 2+1d p+ip superconductors.
    - All systems of free fermions are invertible, and there are additional intrinsically interacting phases of fermions.

#### Classification is conjecturally related to cobordism groups.

[Kapustin 14] [Kapustin, Thorngren, AT, Wang 15] [Gaiotto, Johnson-Freyd 19] [Freed, Hopkins 21]

|   |                                   | d=D+1 | no symmetry      | $T^2 = 1$                                                  | $T^2=(-1)^F$                         | unitary $\mathbb{Z}_2$                |
|---|-----------------------------------|-------|------------------|------------------------------------------------------------|--------------------------------------|---------------------------------------|
|   |                                   | 1     | $\mathbb{Z}_2$   | $\mathbb{Z}_2$                                             | 0                                    | $\mathbb{Z}_2^2$                      |
|   |                                   | 2     | $\mathbb{Z}_2$   | $\mathbb{Z}_8$                                             | $\mathbb{Z}_2$                       | $\mathbb{Z}_2^2$                      |
| • | Motivations: topological actions, | 3     | Z                | 0                                                          | $\mathbb{Z}_2$                       | $\mathbb{Z}_8 \times \mathbb{Z}$      |
|   |                                   | 4     | 0                | 0                                                          | $\mathbb{Z}_{16}$                    | 0                                     |
|   | topological field theories,       | 5     | 0                | 0                                                          | 0                                    | 0                                     |
|   | generalized cohomology arguments  | 6     | 0                | $\mathbb{Z}_{16}$                                          | 0                                    | 0                                     |
|   | generalized conomology arguments  | 7     | $\mathbb{Z}^2$   | 0                                                          | 0                                    | $\mathbb{Z}_{16} \times \mathbb{Z}^2$ |
|   |                                   | 8     | 0                | $\mathbb{Z}_2^2$                                           | $\mathbb{Z}_2 	imes \mathbb{Z}_{32}$ | 0                                     |
|   |                                   | 9     | $\mathbb{Z}_2^2$ | $\mathbb{Z}_2^2$                                           | 0                                    | $\mathbb{Z}_2^4$                      |
|   |                                   | 10    | $\mathbb{Z}_2^2$ | $\mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}_{128}$ | $\mathbb{Z}_2^3$                     | $\mathbb{Z}_{2}^{4}$                  |

イロト イヨト イヨト イ

• Open questions surrounding whether certain high dimensional states, e.g. the ground state of the 3-Fermion Walker-Wang model, can be disentangled.

[Haah, Fidkowski, Hastings 18]

# Symmetry-enriched phases

• Global symmetry G acts on-site as

$$g\mapsto U_g\otimes\cdots\otimes U_g$$
 .

• Restrict to symmetric systems and deformations.



• States in a phase are related by constant depth circuits of symmetric gates.



# Symmetry-protected trivial/topological phases

- *G*-enriched phases can also be stacked. *G*-enrichments of invertible topological orders are themselves invertible and form an abelian group  $\mathcal{I}_G^d$ .
- Symmetry-enrichments of the trivial phase are called SPT phases. These are trivial in the absence of symmetry, so symmetry "protects" them.

$$\mathsf{SPT}^d_{\mathsf{G}} \subseteq \mathcal{I}^d_{\mathsf{G}}$$

• Many SPT phases fall into the group cohomology classification

$$H^{d+2}(G,\mathbb{Z})\subseteq \mathrm{SPT}^d_G$$
,

while others are beyond cohomology SPT phases.

イロト イボト イヨト イヨ

• In 1+1d, cohomology captures the symmetry fractionalization on the edge.



• Boundary action  $V_g$  may be projective

$$V_g V_h = \omega(g,h) V_{gh} , \qquad \omega : G imes G o U(1)$$

[ Chen, Gu, Wen 10 ] [ Schuch, Perez-Garcia, Cirac 11 ] [ Else, Nayak 14 ]

・ロト ・回 ト ・ ヨト ・

## Group cohomology

• Associativity  $(V_g V_h)V_k = V_g(V_h V_k)$  implies the 2-cocycle condition

$$rac{\omega(g,hk)\omega(h,k)}{\omega(g,h)\omega(gh,k)} = \delta\omega(g,h,k) = 1 \; .$$

• Freedom  $V_g \mapsto \beta(g) V_g$  shifts by 2-coboundary:

$$\omega(g,h)\mapsto \omega(g,h)rac{eta(g)eta(h)}{eta(gh)}=\omega(g,h)\deltaeta(g,h)\;.$$

- Set of  $\omega$ 's modulo  $\delta\beta$ 's is group cohomology  $[\omega] \in H^2(G, U(1))$ .
- This was not the original argument historically.
  - Using MPS. [Pollmann, Turner, Berg, Oshikawa 10]
  - Classifying topological fixed points. [Chen, Gu, Wen 11]
  - Modern, formal argument. [Ogata 18] [Kapustin, Sopenko, Yang 20]

イロト イポト イヨト イヨト

#### Fractionalization in MPS

- MPS Perspective. Symmetry means  $U_g^N |\psi\rangle = |\psi\rangle$ . Represent each as an MPS.
- Tensors  $A^i$  and  $(U_g)^{ij}A_j$  define the same state  $\Rightarrow$  related by a gauge trans.:

$$U_g^{ij}A_j=e^{i heta_g}V_gA_iV_g^\dagger\;.$$



• The weak invariant  $\theta_g \in SPT_G^0$  is an artifact of translation-invariance.

イロト 不得 トイヨト イヨト

# The SPT invariant in 2D

• G acts on the boundary as  $V_g$ .



• Restrict  $V_g$  to a region M of the boundary. The group law for  $V_g^M$  only needs to hold up to  $\Omega_{g,h}$  on  $\partial M = \{a, b\}...$ 

$$V_g^M V_h^M = \Omega_{g,h} V_{gh}^M$$
.

• Associativity of  $V_g^M$  means that  $\Omega_{g,h}$  satisfies

$$\Omega_{g,h}\Omega_{gh,k} = V_g^M \Omega_{h,k} (V_g^M)^{-1} \Omega_{g,hk}$$

イロト イヨト イヨト イ

# Else-Nayak argument, continued

• Restrict  $\Omega_{g,h}$  from  $\partial M = \{a, b\}$  to  $\{a\}$ . The restriction  $\Omega_{g,h}^a$  now obeys the relation only up to a phase:

$$\Omega^{a}_{g,h}\Omega^{a}_{gh,k} = \omega(g,h,k)V^{M}_{g}\Omega^{a}_{h,k}(V^{M}_{g})^{-1}\Omega^{a}_{g,hk}$$



• Further analysis shows that  $\omega$  is a 3-cocycle [Else, Nayak 14]

$$\frac{\omega(g, h, k)\omega(g, hk, l)\omega(h, k, l)}{\omega(gh, k, l)\omega(g, h, kl)} = \delta\omega(g, h, k, l) = 1$$

and is only defined up to a 3-coboundary  $\delta\beta$ . Conclude  $[\omega] \in H^3(G, U(1))$ .

・ロト ・回 ト ・ ヨト ・

# Cohomology in PEPS

• Acting by  $U_g$  on the physical leg of the PEPS tensor creates a matrix product operator (MPO) loop on the virtual level.



 Virtual symmetry MPO tensors are related by a zipper tensor X<sub>g,h</sub>, which plays the role of Ω<sup>a</sup><sub>g,h</sub>.



[Williamson, Bultinck, Marien, Sahinoglu, Haegeman, Verstraete 14]

| Alex Turzillo | SPT Phases and Beyond | August 31, 2021 29 / 54 |
|---------------|-----------------------|-------------------------|
|---------------|-----------------------|-------------------------|

イロト 不得 トイヨト イヨト

э

#### Decorated domain walls (rough idea)

- Idea: build a *d*-dim  $G \times H$  SPT phase out of a (d-1)-dim H SPT
- start in G-broken phase
- states have configurations of G domain walls
- proliferating the domain walls restores the G symmetry
- before proliferating, consistently decorate the domain walls with an *H* SPT phase



イロト イロト イヨト イヨト

 $H^{d+2}(G \times H, \mathbb{Z}) = H^{d+2}(H) + H^1(G, H^{d+1}(H, \mathbb{Z})) + H^2(G, H^d(H, \mathbb{Z})) + \cdots$ 

• Edge modes of the domain wall decorations contribute to the edge physics of the phase.

[ Chen, Lu, Vishwanath 14 ] [ Wen 15 ] [ Wang, Gu 20 ] [ Wang, Ning, Cheng 21 ] [ many others ]

# Beyond cohomology

- In most general construction, lower dimensional defects (junctions of domain walls) are also decorated, subject to consistency conditions.
- Decorate defects with invertible topological orders.
- non-SPT decorations  $\implies$  beyond-cohomology SPT
  - by decorating domain walls with  $E_8$ , all bosonic SPTs in 3+1d can be constructed
- Fermionic phases:
  - Supercohomology: at most 0D defects are decorated (with complex fermions)
  - Beyond supercohomology: higher dimensional defects are decorated as well
- Response theory *Z*[*M*, *A*] (examples):
  - Cohomology SPT phase:  $\int F^2$
  - Beyond-cohomology SPT phase:  $\int w_2 F$
  - Invertible topological order:  $\int w_2^2$

イロト イロト イヨト イヨト

## Example: fermionic invertible phases in 1D

- Invertible topological orders:
  - 0D, complex fermion with odd (occupied) ground state.
  - 1D, the p+ip superconductor, modeled by the Kitaev Majorana chain.

• In 1D,  $\mathbb{Z}_2^f imes G$ -enriched invertible phases are classified by... [Fidkowski, Kitaev 09]

- $\alpha \in H^2(G, U(1))$ , bosonic SPT layer
- $\beta \in H^1(G, \mathbb{Z}_2)$ , decoration of domain walls by complex fermions
- $\gamma \in H^0(G, \mathbb{Z}_2) = \mathbb{Z}_2$ , Kitaev chain layer
- $\gamma={\rm 0}$  are SPT phases, all belonging to supercohomology
- Different types of anomalies on the boundary:
  - $\alpha$  encodes the projectivity of the boundary action  $V_g$
  - $\beta$  (when  $\gamma = 0$ ) encodes whether  $V_g$  is parity-odd on the boundary
  - $\gamma = 1 \Rightarrow$  dangling Majorana modes, boundary Hilbert space "ill-defined"

イロト イヨト イヨト イヨト

#### Detection of Invertible Phases

| <br>_    |      |  |
|----------|------|--|
| <br>He X | <br> |  |
|          | _    |  |
|          |      |  |

メロト メロト メヨトメ

- Under the Landau paradigm, phases are characterized by patterns of symmetry breaking.
  - Distinguished by local order parameters: ground state expectation values of local operators Δ(x) in a nontrivial representation of the symmetry.
  - $\langle \Delta(x) \rangle \neq 0$  indicates that the symmetry is broken (ordered phase).
- Topological states are locally indistinguishable from product states.
  - Must be detected by nonlocal order parameters.

イロト 不得 トイヨト イヨト

# String operators

- Consider and abelian symmetry group G.
- String operators [den Nijs, Rommelse 89] [Perez-Garcia, Wolf, Sans, Verstraete, Cirac 08] [Pollmann, Turner 12]



• End operators: let  $\alpha$  label an irrep of G,  $\chi_{\alpha}$  its character

$$U_g^\dagger O_lpha U_g = \chi_lpha(g) O_lpha$$
 .

• Expectation values display a "pattern of zeros"

$$\langle s(g, O_{lpha}) 
angle = 0 \quad ext{unless} \quad \chi_{lpha}(h) rac{\omega(g, h)}{\omega(h, g)} = 1 ext{ for all } h \; .$$

• Pattern determines  $\omega/\omega$  and therefore SPTO.

イロト イヨト イヨト イヨ

## Detecting the pattern of zeros of an MPS state

• Represent the ground state as a matrix product state (MPS)



subject to conditions



• Projective representation  $V_g V_h = \omega(g,h) V_{gh}$  encodes the phase invariant  $\omega$ 

イロト イヨト イヨト イヨト

#### Detecting the pattern of zeros of an MPS state

• Evaluate the expectation value by applying the relations on the MPS tensor:



- Each end evaluates to  $Tr[N_g O_{\alpha}]$ .
- $O_{\alpha}$  transforms as  $\alpha$ , while  $N_g$  transforms as  $\omega/\omega$ .
- Vanishes unless these characters are equal.

$$\langle s(g, O_{lpha}) 
angle = 0$$
 unless  $\chi_{lpha}(h) rac{\omega(g, h)}{\omega(h, g)} = 1$  for all  $h$  .

• If they are equal, generically  $Tr[N_g O_\alpha] \neq 0$ .



- Claim: for abelian G, the ratios  $\omega/\omega$  (which we just measured) completely determine the cohomology class  $[\omega]$ .
- Argument:
  - We show that the kernel of  $\omega \mapsto \omega/\omega$  consists only of coboundaries.
  - Suppose  $\omega/\omega = 1$ . Then  $V_g V_h = V_h V_g$ , for all g, h.
  - By Schur's lemma,  $V_g$  is proportional to the identity:  $V_g = \beta(g)\mathbb{1}$ .
  - But then

$$\beta(g)\beta(h)\mathbb{1} = V_g V_h = \omega(g,h)V_{gh} = \beta(gh)\omega(g,h)\mathbb{1} ,$$

so  $\omega = \delta \beta$ .

- If G is non-abelian, other non-local order parameters are needed to fully reconstruct  $\omega$ . [Pollmann, Turner 12]
  - These correspond to higher genus topologies. [Shiozaki, Ryu 17]

< ロ > < 回 > < 回 > < 回 > < 回 >

## Detection of SPTO with twisted sector charges

• Twist the state by inserting an h flux:

$$|\psi_h\rangle = \mathsf{Tr}\big[V_h A^{i_1} \cdots A^{i_N}\big]$$

- Ground state of twisted Hamiltonian  $H_h$
- Act by  $U_g$  on each site:

$$U_{g}^{\otimes L} \cdot |\psi_{h}\rangle = \sum_{k} \operatorname{Tr} \left[ V_{g} V_{h} V_{g}^{-1} A^{i_{1}} \cdots A^{i_{N}} \right]$$
$$= \frac{\omega(g, h)}{\omega(h, g)} |\psi_{h}\rangle$$

[ Shiozaki, Ryu 17 ] [ Kapustin, AT, You 17 ]

•  $\omega/\omega$  is the partition function of the torus  $T_{g,h}^2$ 





イロト イヨト イヨト イ

• Partial inversion operator: [Pollmann, Turner 12]

$$\begin{split} \mathcal{I} &= \mathbb{1} \otimes |i_1 i_2 \cdot i_n \rangle \langle i_n \cdots i_2 i_1 | \otimes \mathbb{1} \\ & \mathsf{sign}(\langle \mathcal{I} \rangle) = \pm 1 \end{split}$$



• Detects the  $\mathbb{Z}_2$  classification of reflection invariant phases.

イロト イロト イヨト イ

# TQFT for topological phases

- Universal behavior ("the phase") of a lattice system = effective QFT
   gapped bosonic phase ⇔ topological QFT
- Spacetime formulation: order parameters are encoded in path integrals
- Responses to gauge and gravitational probes
- Examples:
  - $\mathcal{Z}(T_{g,h}) = \omega/\omega$  captures the string order of 1D SPTs
  - GSD on a space  $\Sigma$  is the path integral  $\mathcal{Z}(\Sigma \times S^1)$  on the "cylinder of  $\Sigma$ "

$$\mathcal{Z}(\Sigma imes S^1) = \mathsf{Tr}[\mathbbm{1}_{\Sigma}] = \mathsf{dim}\,\mathcal{H}_{\Sigma}$$



<ロト < 同ト < 三ト <

## Incorporating fermions

- Boundary conditions (periodic and anti-periodic) for fermions = spin structure
  - gapped bosonic system  $\Rightarrow$  TQFT
  - gapped fermionic system  $\Rightarrow$  Spin-TQFT
- Once again, the Spin-TQFT encodes order parameters...





 $\mathcal{Z}(\Sigma \times S^{1}_{AP}) = \mathsf{Tr}[\mathbb{1}_{\Sigma}] = \dim \mathcal{H}_{\Sigma} \qquad \qquad \mathcal{Z}(\Sigma \times S^{1}_{P}) = \mathsf{Tr}[P_{\Sigma}] = \dim \mathcal{H}^{0}_{\Sigma} - \dim \mathcal{H}^{1}_{\Sigma}$ 

イロト イポト イヨト イヨ

# Incorporating time-reversal / reflection symmetry

- *T*-symmetry means the theory is insensitive to spacetime orientation, can be defined on spacetimes without orientation
  - $\bullet$  gapped bosonic system with  $\mathbb{Z}_2^{\mathsf{T}}$  symmetry  $\Rightarrow$  unoriented TQFT
  - gapped fermionic system with  $\mathbb{Z}_2^T \times \mathbb{Z}_2^F$  symmetry  $\Rightarrow$  Pin<sup>-</sup>-TQFT
- Partial inversion order parameter interpreted as  $\mathcal{Z}(\mathbb{R}P^2)$  [Shiozaki, Ryu 17]





イロト イポト イヨト イヨ

- Fermionic invertible phases (in 2D and 3D) in the interacting periodic table have order parameters realized as  $\mathcal{Z}(M)$  [Shapourian, Shiozaki, Ryu 17] [Shiozaki, Shapourian, Gomi, Ryu 18]
- Unitary invertible TQFTs are completely determined by their closed-spacetime partition functions [Freed, Moore 06] [Yonekura 18], so in principle all order parameters of invertible phases should arise from them.

Alex Turzillo

#### **Free Fermions**

Alex Turzillo

SPT Phases and Beyond

· ▶ ◀ 볼 ▶ 볼 ∽ (~ August 31, 2021 44 / 54

# Free and Interacting Fermion Systems

• Consider lattice systems of Fock space built from fermion operators  $a_i^A, (a_i^A)^{\dagger}$ .

interacting fermion system

т т т

< ロ > < 回 > < 回 > < 回 > < 回 >

free fermion system

$$H = a^{\dagger} \Xi a + a^{\dagger} \Delta a^{\dagger} + h.c.$$
$$H = a^{\dagger} \Xi a + a^{\dagger} \Delta a^{\dagger} + h.c.$$
$$+ ta^{\dagger} a^{\dagger} a a + \cdots$$

Questions:

ł

• What is the classification of free fermion phases with a symmetry *G*? How does it relate to that of invertible interacting fermion phases with *G*?

#### Free and Interacting Phases



#### Free and Interacting Phases



# Free and Interacting Phases



August 31, 2021

48 / 54

Consider the famous example of Fidkowski & Kitaev (2008)...

- Fermions  $a_j^A, (a_j^A)^\dagger$ , indexed by j = 1D lattice site,  $A = 1, \dots, n$  species
- Real fermions

$$\Gamma_{2j-1}^{I} = a_j^A + (a_j^A)^{\dagger}, \qquad \Gamma_{2j}^A = -i(a_j^A - (a_j^A)^{\dagger}), \qquad \{\Gamma_I^A, \Gamma_J^B\} = 2\delta_{IJ}\delta^{AB}$$

• Time-reversal symmetry

$$T^2 = 1, \quad Ta_J T^{-1} = -a_J$$

• Local translation-invariant free (quadratic) fermion Hamiltonian

$$\hat{H} = \frac{i}{2} \sum_{j} \left( u_{AB} \Gamma^{A}_{2j-1} \Gamma^{B}_{2j} + v_{AB} \Gamma^{A}_{2j} \Gamma^{B}_{2j+1} \right)$$

• Interested in values of parameters u, v such that  $\hat{H}$  is gapped and T-symmetric.

・ロト ・日 ・ ・ ヨト ・ ヨ

• Stable deformation classes ("phases")

tensor by an ancilla system with product state ground state

$$\hat{H}_0 = \sum_j \left( a_j^\dagger a_j - rac{1}{2} 
ight) = rac{-i}{2} \sum_j \Gamma_{2j-1} \Gamma_{2j}, \qquad |\psi_{g.s.}
angle = \otimes_j |0
angle_j, \quad a_j |0
angle_j = 0$$

continuously deform the parameters while preserving the gap and symmetry
Nontrivial Majorana chain

$$\hat{\mathcal{H}}_1 = rac{-i}{2} \sum_j \Gamma_{2j} \Gamma_{2j+1} = rac{1}{2} \sum_j \left( -a_j^{\dagger} a_{j+1} - a_{j+1}^{\dagger} a_j + a_j^{\dagger} a_{j+1}^{\dagger} + a_{j+1} a_j \right)$$

• Free classification:  $n \in \mathbb{N}$  (boundaries = difference classes  $n - m \in \mathbb{Z}$ )

$$\hat{H}_n = \sum_A^n \hat{H}_1^A = rac{-i}{2} \sum_{j,A}^{A=n} \Gamma_{2j}^A \Gamma_{2j+1}^A$$

These exhaust all invertible phases.

イロト イロト イヨト イヨ

• Now consider turning on local interactions

$$\hat{H} = \frac{i}{2} \sum_{j} \left( u_{AB} \Gamma^{A}_{2j-1} \Gamma^{\beta}_{2j} + v_{AB} \Gamma^{A}_{2j} \Gamma^{B}_{2j+1} \right) + t \Gamma \Gamma \Gamma \Gamma + \cdots$$

• In this larger parameter space,  $\hat{H}_8$  is destabilized by interactions:  $\hat{H}_8 \sim \hat{H}_0$ .

$$\mathbb{Z} \to \mathbb{Z}/8$$



• If T-asymmetric terms are permitted,  $\hat{H}_2 \sim \hat{H}_0$  at the quadratic level:

$$\mathbb{Z}/2 \to \mathbb{Z}/2$$

Alex Turzillo

< D > < P > < P >

• One dimensional phases of free fermions with  $T^2 = 1$  time-reversal symmetry (i.e. Class BDI) are classified by a single  $\mathbb{Z}$ -valued invariant.

 $\nu \in \mathbb{Z} = \mbox{ number of dangling Majorana modes}$ 

• Dangling modes may be gapped out 8-at-a-time by a quartic interaction. In other words, the  $\nu = 8$  phase is destabilized by interactions. [Fidkowski, Kitaev 09]

 $\{ Free Phases \} \longrightarrow \{ Interacting Phases \}$ 

$$\mathbb{Z} \longrightarrow \mathbb{Z}/8$$

 $\nu \qquad \mapsto \qquad \nu \mod 8$ 

イロト イポト イヨト イヨト

The K-theory [Schnyder, Ryu, Furusaki, Ludwig 08] [Kitaev 09] and cobordism classif.s of invertible phases yield similar results in all dimensions and 10-fold way symmetry classes.

Note: consider only strong invariants; translation-invariance is not protected.

Intrinsically interacting phases. For example, class D systems in 6D.

$$\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

In low dimensions,

- Examples of intrinsically interacting crystalline SPT phases. [Lapa, Teo, Hughes 14]
- Examples of int. int. SPTs of on-site symmetries. [Chen, Kapustin, AT, You 19]

イロト イポト イヨト イヨト

- Entanglement structure of gapped states enables tensor network methods.
- Under stacking, some gapped phases are invertible. These include SPTs.
- Invertible phases are characterized by the anomalies of their boundaries. For a large class of SPTs, the anomaly is captured by group cohomology.
- Invertible phases give rise to beyond cohomology SPT phases via decorated domain wall constructions. These phases have gravitational/mixed anomalies.
- Invertible phases are distinguished by non-local order parameters (such as string operators), which are closely related to topological partition functions.
- The free and interacting invertible phase classifications can be related. Unstable free phases and intrinsically interacting phases exist.

イロト イロト イヨト イヨト