Fracton conservation laws in hole-doped antiferromagnets

John Sous

JS & M. Pretko npj Quantum Mater. 5, 1 (2020) and PRB 102 214437 (2020)

2021 GGI workshop "Topological properties of gauge theories and their applications to highenergy and condensed-matter physics"

GALUMBIA UNIVERSITY IN THE CITY OF NEW YORK

What are fractons

- Quasiparticles with restricted mobility to a subdimensional space of the system
- GS degeneracy is extensive in the system size

<u>This talk</u>: Realization of subdimensional mobility constraints in simple models

Take-home message

- Fracton conservation laws emerge in hole-doped antiferromagnets
- Quasiparticles reminiscent of fractons and dipoles
 - **Fracton** = one hole dressed by magnetic background
 - **Dipole** = two holes on neighboring sites dressed by magnetic background
- Robust fracton behavior (relatively stable to certain small perturbations)
 - Approximate in 2D and 3D AFMs
 - Exact in "mixed-dimensional" 1D limit
 - Lattice geometry enables tunability of conservation laws

<u>Objective</u>: Realization of fracton conservation laws in realistic systems

Physics of fractons

• Rank-2 symmetric tensor gauge theory: $\partial_i \partial_i E_{i,i} = \rho$

Dipole is conserved
$$\int d^d x(\rho \vec{x}) = c$$

- Severe restrictions on charge dynamics
 - Fracton cannot move in isolation

Dipole = bound state of two oppositely charged fractons can move together

<u>Objective</u>: Realization of fracton conservation laws in realistic systems

- Large external \vec{E} fields? Khemani et al., PRB (2020), Guardado-Sanchez et al., PRX (2020)
- Intrinsic' mechanism (e.g. interactions)
 - Many:
 - Bond algebraic liquid Xu and Fisher, PRB (2007)
 - Thin-torus limit of the QHE Moudgalya et al., arXiv (2019)
 - Z_2 gauge theory Borla et al., arXiv (2020)
 - Bose-Hubbard + ring-exchange Giergiel et al., arXiv (2021)
 - This talk: holes doped into AFMs
 - Single hole = fracton
 - Two holes = dipole

<u>Motivation: Realize fracton phenonemonlogy</u>

Manifestations of dipole conservation in

- static thermodynamic quantities
 - Phase separation Prem et al., PRB (2017)
- in dynamics
 - Hilbert space fragmentation

Pai et al., PRX (2019), Sala et al. PRX (2019), Khemani et al. PRB (2019)

Physical setup: Hole-doped AFMs

Study one and two hole states in

- 2D square AFMs
- "Mixed-dimensional"1D AFMs
- Honeycomb collinear AFMs
- \star Consider Ising spin interactions + treat spin-exchange perturbatively

•2D square AFM •Mixed-dimensional 1D AFM •Honeycomb collinear AFM

- Fracton-like constraints on single particles up to 6th-order
- Single-particle dynamics restricted to a single sublattice

Single hole in a 2D square AFM

Trugman, PRB (1988) Burnell, discussions

- `string' \rightarrow bound state
- Relative separation of holes in bound state is conserved
- Two holes (with opposite spins) = <u>dipole</u>

Two nearest-neighbor holes on different sublattices are connected by a

Approximate fracton behavior in 2D square AFM

JS & M. Pretko, npj Quantum Mater. 5, 1 (2020)

2D square AFM Honeycomb collinear AFM

Mixed-dimensional 1D AFM

- Only leading-order contribution leads to frustration of AFM correlations
- \rightarrow no fractons
- We need true AFM order to obtain fracton behavior

Hole moves freely after first hop - manifestation of spin-charge separation

Single hole in mixed-dimensional AFM

Constrain hole motion along a line in an otherwise 2D square AFM

- Apply gentle external fields aligned along one of the system's principal axes

Completely localized single hole = <u>fracton</u>

Mechanism from 2D square AFM carries over:

- Relative separation of holes in bound state is conserved

• Two holes on different sublattices connected by a string $\rightarrow dipole$

Exact fracton behavior in mixeddimensional 1D AFM

JS & M. Pretko, npj Quantum Mater. **5**, 1 (2020)

more details in **JS** & M. Pretko, PRB **102** 214437 (2020)

2D square AFM Mixed-dimensional 1D AFM Honeycomb collinear AFM

Single hole in a honeycomb collinear AFM

Single hole cannot move in the AFM *x*-direction

Single hole can move only by one site in the FM y-direction S. Sanyal, A. Wietek & JS, in preparation

AFM ordering in x-direction FM ordering in y-direction

Original position of spin

Position of spin after hole moves

Two holes in a honeycomb collinear AFM

Pairs can move in the AFM *x*-direction (as before)

Pairs now cannot move in the FM y-direction

Original position of spin

Position of spin after hole moves

S. Sanyal, A. Wietek & JS, in preparation

- Single holes are localized = fractons
- a subdimensional manifold (line)

Dipolar lineons in honeycomb collinear AFMs

S. Sanyal, A. Wietek & **JS**, in preparation

• Pairs of holes move only along the AFM direction = dipoles restricted to

Fast recap

- Square AFM:
 - Single hole = fracton (approximate)
 - Two holes = dipole
- Mixed-dimensional AFM:
 - Single hole = fracton
 - Two holes = dipole
- Honeycomb collinear AFM:
 - Single hole = fracton
 - Two holes = dipolar lineon

Fracton physics in AFM • Stable against J_{\perp} leading order in t/J_z • Readily realizable in materials

- Readily realizable in materials
- May be possible to probe fracton phenomenology in experiment
 - Emulsion at finite densities Prem et al., PRB (2018)
 - Slow thermalization

Khemani et al. PRB (2019)

Pai et al., PRX (2019), Sala et al. PRX (2019),

Summary

- Quasiparticles reminiscent of fractons and dipoles
 - **Fracton** = one hole dressed by magnetic background
 - **Dipole** = two holes on neighboring sites coupled to magnetic background
- Robust fracton behavior
 - Exact in mixed-dimensional 1D limit + Approximate in 2D square lattice + Extra mobility constraints from collinear order on different geometries
 - relatively stable to small J_{\perp}
- Future directions?
 - Symmetry-based theory Discussions wit

Discussions with Burnell and Prem