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INTRODUCTION

• There has been a lot of interest recently in gauge and gravitational anomalies in fluid

dynamics, partially motivated by

• the chiral magnetic effect from high energy physics

• quantum Hall fluids, superfluids from condensed matter physics

Here I will focus on a related but somewhat more subtle issue.

• We use a formalism for fluids based on group theory. This is based on the following

observations: (Bistrovic, Jackiw, Nair, ...(2002); Karabali & Nair (2014))

• Point-particles correspond to unitary irreducible representations (UIRs) of the

Poincaré group (+ internal symmetry groups, if needed).

• UIRs can be obtained by quantizing the co-adjoint orbit actions of a group.

• Coarse-grain a large number of particles (co-adjoint orbit actions) as Lagrange did for

Newtonian mechanics to get fluid dynamics
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INTRODUCTION (cont’d.)

• In this way one can write down an action for fluid dynamics including all possible anomalies

of the Standard Model of particle physics, including chiral magnetic effects, chiral vorticity

effects (Nair, Ray, Roy (2011); Monteiro, Abanov, Nair (2014)).

• For sigma models, it is possible to have a conflict between diffeomorphism invariance of the

target space and of the base space (spacetime).

• This can lead to anomalies in the commutator algebra for the energy-momentum tensor.

• This can also occur for fluids, their dynamics is in terms of maps to a target space.

• The immediate motivation is the anomalous algebra found by Wiegmann and Wiegmann &

Abanov for a fluid of vortices in 2+1 dimensional superfluids and in Hall effect.
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INTRODUCTION (cont’d.)

• The Hamiltonian dynamics for vortices in a fluid was given by Kirchhoff in the late 1800’s.

(Already in the 1895 edition of Lamb’s book on Hydrodynamics.)

• The key result is that the transverse position variables for a single vortex are

Poisson-conjugate to each other.

• Wiegmann (and Wiegmann & Abanov ) considered a (secondary) fluid made of a large

number of vortices in an (underlying) fluid. Utilizing Kirchhoff’s work, they formulated the

quantum hydrodynamics of this vortex fluid in 2+1 dimensions.

• A key result of this work is an anomalous commutator algebra (with noncentral extensions)

for the generators of diffeomorphisms (i.e. the momentum densities) for this vortex fluid.
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A SHORT RESUME OF THIS TALK

• Anomalies in commutator algebra of generators are related via descent equations to

Chern-Simons terms and to anomalies at the action level.

• So diffeomorphism (commutator) anomalies are puzzling since there are no gravitational

anomalies in 2+1 (and 3+1) dimensions.

• We will consider the standard Lagrangian for fluid dynamics and some of the topological

terms which can be added to it. We will see that:

• One such topological term (in 2+1 dimensions) leads exactly to the anomalous fluid

dynamics constructed by Wiegmann.

• There are interesting cases in 3+1 dimensions as well. For example, a central term we

find in 3d algebra can be related to some recent work on the 3d torus.

• Another term in 3+1 dimensions may be related to a fluid of knots in a large number of

vortices.
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A SHORT RESUME OF THIS TALK (cont’d.)

• To provide an analogy for what we are trying to do:

• The Kac-Moody algebra may be obtained by point-splitting analysis of fermionic

currents in 1+1 dimensions. Or it can be read off from the canonical quantization of

the WZW action.

• We seek a similar action-based derivation of the extended algebra.

• The vortex fluid may also be interesting in the context of recent discussions of

vortex-particle duality.

The relevant reference is arXiv:2008.11260. (Earlier papers discussing anomalies in fluid

dynamics can be traced from this.)
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AN EXAMPLE OF A SIGMA MODEL

• A simple useful example is a sigma model in 2+1 dimensions, with target space

CP2 = SU(3)/U(2).

• The target space is a Kähler manifold with the Kähler two-form given by Ω = dA, where

A = i
2√
3

Tr(t8U−1dU), A(Ue−i
√

3 t8θ) = A(U)− dθ

• A is a one-form on SU(3) but Ω = dA is well-defined on CP2.

• Ω ∧ Ω is an element of H4 which is nontrivial.

• Write Ω ∧ Ω = dΓ = d(A ∧ dA). We take the action as

S =
1
2

∫
Gab ∂µϕ

a∂µϕb +

∫
dt Γaϕ̇

a︸ ︷︷ ︸
k Γ

• Again Γ = A ∧ dA is not defined on CP2, but the equations of motion descend to CP2.
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AN EXAMPLE OF A SIGMA MODEL (cont’d.)

• The canonical momentum is Πa = Gab ϕ̇
b − Γa. The energy-momentum tensor is given by

Tµν = Gab∂µϕ
a∂νϕ

b − ηµν
1
2

(G∂ϕ∂ϕ)

• The generator of the transformation xi → xi + ξi is thus given by

T(ξ) =

∫
(ξi∂iϕ

a) Gab ϕ̇
b =

∫
(ξ · ∂ϕa)

(
−i

δ

δϕa + Γa

)
= −i

∫
(ξ · ∂ϕa) Da

• We have a covariant derivative on the target space with Γaδϕ
a as the gauge potential or

connection one-form.

• This gives the commutator algebra

[T(ξ), T(ξ′)] = i T([ξ, ξ′])− i k
∫

VξcVξ′c(Ω2)

Vξ =

∫
(ξ · ∂ϕa)

δ

δϕa
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AN EXAMPLE OF A SIGMA MODEL (cont’d.)

• The result is an anomalous commutation rule.

• However, this anomaly can be avoided. We can define

T (ξ) = T(ξ)−
∫

(ξ · ∂ϕa) Γa = −i
∫

(ξ · ∂ϕa)
δ

δϕa

These obey the non-anomalous commutation rules

[T (ξ), T (ξ′)] = i T ([ξ, ξ′])

• This eliminates the extension term, but is problematic since Γ is not defined on CP2.

• Thus we have a conflict: Either we have anomalous commutation rules for the

energy-momentum tensor on the base space, or we have an anomaly on the target space.

• We will see that a similar structure is possible for fluid dynamics.
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VORTICES IN SUPERflUID HELIUM/ HALL EFFECT

• Rotating superfluid Helium develops a number of

individual vortices which account for the total

angular momentum, instead of the whole fluid

rotating as a single unit.

• This state is known as a state of chiral flow. We want to analyze this by approximating a

large number of vortices by another vortex fluid.

• The problem is effectively 2-dimensional, so writing z = x + iy, the positions of the vortices

obey the equations
˙̄zα = −i Ω z̄α + i

∑
β

′ γβ
zα(t)− zβ(t)

Ω = overall angular velocity.
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VORTICES IN SUPERflUID HELIUM/ HALL EFFECT (cont’d.)

• The Hamiltonian and commutation rules are (Kirchhoff)

H =
∑
α

[
|Ω||zα|2 − γ

∑
β

′ log |zα − zβ |2
]
, [z̄α, zβ ] = δαβ

• One can write down the ground state wave function for N vortices and calculate the

commutators of the operator for the momentum density.

• For N →∞, this leads to the anomalous algebra (Wiegmann)

[P(x), P†(x′)] = − 1
2 (P×∇)δ(x − x′) +

γ

2

(
2πρ2δ(x − x′) +

1
4
∇ ·
[
ρ∇(δ(x − x′)

])
︸ ︷︷ ︸

anomalous term

(This is to be understood as acting on |0〉.)

• Also the density of vortices ρ is related to vorticity ω and the angular velocity Ω by

ρ = ρ̄− ω

4πγ
, Ω = πγρ̄ (Constitutive relation)
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ACTION FOR flUID DYNAMICS

• Our aim is to construct an action which leads to this result.

• The standard way to construct an action for fluid dynamics is to use the Clebsch

parametrization for the velocities in terms of three arbitrary functions θ, α, β,

vi = ∂iθ + α∂iβ

• A suitable action for fluid dynamics (in terms of the Eulerian variables) is then

S =

∫
ρ θ̇+ρα β̇−

[
1
2
ρ v2 + V(ρ)

]
=

∫ [
ρ (θ̇ + α β̇) + Ji(∂iθ + α∂iβ)

]
−
[
V − J2

2ρ

]
• It is simpler to write this in terms of SU(1, 1),

−iTr
(
σ3 g−1 dg

)
= dθ + α dβ, α =

ūu
1− ūu

g =
1√

1− ūu

(
1 u

ū 1

)
e−iσ3θ/2, β = (−i/2) ln

(u
ū

)
(We use SU(2) if vorticity is quantized.)
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ACTION FOR flUID DYNAMICS (cont’d.)

• The action, with relativistic generalization, is

S = −i
∫

Jµ Tr
(
σ3g−1∂µg

)
− F(n), n =

√
JµJνgµν

• J0 = ρ and Ji can be eliminated via its equation of motion.

• F(n) carries information about pressure and energy density; it depends on the fluid under

consideration. In fact

Tµν = (nF′) uµuν − ηµν(nF′ − F), Jν = nuν

• SU(1, 1) with its compact direction θ may seem puzzling, since there is no such

compactness for the usual Clebsch parametrization.

• From the action, we find

[ρ(f), g(x)] = −i g(x)
σ3

2
f(x), ρ(f) =

∫
f(x)ρ(x)
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ACTION FOR flUID DYNAMICS (cont’d.)

• This means that in the quantum theory

U† gU = g eiπσ3 = −g

with U = exp
[
−2πi

∫
ρ
]
.

• All observables have even powers of g, so, effectively, U = 1. This means
∫
ρ = N,

consistent with underlying particulate nature of the fluid. The compact direction is a good

feature.

• With Tµν and commutation rules from S, it is easy to check that

[T(ξ), T(ξ′)] = i T([ξ, ξ′]), Ti0 = ρ (∂iθ + α∂iβ)

• The vorticity of the fluid in the Clebsch parametrization is given by

ω = dv = i Tr
[
σ3(g−1dg)2]
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TOPOLOGICAL TERMS

• Among many topological terms, the following two are most useful for us:

1. I2 =
∫

Tr(g−1dg)3 ∧ C, C = 1-form in 3+1, 0-form in 2+1

2. I3 =
∫

Tr(σ3g−1dg) ∧ Ω, Ω = 3-form in 3+1, 2-form in 2+1

• We will first analyze the I3-term. The action is now

S = −i
∫
ρTr(σ3g−1∂0g) + ik

∫
Tr(σ3g−1dg) ∧ Ω−

∫
dt H

= −i
∫

(ρ− ρ̄) Tr(σ3g−1∂0g)−
∫

dt H

where ρ̄ = k
3!
εijkΩijk, (3 dim), k

2!
εijΩij (2 dim).

• The canonical one-form is

A = −i
∫

(ρ− ρ̄) Tr(σ3g−1δg)

• The topological term does not contribute to the (i0)- component of the energy-momentum

tensor, Tµν = 2 δS
δgµν .
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TOPOLOGICAL TERMS (cont’d.)

• One can easily verify that

[T(ξ), T(ξ′)] = i T([ξ, ξ′])− i
∫ (

ρρ̄

ρ− ρ̄

)
ξi ξ′j(∂ivj − ∂jvi)︸ ︷︷ ︸

anomaly?

• Define T (ξ) = T(ξ)−
∫
ρ̄ ξivi. Then

[T (ξ), T (ξ′)] = i T ([ξ, ξ′])

• ρ̄ ξivi is well-defined, so this is not a true anomaly. This is consistent with having no

gravitational anomalies in 2+1 dimensions.

• But we can consider a reduction to the incompressible case via the constraint

ρ− ρ̄− ρ0 ≈ 0, ρ0 = constant
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TOPOLOGICAL TERMS (cont’d.)

• Since ρ is conjugate to θ, ∂iθ in vi is not in the reduced phase space.

• The attempted redefinition involves a “gauge" direction, and so we cannot redefine T(ξ). The

extension is then a true anomaly.

• The situation is analogous to the case of the sigma model.

• We now make two more changes:

• We impose the constitutive relation ρ = ρ̄− ω
4πγ .

• We add a (cohomologically trivial) term to T(ξ) to get

T̃(ξ) = T(ξ)− γ

2

∫
(∇× ξ) ρ
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TOPOLOGICAL TERMS (cont’d.)

• For the combinations P = − 1
2 (T̃01 − iT̃02), P† = − 1

2 (T̃01 + iT̃02), we get

[P(ξ), P†(ξ′)] = i
∫ (

ξ̄′∂̄ξ P− ξ∂ξ̄′ P†
)
− 2πγ

∫
ξ̄′ξ ρρ̄− γ

∫
∂̄ξ ∂ξ̄′ ρ

This reproduces the result by Wiegmann exactly.

• So we can conclude: The action

S = −i
∫
ρTr(σ3g−1∂0g) + ik

∫
Tr(σ3g−1dg) ∧ Ω−

∫
dt H

+

∫
A0dt

[
i Tr[σ3(g−1dg)2] + 4πγ(ρ− ρ̄)

]
,

upon canonical quantization, reproduces the dynamics of the vortex fluid in superfluid

Helium/ Hall effect.
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VORTEX flUID IN 3+1 DIMENSIONS

• In 3+1 dimensions, we can write

ωij = ∂ivj − ∂jvi = εijk Nk ω

Nk is a unit vector giving the orientation of the vorticity at a point.

• We also use the same constitutive relation ρ = ρ̄− ω
4πγ as before.

• The algebra takes the form

[T(ξ), T(ξ′)] = i T([ξ, ξ′]) + i
∫
εijk ξ

iξ′jck, ck = 4πγρρ̄Nk

• For a dense collection of vortices, |N| will be

approximately constant, although the orientation

can change from point to point; for approximately

constant orientation in some region, there is a 2d

vortex fluid on a surface transverse to Nk.

~N
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VORTEX flUID IN 3+1 DIMENSIONS (cont’d.)

• If the orientation of Nk is constant in some volume, the extension term reduces to

Extension = ck
∫
εijkξ

iξ′j

• In the incompressible case (which is what we have), ξ, ξ′ are divergence-free.

• Take space to be a 3-torus and parametrize the vector fields as

ξi = εiabαamb ei~m·~x, ξ′j = εjrsβrns ei~n·~x

• The extension term is now

Extension = −(~α× ~β) · ~n ~c · ~n

This seems to be the same as what was found in some recent work (Rajeev,

arXiv:2005.12125).

• The reduction to approximately constant Nk was to show this connection. It should be

interesting to explore the general case with noncentral extension.
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THE TERM I2 IN 3+1 DIMENSIONS

• The action is

S = −i
∫
ρTr(σ3g−1∂0g)− k

3

∫
Tr(g−1dg)3 ∧ C −

∫
dt H

• In this case we find

[T(ξ), T(ξ′)] = i T([ξ, ξ′]) + 8πi k
∫ (

ρ σ

2 ρ+ k~B ·~v

)
(~ξ × ~ξ′) · ~B, B = dC

• Here σ is the density for helicity defined by

C =
1

8π

∫
v · ω =

1
12π

∫
Tr(g−1dg)3 ≡

∫
σ

• The helicity is basically an Abelian Chern-Simons term and corresponds to knot invariants or

linking numbers. So consider a collection of knots in vortices.
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THE TERM I2 IN 3+1 DIMENSIONS (cont’d.)

• For a tight knot in a vortex line, we can define an approximate position which can be moved

around by diffeomorphisms.

=⇒

Diffeomorphism

• Diffeomorphisms in a dense collection of knots can define a fluid dynamics of knots in

vortices.

• We end with a conjecture:

The action given above with the I2 topological term is

the (approximate) Eulerian description of this knot-fluid.
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Thank You
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