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INTRODUCTION

QHE: framework for interesting ideas, such as

• topological field theories (Chern-Simons effective actions)

• bulk-edge dynamics

• non-commutative geometries, fuzzy spaces

Many of the important features of the original 2d QHE extend to higher

dimensions and the results are quite interesting

QHE on S4 (HU AND ZHANG, 2001)

Generalization to arbitrary even (spatial) dimensions

QHE on CPk (KARABALI AND NAIR, 2002...)

• higher dimensionality

• possibility of having both abelian and nonabelian magnetic fields
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EFFECTIVE ACTIONS FOR ν = 1 HIGHER DIMENSIONAL QHE

In the presence of a confining potential there are QH droplets with edge degrees

of freedom whose dynamics is described by a WZW-like higher dimensional

chiral action.(KARABALI AND NAIR, 2004)

In the presence of gauge fluctuations we found a Chern-Simons-like bulk

effective action and a gauged chiral edge action so that the full theory is

anomaly free.(KARABALI, NAIR, 2006)

These reduce to known results in 2 dimensions.

Common origin =⇒ Universal matrix action
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MATRIX FORMULATION OF LLL DYNAMICS

QHE on a compact space M =⇒ LLL defines an N-dim Hilbert space

In the presence of confining potential =⇒ incompressible QH droplet

Density matrix for ground state droplet : ρ̂0

K filled states

Under time evolution: ρ̂0 → ρ̂ = Û ρ̂0 Û†

Û = N ×N unitary matrix ; ”collective” variable describing excitations within

the LLL

August 21

4 / 28



MATRIX FORMULATION OF LLL DYNAMICS (continued)

The action for Û is

S0 =

∫
dt Tr

[
iρ̂0Û†∂tÛ − ρ̂0Û†V̂Û

]
which leads to the evolution equation for density matrix

i
dρ̂
dt

= [V̂, ρ̂]

S0 has no explicit dependence on properties of space on which QHE is defined,

abelian or nonabelian nature of fermions, etc.
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NONCOMMUTATIVE FIELD THEORY

S0 = action of a noncommutative field theory

S0 =

∫
dt Tr

[
iρ̂0Û†∂tÛ − ρ̂0Û†V̂Û

]
= N

∫
dµ dt

[
i(ρ0 ∗U† ∗ ∂tU) − (ρ0 ∗U† ∗ V ∗U)

]

ρ̂0, Û, V̂︸ ︷︷ ︸ =⇒ ρ0(~x),U(~x, t),V(~x)︸ ︷︷ ︸
(N ×N) matrices symbols

O(~x, t) = 1
N

∑
m,l Ψm(~x)Ôml(t)Ψ∗l (~x)

Matrix multiplication =⇒ ∗ product of symbols

Tr =⇒ N
∫

dµ

S0 = exact bosonic action describing the dynamics of LLL fermions

SAKITA: 2 dim. context
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EFFECTIVE FIELD THEORIES FOR ν = 1 HIGHER DIM. QHE

Large N limit =⇒WZW-like chiral edge action

In the presence of gauge fluctuations one starts with a gauged matrix action. The

corresponding NC field theory, after taking the large N limit splits into :

Chern-Simons-like bulk action + gauged WZW-like edge action

anomaly cancels because gauge invariance is automatically built in.

Using the Dolbeault index density we found a general formula for effective bulk

topological actions in higher dimensions that account for the response to both

metric and gauge background fluctuations. (KARABALI AND NAIR, 2016...)

Calculation of entanglement entropy for higher dimensional QHE and how this

compares with the 2D results.(KARABALI, 2020)
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ENTANGLEMENT ENTROPY FOR ν = 1

We divide the system into two regions, D and its complementary DC, and define

the reduced density matrix

ρD = TrDC |GS〉 〈GS|

where |GS〉 =
∏

m c†m |0〉.

The entanglement entropy is defined as

S = −TrρD log ρD

We choose D to be the spherically symmetric region of CPk satisfying z · z̄ ≤ R2.

For CP1 ∼ S2, this region is a polar cap around the north pole with R = tan θ/2

via stereographic projection.
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The LLL fermion operator can be expanded as

ψ =
∑

m

cm Ψm(z)

Define “local” operators by

am =
1√
λm

∫
D

dµ Ψ∗mψ, bm =
1√

1− λm

∫
DC

dµ Ψ∗mψ

λm =

∫
D

Ψ∗mΨm

{am, a†m}, {bm, b†m} form two independent fermionic algebras and

cm =
√
λm am +

√
1− λm bm c†m =

√
λm a†m +

√
1− λm b†m
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The reduced matrix ρD is written as a 2N × 2N matrix of a block diagonal form

ρD = ⊗mdiag(λm, 1− λm)

The entanglement entropy is then given by

S = −TrρD log ρD = −
N∑

m=1

[λm log λm + (1− λm) log(1− λm)]

λ’s are eigenvalues of the two-point correlator (PESCHEL, 2003)

C(r, r′) =

N∑
m=1

Ψ∗m(z) Ψm(z′) , z, z′ ∈ D

∫
D

C(r, r′)Ψ∗l (z′)dµ(z′) = λl Ψ∗l (z)

where

λl =

∫
D
|Ψl|2dµ
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2D RESULTS

For 2d gapped systems

S = c L + γ +O(1/L)

L: length of boundary

c: non-universal constant

γ: universal, topological entanglement entropy ; γ = 0 for IQHE

For integer QHE on S2 = CP1 RODRIGUEZ AND SIERRA, 2009

For ν = 1: c = 0.204
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QHE ON CPk

CPk : 2k dim space, locally parametrized by zi, i = 1, · · · , k

CPk =
SU(k + 1)

U(k)

U(k) ∼ U(1)× SU(k) =⇒We can have both U(1) and SU(k) background

magnetic fields

Landau wavefunctions are functions on SU(k + 1) with particular

transformation properties under U(k).

There are distinct Landau levels, separated by energy gap.

Each Landau level forms an irreducible SU(k + 1) representation, whose

degeneracy is easy to calculate.
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QHE ON CPk(continued)

Wavefunctions are written in terms of Wigner D functions

Ψ ∼ D(J)
L,R(g) = 〈 L | ĝ | R 〉 quantum numbers of states in J rep.

ĝ ∈ SU(k + 1)

Left/right transformations: L̂A ĝ = TA ĝ, R̂A ĝ = ĝ TA

L̂A →magnetic translations ( A ∈ SU(k + 1) )

R̂a, R̂k2+2k → gauge transformations ( U(k) )

R̂+i, R̂−i → covariant derivatives (i = 1, · · · , k) [R̂+i, R̂−j] ∈ U(k)
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QHE ON CPk(continued)

How Ψ transforms under gauge transformations depends on choice of

background fields

Choose “uniform” U(1) or U(k) background magnetic fields.

U(1) : F̄ = dā = n Ω, Ω = Kahler 2− form

SU(k) : F̄a ∼ R̄a ∼ f aαβeαeβ

Wavefunction for each Landau level is an SU(k + 1) representation J

ΨJ
m;α ∼ 〈m | ĝ | R︸︷︷︸ 〉

fixed U(1)R charge ∼ n and some finite SU(k)R repr. J̃

m = 1, · · ·dimJ =⇒ counts degeneracy of Landau levels

α = internal gauge index = 1, · · · ,N′ = dimJ̃
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QHE ON CPk(continued)

Hamiltonian

H =
1

2Mr2

k∑
i=1

R̂+iR̂−i + constant

Lowest Landau level: R̂−iΨ = 0 Holomorphicity condition

( | R 〉 is lowest weight state)
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ENTANGLEMENT ENTROPY FOR QHE ON CPk AND ABELIAN MAGNETIC FIELD

A. QHE on CPk with U(1) magnetic field

The LLL wavefunctions are essentially the coherent states of CPk.

Ψi1i2···ik =
√

N
[

n!

i1!i2!...ik!(n− s)!

] 1
2 zi1

1 zi2
2 · · · z

ik
k

(1 + z̄ · z)
n
2
,

s = i1 + i2 + · · ·+ ik , 0 ≤ ii ≤ n , 0 ≤ s ≤ n

They form an SU(k + 1) representation of dimension

N = dimJ =
(n + k)!

n! k!

The volume element for CPk is

dµ =
k!

πk
d2z1 · · · d2zk

(1 + z̄ · z)k+1 ,

∫
dµ = 1
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ENTANGLEMENT ENTROPY FOR QHE ON CPk AND ABELIAN MAGNETIC FIELD

The eigenvalues λ are given by

λi1i2···ik ≡ λs =
(n + k)!

(n− s)!(s + k− 1)!

∫ t0

0
dt ts+k−1 (1− t)n−s

where t0 = R2/(1 + R2).

The entanglement entropy is

S =
n∑

s=0

degeneracy︷ ︸︸ ︷
(s + k− 1)!

s!(k− 1)!
Hs

Hs = [−λs log λs − (1− λs) log(1− λs)]

For large n, this is amenable to a semiclassical analytical calculation for all k� n.
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SEMICLASSICAL TREATMENT FOR LARGE n
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Transition (λ = 1
2 ) at s∗ ∼ n t0

k = 1, k = 5

λs significantly different from 0 or 1 only for s such that the corresponding

wavefunctions are localized around the boundary of the entangling surface.

450 500 550 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Graph of Hs vs s

—- exact

- - - - Gaussian approximation

August 21

18 / 28



SEMICLASSICAL TREATMENT FOR LARGE n

R=1

t_0=0.5

200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

Graph of λs vs s

Transition (λ = 1
2 ) at s∗ ∼ n t0

k = 1, k = 5

λs significantly different from 0 or 1 only for s such that the corresponding

wavefunctions are localized around the boundary of the entangling surface.

450 500 550 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Graph of Hs vs s

—- exact

- - - - Gaussian approximation

August 21

18 / 28



SEMICLASSICAL TREATMENT FOR LARGE n

R=1

t_0=0.5

200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

Graph of λs vs s

Transition (λ = 1
2 ) at s∗ ∼ n t0

k = 1, k = 5

λs significantly different from 0 or 1 only for s such that the corresponding

wavefunctions are localized around the boundary of the entangling surface.

450 500 550 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Graph of Hs vs s

—- exact

- - - - Gaussian approximation

August 21

18 / 28



UNIVERSAL FORM FOR ENTANGLEMENT ENTROPY FOR ν = 1

From semiclassical analysis

S ∼ nk− 1
2
π (log 2)3/2

2 k!
2k

R2k−1

(1 + R2)k︸ ︷︷ ︸
geometric area

∼ ck Area

In agreement with k = 1 result by RODRIGUEZ AND SIERRA

Formula for entropy becomes universal if expressed in terms of a ”phase space”

area instead of a geometric area.

Vphase space = nk

k!

∫
Ωk = nk

k!

∫
dµ

Aphase space =
nk− 1

2

k!
Ageom =

nk− 1
2

k!
2k

R2k−1

(1 + R2)k

S ∼ π

2
(log 2)3/2 Aphase space
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ENTANGLEMENT ENTROPY FOR QHE ON CPk AND NONABELIAN MAGNETIC FIELD

B. QHE on CPk with U(1)× SU(k) magnetic field

The LLL single particle states form an SU(k + 1) irreducible representation of the type

(p, l) corresponding to the tensor

T γ1...γl
b1...bp

≡ T l
p

p : U(1) indices , l : SU(k) indices and p = n− j and l = j k , j = 1, · · ·

Consider simplest case : CP2 and l = 2⇒ SU(2) triplet (dimJ̃ = 3)

The degeneracy of the LLL is

N = 3
n(n + 3)

2

There are three distinct types of wavefunctions for the SU(2) triplet and three

corresponding λ.
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CP2 AND NONABELIAN MAGNETIC FIELD

λ
(1)
s,k=2 = λ

(Ab)
s+1,k=3

λ
(2)
s,k=2 =

n + 3
n + 1

λ
(Ab)
s+1,k=2 −

2
n + 1

λ
(Ab)
s+1,k=3

λ
(3)
s,k=2 =

n + 3
n + 1

λ
(Ab)
s+1,k=1 −

2(n + 3)

(n + 1)(n + 2)
λ
(Ab)
s+1,k=2 +

2
(n + 1)(n + 2)

λ
(Ab)
s+1,k=3

S =

p∑
s=0

[
(s + 1)H(1)

s,k=2 + (s + 2)H(2)
s,k=2 + (s + 3)H(3)

s,k=2

]
large n−−−→

p∑
s=0

[
(s + 1)H(Ab)

s+1,k=3 + (s + 2)H(Ab)
s+1,k=2 + (s + 3)H(Ab)

s+1,k=1

]
→ 3 n3/2 π (log 2)3/2 R3

(1 + R2)2 = 3 S(Ab)
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s+1,k=2 +

2
(n + 1)(n + 2)

λ
(Ab)
s+1,k=3

S =

p∑
s=0

[
(s + 1)H(1)

s,k=2 + (s + 2)H(2)
s,k=2 + (s + 3)H(3)

s,k=2

]
large n−−−→

p∑
s=0

[
(s + 1)H(Ab)

s+1,k=3 + (s + 2)H(Ab)
s+1,k=2 + (s + 3)H(Ab)

s+1,k=1

]
→ 3 n3/2 π (log 2)3/2 R3

(1 + R2)2 = 3 S(Ab)
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CP2 AND NONABELIAN MAGNETIC FIELD

In general

N
large n−−−→ dimJ̃

nk

k!

The corresponding phase-space volume in this case is Vphase space = dimJ̃ nk

k!

∫
dµ

S ∼ π

2
(log 2)3/2 Aphase space

for any Abelian or non-Abelian background at large n.

Is this true for higher Landau levels?
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1ST EXCITED LANDAU LEVEL

QHE on S2 = CP1 ; 1st excited level

Degeneracy of q-th excited level = n + 2q + 1

λ
(q=1)
s =

(n + 3)!(n + 2)

s!(n + 2− s)!

∫ t0

0
dt ts−1(1− t)n−s+1 [t− s

n + 2
]2

450 500 550 600

0.2

0.4

0.6

0.8

1.0

Step-like pattern around the transition point.

1st excited level wavefunctions have a node.
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1ST EXCITED LANDAU LEVEL

The step-like plateau of λ causes the broadening of the entropy Hs around

λ = 1/2. Hs cannot be approximated with a simple Gaussian.

450 500 550 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Previous semiclassical analysis does not work.

S(q=1) = 1.65 S(q=0)
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ν = 2 CASE

What happens when both q = 0 and q = 1 Landau levels are full, namely ν = 2?

The two-point correlator now is given by

C(r, r′) =

n∑
s=0

Ψ∗0
s (r)Ψ0

s (r′) +

n+2∑
s=0

Ψ∗1
s (r)Ψ1

s (r′)

There are 2n + 4 eigenvalues: λ1
0 , λ̃

±
s , λ1

n+2, s = 0, · · · , n and

λ̃±s =
λ0

s + λ1
s+1 ±

√
(λ0

s − λ1
s+1)

2 + 4(δλ)2
s,s+1

2

where

δλs,s+1 =

∫
D

Ψ
∗(q=0)
s (r) Ψ

(q=1)
s+1 (r) dµ
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ν = 2 CASE
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COMPARISON BETWEEN q = 0 , q = 1 , ν = 2

450 500 550 600

0.2

0.4

0.6

- - - Hν=1
s

... Hq=1
s

—- Hν=2
s

S =
∑

sHs

S(ν=2) > S(q=1) > S(ν=1)

S(q=1) = 1.65 S(ν=1)

S(ν=2) = 1.76 S(ν=1)
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SUMMARY, COMMENTS

Entanglement entropy for higher dim QHE on CPk

For ν = 1 we find a universal formula valid for any k, Abelian or non-Abelian

background (for large n), if area is expressed in terms of phase-space area.

For higher Landau levels, simple semiclassical analysis is not valid.

In the presence of confining potential there are chiral droplets. When the

boundary of the entangling surface intersects the edge boundary there is

additional log contribution

Sedge ∼
c
6

log(l)

ESTIENNE AND STEPHAN; ROZON, BOLTEAU AND WITZAK-KREMPA, 2019

This was extended to 4d by ESTIENNE, OBLAK AND STEPHAN, 2021

What are the higher dimensional (Abelian and non-Abelian) analogs?

How does entanglement entropy change in presence of gauge and gravitational

fluctuations? NAIR, 2020
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