ENTANGLEMENT ENTROPY FOR INTEGER QHE IN TWO AND HIGHER DIMENSIONS

DIMITRA KARABALI

LEHMAN COLLEGE, CUNY

Topological properties of gauge theories and their applications to high energy and condensed matter physics

GGI, FLORENCE

SEPTEMBER 8, 2021

INTRODUCTION

- QHE: framework for interesting ideas, such as
 - topological field theories (Chern-Simons effective actions)
 - bulk-edge dynamics
 - non-commutative geometries, fuzzy spaces

INTRODUCTION

- QHE: framework for interesting ideas, such as
 - topological field theories (Chern-Simons effective actions)
 - bulk-edge dynamics
 - non-commutative geometries, fuzzy spaces
- Many of the important features of the original 2d QHE extend to higher dimensions and the results are quite interesting
- QHE on S^4 (Hu and Zhang, 2001)
- Generalization to arbitrary even (spatial) dimensions QHE on \mathbb{CP}^k (Karabali and Nair, 2002...)

INTRODUCTION

- QHE: framework for interesting ideas, such as
 - topological field theories (Chern-Simons effective actions)
 - bulk-edge dynamics
 - non-commutative geometries, fuzzy spaces
- Many of the important features of the original 2d QHE extend to higher dimensions and the results are quite interesting
- QHE on S^4 (Hu and Zhang, 2001)
- Generalization to arbitrary even (spatial) dimensions QHE on \mathbb{CP}^k (Karabali and Nair, 2002...)
 - higher dimensionality
 - possibility of having both abelian and nonabelian magnetic fields

• In the presence of a confining potential there are QH droplets with edge degrees of freedom whose dynamics is described by a WZW-like higher dimensional chiral action.(KARABALI AND NAIR, 2004)

- In the presence of a confining potential there are QH droplets with edge degrees of freedom whose dynamics is described by a WZW-like higher dimensional chiral action.(KARABALI AND NAIR, 2004)
- In the presence of gauge fluctuations we found a Chern-Simons-like bulk effective action and a gauged chiral edge action so that the full theory is anomaly free.(KARABALI, NAIR, 2006)

- In the presence of a confining potential there are QH droplets with edge degrees of freedom whose dynamics is described by a WZW-like higher dimensional chiral action.(KARABALI AND NAIR, 2004)
- In the presence of gauge fluctuations we found a Chern-Simons-like bulk effective action and a gauged chiral edge action so that the full theory is anomaly free.(KARABALI, NAIR, 2006)
- These reduce to known results in 2 dimensions.

- In the presence of a confining potential there are QH droplets with edge degrees of freedom whose dynamics is described by a WZW-like higher dimensional chiral action.(KARABALI AND NAIR, 2004)
- In the presence of gauge fluctuations we found a Chern-Simons-like bulk effective action and a gauged chiral edge action so that the full theory is anomaly free.(KARABALI, NAIR, 2006)
- These reduce to known results in 2 dimensions.
- Common origin ⇒ Universal matrix action

MATRIX FORMULATION OF LLL DYNAMICS

- QHE on a compact space M ⇒ LLL defines an N-dim Hilbert space
 In the presence of confining potential ⇒ incompressible QH droplet
- Density matrix for ground state droplet : $\hat{\rho}_0$

$$\hat{\rho}_0 = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 0 \\ & & & & 0 \end{bmatrix} \bigwedge^K K$$

K filled states

• Under time evolution: $\hat{\rho}_0 \rightarrow \hat{\rho} = \hat{U} \hat{\rho}_0 \hat{U}^{\dagger}$ $\hat{U} = N \times N$ unitary matrix ; "collective" variable describing excitations within the LLL The action for \hat{U} is

$$S_0 = \int dt \operatorname{Tr} \left[i \hat{
ho}_0 \hat{U}^{\dagger} \partial_t \hat{U} \ - \ \hat{
ho}_0 \hat{U}^{\dagger} \hat{V} \hat{U}
ight]$$

which leads to the evolution equation for density matrix

$$i\frac{d\hat{\rho}}{dt} = [\hat{V}, \hat{\rho}]$$

 S_0 has no explicit dependence on properties of space on which QHE is defined, abelian or nonabelian nature of fermions, etc.

 S_0 = action of a noncommutative field theory

$$S_{0} = \int dt \operatorname{Tr} \left[i\hat{\rho}_{0}\hat{U}^{\dagger}\partial_{t}\hat{U} - \hat{\rho}_{0}\hat{U}^{\dagger}\hat{V}\hat{U} \right]$$

= $N \int d\mu \, dt \, \left[i(\rho_{0} * U^{\dagger} * \partial_{t}U) - (\rho_{0} * U^{\dagger} * V * U) \right]$

$$\underbrace{\hat{\rho}_0, \hat{U}, \hat{V}}_{\hat{\rho}_0, \hat{U}, \hat{V}} \implies \underbrace{\rho_0(\vec{x}), U(\vec{x}, t), V(\vec{x})}_{\hat{V}}$$

 $(N \times N)$ matrices

symbols

•
$$O(\vec{x},t) = \frac{1}{N} \sum_{m,l} \Psi_m(\vec{x}) \hat{O}_{ml}(t) \Psi_l^*(\vec{x})$$

- Matrix multiplication \implies * product of symbols
- Tr $\implies N \int d\mu$

 S_0 = exact bosonic action describing the dynamics of LLL fermions

SAKITA: 2 dim. context

• Large *N* limit \Longrightarrow WZW-like chiral edge action

- Large *N* limit \Longrightarrow WZW-like chiral edge action
- In the presence of gauge fluctuations one starts with a gauged matrix action. The corresponding NC field theory, after taking the large N limit splits into :
 Chern-Simons-like bulk action + gauged WZW-like edge action

- Large *N* limit \Longrightarrow WZW-like chiral edge action
- In the presence of gauge fluctuations one starts with a gauged matrix action. The corresponding NC field theory, after taking the large N limit splits into :
 Chern-Simons-like bulk action + gauged WZW-like edge action anomaly cancels because gauge invariance is automatically built in.

- Large *N* limit \Longrightarrow WZW-like chiral edge action
- In the presence of gauge fluctuations one starts with a gauged matrix action. The corresponding NC field theory, after taking the large N limit splits into :
 Chern-Simons-like bulk action + gauged WZW-like edge action anomaly cancels because gauge invariance is automatically built in.
- Using the Dolbeault index density we found a general formula for effective bulk topological actions in higher dimensions that account for the response to both metric and gauge background fluctuations. (KARABALI AND NAIR, 2016...)

- Large *N* limit \Longrightarrow WZW-like chiral edge action
- In the presence of gauge fluctuations one starts with a gauged matrix action. The corresponding NC field theory, after taking the large N limit splits into :
 Chern-Simons-like bulk action + gauged WZW-like edge action anomaly cancels because gauge invariance is automatically built in.
- Using the Dolbeault index density we found a general formula for effective bulk topological actions in higher dimensions that account for the response to both metric and gauge background fluctuations. (KARABALI AND NAIR, 2016...)
- Calculation of entanglement entropy for higher dimensional QHE and how this compares with the 2D results.(KARABALI, 2020)

Entanglement Entropy for $\nu = 1$

• We divide the system into two regions, *D* and its complementary *D*^{*C*}, and define the reduced density matrix

$$\rho_D = \operatorname{Tr}_{D^C} |GS\rangle \langle GS|$$

where $|GS\rangle = \prod_{m} c_{m}^{\dagger} |0\rangle$.

• The entanglement entropy is defined as

$$S = -\text{Tr}\rho_D \log \rho_D$$

We choose *D* to be the spherically symmetric region of CP^k satisfying *z* · *z* ≤ *R*².
 For CP¹ ~ S², this region is a polar cap around the north pole with *R* = tan θ/2 via stereographic projection.

• The LLL fermion operator can be expanded as

$$\psi = \sum_m c_m \, \Psi_m(z)$$

Define "local" operators by

$$a_m = rac{1}{\sqrt{\lambda_m}} \int_D d\mu \ \Psi_m^* \psi, \qquad \qquad b_m = rac{1}{\sqrt{1 - \lambda_m}} \int_{D^{\mathsf{C}}} d\mu \ \Psi_m^* \psi$$
 $\lambda_m = \int_D \ \Psi_m^* \Psi_m$

• $\{a_m, a_m^{\dagger}\}, \{b_m, b_m^{\dagger}\}$ form two independent fermionic algebras and

$$c_m = \sqrt{\lambda_m} \; a_m + \sqrt{1-\lambda_m} \; b_m \qquad c_m^\dagger = \sqrt{\lambda_m} \; a_m^\dagger + \sqrt{1-\lambda_m} \; b_m^\dagger$$

• The reduced matrix ρ_D is written as a $2^N \times 2^N$ matrix of a block diagonal form

$$\rho_D = \bigotimes_m \operatorname{diag}(\lambda_m, 1 - \lambda_m)$$

• The entanglement entropy is then given by

$$S = -\operatorname{Tr}
ho_D \log
ho_D = -\sum_{m=1}^N \left[\lambda_m \log \lambda_m + (1 - \lambda_m) \log(1 - \lambda_m)
ight]$$

• The reduced matrix ρ_D is written as a $2^N \times 2^N$ matrix of a block diagonal form

$$\rho_D = \bigotimes_m \operatorname{diag}(\lambda_m, 1 - \lambda_m)$$

• The entanglement entropy is then given by

$$S = -\text{Tr}
ho_D \log
ho_D = -\sum_{m=1}^N [\lambda_m \log \lambda_m + (1 - \lambda_m) \log(1 - \lambda_m)]$$

• λ 's are eigenvalues of the two-point correlator (PESCHEL, 2003)

$$C(r,r') = \sum_{m=1}^{N} \Psi_m^*(z) \Psi_m(z') , \quad z,z' \in D$$
$$\int_D C(r,r') \Psi_l^*(z') d\mu(z') = \lambda_l \Psi_l^*(z)$$

where

$$\lambda_l = \int_D |\Psi_l|^2 d\mu$$

• For 2d gapped systems

$$S = c L + \gamma + \mathcal{O}(1/L)$$

L: length of boundary

c: non-universal constant

 $\gamma:$ universal, topological entanglement entropy ; $\gamma=0$ for IQHE

• For integer QHE on $S^2 = \mathbb{CP}^1$ Rodriguez and Sierra, 2009 For $\nu = 1$: c = 0.204 \mathbb{CP}^k : 2k dim space, locally parametrized by z_i , $i = 1, \cdots, k$

$$\mathbb{CP}^k = \frac{SU(k+1)}{U(k)}$$

- *U*(*k*) ~ *U*(1) × *SU*(*k*) ⇒ We can have both *U*(1) and *SU*(*k*) background magnetic fields
- Landau wavefunctions are functions on SU(k + 1) with particular transformation properties under U(k).
- There are distinct Landau levels, separated by energy gap.
- Each Landau level forms an irreducible *SU*(*k* + 1) representation, whose degeneracy is easy to calculate.

Wavefunctions are written in terms of Wigner \mathcal{D} functions

$$\Psi \sim \mathcal{D}_{L,R}^{(J)}(g) = \langle L | \hat{g} | R \rangle$$
quantum numbers of states in J rep.

 $\hat{g} \in SU(k+1)$

Wavefunctions are written in terms of Wigner \mathcal{D} functions

$$\Psi \sim \mathcal{D}_{L,R}^{(J)}(g) = \langle L \mid \hat{g} \mid R \rangle$$
 quantum numbers of states in J rep.

 $\hat{g} \in SU(k+1)$

Left/right transformations: $\hat{L}_A \hat{g} = T_A \hat{g}$, $\hat{R}_A \hat{g} = \hat{g} T_A$

- $\hat{L}_A \rightarrow$ magnetic translations ($A \in SU(k+1)$)
- $\hat{R}_a, \ \hat{R}_{k^2+2k} \rightarrow$ gauge transformations (U(k))
- $\hat{R}_{+i}, \hat{R}_{-i} \rightarrow \text{covariant derivatives}$ $(i = 1, \dots, k)$ $[\hat{R}_{+i}, \hat{R}_{-j}] \in U(k)$

QHE ON \mathbb{CP}^k (continued)

- How Ψ transforms under gauge transformations depends on choice of background fields
- Choose "uniform" *U*(1) or *U*(*k*) background magnetic fields.

$$U(1): \quad \bar{F} = d\bar{a} = n \ \Omega, \quad \Omega = \text{Kahler } 2 - \text{form}$$
$$SU(k): \quad \bar{F}^a \sim \bar{R}^a \sim f^{a\alpha\beta} e^{\alpha} e^{\beta}$$

- How Ψ transforms under gauge transformations depends on choice of background fields
- Choose "uniform" *U*(1) or *U*(*k*) background magnetic fields.

$$U(1): \quad \bar{F} = d\bar{a} = n \ \Omega, \quad \Omega = \text{Kahler } 2 - \text{form}$$
$$SU(k): \quad \bar{F}^a \sim \bar{R}^a \sim f^{a\alpha\beta} e^{\alpha} e^{\beta}$$

Wavefunction for each Landau level is an SU(k + 1) representation J

$$\Psi_{m;\alpha}^{J} \sim \langle m \mid \hat{g} \mid \underbrace{R}_{k} \rangle$$

fixed $U(1)_R$ charge $\sim n$ and some finite $SU(k)_R$ repr. \tilde{J}

- $m = 1, \cdots \dim J \Longrightarrow$ counts degeneracy of Landau levels
- $\alpha = \text{ internal gauge index} = 1, \cdots, N' = \dim \tilde{J}$

Hamiltonian

$$H = \frac{1}{2Mr^2} \sum_{i=1}^{k} \hat{R}_{+i} \hat{R}_{-i} + \text{constant}$$

Lowest Landau level: $\hat{R}_{-i}\Psi = 0$ Holomorphicity condition

($| R \rangle$ is lowest weight state)

A. QHE on \mathbb{CP}^k with U(1) magnetic field

A. QHE on \mathbb{CP}^k with U(1) magnetic field

The LLL wavefunctions are essentially the coherent states of \mathbb{CP}^k .

$$\begin{split} \Psi_{i_1 i_2 \cdots i_k} &= \sqrt{N} \left[\frac{n!}{i_1! i_2! \dots i_k! (n-s)!} \right]^{\frac{1}{2}} \frac{z_1^{i_1} z_2^{i_2} \cdots z_k^{i_k}}{(1+\bar{z} \cdot z)^{\frac{n}{2}}} ,\\ s &= i_1 + i_2 + \dots + i_k , \quad 0 \le i_i \le n , \quad 0 \le s \le n \end{split}$$

They form an SU(k + 1) representation of dimension

$$N = \dim J = \frac{(n+k)!}{n! \, k!}$$

The volume element for \mathbb{CP}^k is

$$d\mu = rac{k!}{\pi^k} rac{d^2 z_1 \cdots d^2 z_k}{(1 + \bar{z} \cdot z)^{k+1}} \ , \ \int d\mu = 1$$

• The eigenvalues λ are given by

$$\lambda_{i_1 i_2 \cdots i_k} \equiv \lambda_s = \frac{(n+k)!}{(n-s)!(s+k-1)!} \int_0^{t_0} dt \ t^{s+k-1} \ (1-t)^{n-s}$$

where $t_0 = R^2/(1 + R^2)$.

• The entanglement entropy is

$$S = \sum_{s=0}^{n} \underbrace{\frac{degeneracy}{(s+k-1)!}}_{s!(k-1)!} H_s$$
$$H_s = [-\lambda_s \log \lambda_s - (1-\lambda_s) \log(1-\lambda_s)]$$

• For large *n*, this is amenable to a semiclassical analytical calculation for all $k \ll n$.

SEMICLASSICAL TREATMENT FOR LARGE n

Graph of λ_s vs *s* Transition ($\lambda = \frac{1}{2}$) at $s^* \sim n t_0$ k = 1, k = 5

18 / 28

wavefunctions are localized around the boundary of the entangling surface.

wavefunctions are localized around the boundary of the entangling surface.

From semiclassical analysis

In agreement with k = 1 result by RODRIGUEZ AND SIERRA

From semiclassical analysis

$$S \sim n^{k-\frac{1}{2}} \frac{\pi (\log 2)^{3/2}}{2 k!} \underbrace{2k \frac{R^{2k-1}}{(1+R^2)^k}}_{geometric area} \sim c_k \operatorname{Area}$$

In agreement with k = 1 result by Rodriguez and Sierra

 Formula for entropy becomes universal if expressed in terms of a "phase space" area instead of a geometric area.

•
$$V_{\text{phase space}} = \frac{n^k}{k!} \int \Omega^k = \frac{n^k}{k!} \int d\mu$$

$$A_{\text{phase space}} = rac{n^{k-rac{1}{2}}}{k!} A_{ ext{geom}} = rac{n^{k-rac{1}{2}}}{k!} 2k rac{R^{2k-1}}{(1+R^2)^k} S \sim rac{\pi}{2} (\log 2)^{3/2} A_{ ext{phase space}}$$

The LLL single particle states form an SU(k + 1) irreducible representation of the type (p, l) corresponding to the tensor

$$\mathcal{T}_{b_1...b_p}^{\gamma_1...\gamma_l} \equiv \mathcal{T}_p^l$$

p: U(1) indices , l: SU(k) indices and p = n - j and l = j k, $j = 1, \cdots$

The LLL single particle states form an SU(k + 1) irreducible representation of the type (p, l) corresponding to the tensor

$$\mathcal{T}_{b_1...b_p}^{\gamma_1...\gamma_l} \equiv \mathcal{T}_p^l$$

p: U(1) indices , l: SU(k) indices and p = n - j and l = j k, $j = 1, \cdots$ Consider simplest case : \mathbb{CP}^2 and $l = 2 \Rightarrow SU(2)$ triplet ($dim\tilde{J} = 3$)

The LLL single particle states form an SU(k + 1) irreducible representation of the type (p, l) corresponding to the tensor

$$\mathcal{T}_{b_1...b_p}^{\gamma_1...\gamma_l} \equiv \mathcal{T}_p^l$$

p: U(1) indices , l: SU(k) indices and p = n - j and l = jk, $j = 1, \cdots$ Consider simplest case : \mathbb{CP}^2 and $l = 2 \Rightarrow SU(2)$ triplet ($dim\tilde{J} = 3$) The degeneracy of the LLL is

$$N = 3 \frac{n(n+3)}{2}$$

There are three distinct types of wavefunctions for the SU(2) triplet and three corresponding λ .

\mathbb{CP}^2 and nonabelian magnetic field

$$\begin{split} \lambda_{s,k=2}^{(1)} &= \lambda_{s+1,k=3}^{(Ab)} \\ \lambda_{s,k=2}^{(2)} &= \frac{n+3}{n+1} \lambda_{s+1,k=2}^{(Ab)} - \frac{2}{n+1} \lambda_{s+1,k=3}^{(Ab)} \\ \lambda_{s,k=2}^{(3)} &= \frac{n+3}{n+1} \lambda_{s+1,k=1}^{(Ab)} - \frac{2(n+3)}{(n+1)(n+2)} \lambda_{s+1,k=2}^{(Ab)} + \frac{2}{(n+1)(n+2)} \lambda_{s+1,k=3}^{(Ab)} \end{split}$$

\mathbb{CP}^2 and nonabelian magnetic field

$$\begin{split} \lambda_{s,k=2}^{(1)} &= \lambda_{s+1,k=3}^{(Ab)} \\ \lambda_{s,k=2}^{(2)} &= \frac{n+3}{n+1} \lambda_{s+1,k=2}^{(Ab)} - \frac{2}{n+1} \lambda_{s+1,k=3}^{(Ab)} \\ \lambda_{s,k=2}^{(3)} &= \frac{n+3}{n+1} \lambda_{s+1,k=1}^{(Ab)} - \frac{2(n+3)}{(n+1)(n+2)} \lambda_{s+1,k=2}^{(Ab)} + \frac{2}{(n+1)(n+2)} \lambda_{s+1,k=3}^{(Ab)} \end{split}$$

$$S = \sum_{s=0}^{p} \left[(s+1)H_{s,k=2}^{(1)} + (s+2)H_{s,k=2}^{(2)} + (s+3)H_{s,k=2}^{(3)} \right]$$

$$\xrightarrow{large n} \sum_{s=0}^{p} \left[(s+1)H_{s+1,k=3}^{(Ab)} + (s+2)H_{s+1,k=2}^{(Ab)} + (s+3)H_{s+1,k=1}^{(Ab)} \right]$$

$$\rightarrow 3 n^{3/2} \pi (\log 2)^{3/2} \frac{R^3}{(1+R^2)^2} = 3 S^{(Ab)}$$

In general

$$N \xrightarrow{large n} \dim \tilde{J} \frac{n^k}{k!}$$

• The corresponding phase-space volume in this case is $V_{\text{phase space}} = \dim \tilde{J} \frac{n^k}{k!} \int d\mu$

$$S \sim rac{\pi}{2} (\log 2)^{3/2} A_{ ext{phase space}}$$

for any Abelian or non-Abelian background at large *n*.

In general

$$N \xrightarrow{large n} \dim \tilde{J} \frac{n^k}{k!}$$

• The corresponding phase-space volume in this case is $V_{\text{phase space}} = \dim \tilde{J} \frac{n^k}{k!} \int d\mu$

$$S \sim rac{\pi}{2} (\log 2)^{3/2} \, A_{
m phase \ space}$$

for any Abelian or non-Abelian background at large *n*.

• Is this true for higher Landau levels?

QHE on $S^2 = \mathbb{CP}^1$; 1st excited level

23 / 28

QHE on $S^2 = \mathbb{CP}^1$; 1st excited level

• Degeneracy of q-th excited level = n + 2q + 1

QHE on $S^2 = \mathbb{CP}^1$; 1st excited level

• Degeneracy of q-th excited level = n + 2q + 1

$$\lambda_s^{(q=1)} = \frac{(n+3)!(n+2)}{s!(n+2-s)!} \int_0^{t_0} dt \, t^{s-1} (1-t)^{n-s+1} \, \left[t - \frac{s}{n+2}\right]^2$$

QHE on $S^2 = \mathbb{CP}^1$; 1st excited level

• Degeneracy of q-th excited level = n + 2q + 1

$$\lambda_s^{(q=1)} = \frac{(n+3)!(n+2)}{s!(n+2-s)!} \int_0^{t_0} dt \, t^{s-1} (1-t)^{n-s+1} \, [t-\frac{s}{n+2}]^2$$

• Step-like pattern around the transition point.

QHE on $S^2 = \mathbb{CP}^1$; 1st excited level

• Degeneracy of q-th excited level = n + 2q + 1

$$\lambda_s^{(q=1)} = \frac{(n+3)!(n+2)}{s!(n+2-s)!} \int_0^{t_0} dt \, t^{s-1} (1-t)^{n-s+1} \, [t-\frac{s}{n+2}]^2$$

• Step-like pattern around the transition point.

1st excited level wavefunctions have a node.

• The step-like plateau of λ causes the broadening of the entropy H_s around $\lambda = 1/2$. H_s cannot be approximated with a simple Gaussian.

• Previous semiclassical analysis does not work.

$$S^{(q=1)} = 1.65 S^{(q=0)}$$

What happens when both q = 0 and q = 1 Landau levels are full, namely $\nu = 2$?

What happens when both q = 0 and q = 1 Landau levels are full, namely $\nu = 2$?

The two-point correlator now is given by

$$C(r,r') = \sum_{s=0}^{n} \Psi_{s}^{*0}(r) \Psi_{s}^{0}(r') + \sum_{s=0}^{n+2} \Psi_{s}^{*1}(r) \Psi_{s}^{1}(r')$$

There are 2n + 4 eigenvalues: λ_0^1 , $\tilde{\lambda}_s^{\pm}$, λ_{n+2}^1 , $s = 0, \cdots, n$ and

$$\tilde{\lambda}_{s}^{\pm} = \frac{\lambda_{s}^{0} + \lambda_{s+1}^{1} \pm \sqrt{(\lambda_{s}^{0} - \lambda_{s+1}^{1})^{2} + 4(\delta\lambda)_{s,s+1}^{2}}}{2}$$

where

$$\delta \lambda_{s,s+1} = \int_D \Psi_s^{*(q=0)}(r) \ \Psi_{s+1}^{(q=1)}(r) \ d\mu$$

$$\frac{+}{s}, \lambda_s^-$$

$$\lambda_s^+, \lambda_s^-$$

--- for $\nu = 1$

 $\tilde{H_s}^+ + \tilde{H_s}^-$

Comparison between q=0 , q=1 , $\nu=2$

 $S = \sum sH_s$

$$S^{(\nu=2)} > S^{(q=1)} > S^{(\nu=1)}$$

$$S^{(q=1)} = 1.65 S^{(\nu=1)}$$

 $S^{(\nu=2)} = 1.76 S^{(\nu=1)}$

• Entanglement entropy for higher dim QHE on \mathbb{CP}^k

- Entanglement entropy for higher dim QHE on \mathbb{CP}^k
- For ν = 1 we find a universal formula valid for any k, Abelian or non-Abelian background (for large n), if area is expressed in terms of phase-space area.

- Entanglement entropy for higher dim QHE on \mathbb{CP}^k
- For ν = 1 we find a universal formula valid for any k, Abelian or non-Abelian background (for large n), if area is expressed in terms of phase-space area.
- For higher Landau levels, simple semiclassical analysis is not valid.

- Entanglement entropy for higher dim QHE on \mathbb{CP}^k
- For ν = 1 we find a universal formula valid for any k, Abelian or non-Abelian background (for large n), if area is expressed in terms of phase-space area.
- For higher Landau levels, simple semiclassical analysis is not valid.
- In the presence of confining potential there are chiral droplets. When the boundary of the entangling surface intersects the edge boundary there is additional log contribution

$$S_{edge} \sim rac{c}{6} \log(l)$$

ESTIENNE AND STEPHAN; ROZON, BOLTEAU AND WITZAK-KREMPA, 2019 This was extended to 4d by ESTIENNE, OBLAK AND STEPHAN, 2021 What are the higher dimensional (Abelian and non-Abelian) analogs?

- Entanglement entropy for higher dim QHE on \mathbb{CP}^k
- For ν = 1 we find a universal formula valid for any k, Abelian or non-Abelian background (for large n), if area is expressed in terms of phase-space area.
- For higher Landau levels, simple semiclassical analysis is not valid.
- In the presence of confining potential there are chiral droplets. When the boundary of the entangling surface intersects the edge boundary there is additional log contribution

$$S_{edge} \sim rac{c}{6} \log(l)$$

ESTIENNE AND STEPHAN; ROZON, BOLTEAU AND WITZAK-KREMPA, 2019 This was extended to 4d by ESTIENNE, OBLAK AND STEPHAN, 2021 What are the higher dimensional (Abelian and non-Abelian) analogs?

• How does entanglement entropy change in presence of gauge and gravitational fluctuations? NAIR, 2020