
Cenke Xu
许岑珂

University of California, Santa Barbara

Experimental Platforms for phases with Fractal 
and other Subsystem Symmetries



Collaborators:

Experimental Platforms for phases with Fractal and other Subsystem Symmetries

Nayan E. Myerson-Jain, Stephen Yan, David Weld



Collaborators:

Experimental Platforms for phases with Fractal and other Subsystem Symmetries

Nayan E. Myerson-Jain, Stephen Yan, David Weld

Content:

1, quick review of fractal and subsystem symmetry, and SSB of 
fractal symmetry (defined as “fractal order”);

2, quick review of Rydberg atoms;

4, other fractal subsystem symmetries and realizations

Reference: arXiv:2108.07765

3, realizing fractal symmetry and fractal order with Rydberg atoms;
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Fractals in nature:
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Fractals in nature:
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“……We describe the fractal nature of the lung and explain why this organ is 
particularly suited to fractal analysis. Studies that have used fractal analyses to 
quantify changes in nuclear and chromatin FD in primary and metastatic 
tumour cells, and clinical imaging studies that correlated changes in the FD of 
tumours on CT and/or PET images with tumour growth and treatment responses 
are reviewed. Moreover, the potential use of these techniques in the diagnosis 
and therapeutic management of lung cancer are discussed.”

Fractals in nature:



Subsystem symmetry:
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Early examples: 1, 2+1d Bose metal, Paramekanti, Balents, Fisher, 
2002 (PBF)

1d symmetry, boson number n along each 
line (both directions) are conserved, as eiϕ is 
the creation operator of a boson. The system 
behaves a lot like 1d boson, i.e. no 
superfluid phase, but a power-law algebraic 
phase of dipoles (more discussion in part 2). 



Subsystem symmetry:
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Early examples: 2, 2+1d Ising plaquette model, 

Also has 1d subsystem symmetry which flips the spins on each 
line, along both directions. Prod σ x along each line is a conserved 
quantity. Also behaves like 1d quantum Ising model: 
1, self-duality at zero temperature; 
2, quantum phase transition at h = K (between an ordered phase at 
K > h with spontaneous subsystem symmetry breaking, and a 
disordered phase at h > K);
3, no classical phase transition at finite temperature.



Subsystem symmetry + “Topological” order: Fracton topological 
order. Type-I: conserved charges on an ordinary subset of the lattice 
such as a line, or plane (Chamon’s model, X-cube model,  etc.); type-
II, conserved charges on a fractal subset of the lattice (Haah’s code)
Review of fracton: arXiv:1803.11196, Nandkishore, Hermele; 
arXiv:2001.01722, Pretko, You, Chen
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This talk will focus on subsystem symmetries, especially type-II. The 
“early examples” mentioned in previous slides both had “type-I” 
subsystem symmetry. A simple model with the type-II subsystem 
symmetry is the Newman-Moore (1999)-Yoshida (2013) model, or the 
Sierspinki-triangle model.



1, obvious ground state: all spins = +1. Large number of degenerate 
excited states: flipping spins on a Sierpinski-triangle; all down-
facing triangles have either “3-up” spins, or “2-down, 1-up” spins.
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2, no phase transition at finite temperature; the 
three-spin correlation function is short ranged 
by still have fractal structure (Yoshida 2013).
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3, fractal symmetry: for a lattice (periodic bc) with size L2, with L = 
2k -1, the model has an explicit symmetry: the Hamiltonian is 
invariant under flipping spins on a Sierpinski triangle.
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4, quantum version of fractal symmetry: for a lattice (periodic bc) 
with size L2, with L = 2k -1, Prod σ x on the Sierpinski triangle is a 
conserved quantity.
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5, self-duality (arXiv:2105.05851, Zhou, Zhang, Pollmann, You); 
like the 1+1d quantum Ising model, and the 2+1d quantum 
plaquette model with subsystem symmetry: there is (likely) a 
quantum phase transition at h = K. 
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6, the quantum phase transition at h=K separates two phases: 
K > h is a spontaneous symmetry breaking phase of the fractal 
symmetry, or “fractal ordered” phase, with large ground state 
degeneracy with system size L = 2k -1, and nonzero <σ z > in the 
ground state;
K < h is a disordered phase with a nondegenerate ground state and 
zero <σ z > .



7, nature of the quantum phase transition at h = K ?
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Theoretically, no well established field theory for spontaneous 
breaking of fractal symmetry yet, no RG analysis…

Numerically, earlier result suggests a first order transition (Vasiloiu, 
et.al. arXiv:1911.11739); more recent work suggests a continuous 
phase transition (Zhou, et.al. arXiv:2105.05851).



Rydberg atoms:
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A highly excited state of an atom, one electron is excited to a state 
with large principal quantum number.
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A highly excited state of an atom, one electron is excited to a state 
with large principal quantum number.

Two Rydberg atoms interact strongly through dipole moment 
fluctuation, the Van der Waals potential, which scales very strongly 
with the principal quantum number:

Dipole-dipole interaction decays as 1/ r3. The Rydberg state itself 
may not have dipole moment; the 1/ r6 interaction is a second order 
perturbation. 



Rydberg atoms:
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Consider an atom-photon coupled system (cavity QED), and atom is 
coupled with photons whose energy is close to the resonant 
frequency between ground state and Rydberg state. Define a number 
operators:

For a multi-atom system that is arranged in an array, or a lattice:

Review article on Rydberg: Browaeys, Lahaye, Nature Physics, 16, 
132–142 (2020)
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Realizing strongly correlated phases with Rydberg atoms
Example: Z2 spin liquid/topological order, Samajdar, et.al. 2020, 
Verresen et.al. 2020

The atoms are arranged in a Kagome lattice; by tuning parameters in 
the Hamiltonian, neighboring Rydberg atoms are strongly 
suppressed; the allowed configurations of Rydberg atoms are 
equivalent to a quantum dimer model on a triangular lattice, which 
can host a Z2 topological ordered state.
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Can we realize the quantum Sierpinski triangle model?

The difficulty is the 3-body interaction; as condensed matter 
systems are generally dominated by 2-body interactions. Let’s 
consider a honeycomb lattice, which is a decorated triangular lattice:



Experimental Platforms for phases with Fractal and other Subsystem Symmetries

We trap “target” atoms on sublattice B of the honeycomb lattice 
(vertices of the triangular lattice); and “auxiliary” atoms on 
sublattice A (centers of down-triangles). Target atoms and auxiliary 
atoms have principal quantum numbers nB and nA respectively.
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Ground states of H0: Ground states of HST:
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All the states of the spin 
model is mapped to the 
low energy Hilbert space 
of the atomic system with 
the same degeneracy; 
All the extra states of the 
atomic system have higher 
energy.

x4

x4 x4
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The physics described can be realized by choosing (for example) nB
= 113 and nA = 76 for potassium atoms. Because the VdW
interaction between Rydberg atoms decays fast with distance, 
perturbations (further neighbor interactions, etc.) are small. For 
example:
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Experiment visualization of fractal shape: slow manipulation on the 
corners of the Sierpinski triangle can spontaneously generate a 
Sierpinski-triangle shape of excitations. 

Fast manipulation of parameters can probe quantum dynamics of the 
system. Fractal subsystem symmetry can lead to exotic dynamics.
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Turn on the Rabi oscillation term can potentially drive a quantum 
phase transition like the one in the quantum Sierpinski triangle model.

Experimentally, one can take “snapshots” of the configurations of the 
atoms; by averaging over many snapshots < σ σ σ… > we obtain the 
correlation function.

Comment: due to the lack to theoretical formalism for this quantum 
phase transition, we do not know whether the perturbations and the 
extra higher energy states mentioned before is going to be relevant or 
irrelevant at the quantum phase transition. Having an experimental 
realization may help clarify this question, and help building future 
theoretical paradigm for QPT involving fractal symmetries. 
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Models with other fractal structure

The tetrahedron model also has a fractal symmetry, and its excitations 
have a fractal geometry like the Sierpinski triangle model. The four 
body interaction can still be simulated through two body VdW
interaction between Rydberg atoms after decorating the center of each 
tetrahedron with an auxiliary atom. 



Summary for part 1:
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1, quantum Sierpinski triangle model, especially its quantum phase 
transition involves a fractal subsystem symmetry and its 
spontaneous breaking, which calls for new theoretical paradigm;

2, realization of the quantum Sierpinski triangle model which 
involves 3-body interaction, through Rydberg atoms with only 2-
body interaction.

Acknowledgements: Xu group: Simons Foundation; NSF-DMR.
Weld group: MURI; UC Multicampus Research Programs and 
Initiatives; UCSB NSF Quantum Foundry (Q-AMASE-i initiative).

3, the platform of Rydberg atom can directly probe the fractal 
structure, the correlation functions, and quantum dynamics.
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Content:

1, quick review of “p-band” cold atom;

2, strongly interacting p-orbital atoms in 2d, and mappings to Bose 
metal and quantum plaquette model at low energy;

Reference: cond-mat/0611620

3, strongly interacting p-orbital atoms in 3d, low energy multi flavor 
ring exchange model, stability of gapless phase in 2d and 3d.



Quick review of “p-band” atom
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Neutral atoms can be trapped in an optical lattice. Each site of the 
lattice is approximately a quadratic potential. The ground state is 
always an s-orbital; the 1st excited state is a p-orbital. Notice that here 
we are discussing the wave function of atoms, not electrons.



Quick review of “p-band” atom
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Increases with lattice potential

px orbital wave function extends further along the x direction, hence 
has stronger kinetic energy / hopping along the x direction; same for 
the py orbital. Evaluation shows that the hopping anisotropy increases 
with the depth of the lattice site potential:



Quick review of “p-band” atom
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The atoms on the p-orbital, though on an exited states, may still have 
a long enough lifetime to reach equilibrium on p-orbitals before 
decaying into s-orbital and other orbitals. 
Isacsson, Girvin, PRA. 72, 053604 (2005), Wu, et.al. PRL. 97, 
190406 (2006), and many others theory works.
Experimental evidence of superfluid phase on p-orbitals: Wirth, et.al. 
Nature Physics, 7, 147–153 (2011)

We stat with the limit that, px orbital hops only along the x-
direction, py orbital hops only along the y-direction, etc. Other 
hopping will be treated as perturbations later:

+…



Experimental Platforms for phases with Fractal and other Subsystem Symmetries

+…

We consider a square optical lattice with atoms on the px and py
orbitals on each site. We assume that the interaction U is the dominant 
energy scale, namely the total particle number, n(x) + n(y) does not 
fluctuate. Then at low energy the only allowed dynamical process is

which reduces to the Bose metal model (PBF, 
2002) with 1d subsystem symmetry.
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The Bose metal phase with 1d subsystem symmetry can be 
constructed by the p-orbital cold atom. 

1, ignoring other perturbations, the Bose metal model has a gapless 
phase with the Lagrangian

The spectrum has subsystem symmetry protected line nodes; the 
system behaves similarly to a 1d boson: bosons do not condense, but 
the spectrum remains gapless.
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2, property of the gapless phase: the boson correlation is not long 
ranged, nor does it decay exponentially (PBF 2002).

3, just like 1+1d boson, this algebraic phase is self-dual with dual 
Lagrangian (PBF).
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4, in real system, one single px atom cannot mix with a py atom, due 
to their opposite parity; but two px atoms can interact, and transit into 
two py atoms. This process is described by the following term:

When u’ is strong enough, it pins θ to a Z2 value, and the system is 
further reduced to the quantum plaquette model:
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5, stability of the Bose metal algebraic phase against subsystem 
symmetry breaking perturbations? 

Example of perturbation: transition from two px atoms to py atoms.

Compare with 1d compact boson (quantum rotor model)

Perturbation that break U(1) to ZN: 
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5, stability of the Bose metal algebraic phase against subsystem 
symmetry breaking perturbations? 

Perturbation that breaks U(1) to ZN: 

Dual theory:

Perturbation in the dual theory:

Compare with 1d compact boson (quantum rotor model):
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5, stability of the Bose metal algebraic phase against subsystem 
symmetry breaking perturbations? 

Perturbation that breaks U(1) to ZN: 

Dual theory:

Perturbation in the dual theory:

Scaling dimension of v and v’  in 
the algebraic phase is universal:
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5, stability of the Bose metal algebraic phase against subsystem 
symmetry breaking perturbations? 

Scaling dimension of v and v’  in 
the algebraic phase is universal:

The analysis for the 2+1d Bose metal algebraic phase is far less 
universal. It is fairly certain that terms like cos(2θ) is irrelevant, but 
what could be relevant is dipole like terms (PBF, 2002)

For example, let’s take μ = y, then v and v’ term have power-law 
correlation un the (x, τ) plane, but the power of the correlation 
depends on the details on the lattice scale.
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5, stability of the Bose metal algebraic phase against subsystem 
symmetry breaking perturbations? 

For example, let’s take μ = y, then u and u’ term have power-law 
correlation un the (x, τ) plane, but the power of the correlation 
depends on the details on the lattice scale (PBF, 2002)

For example, the “scaling dimension” depends on the UV 
deformation on Heff, and depends on the lattice definition of

This “peculiarity” is called UV/IR mixing in recent years, see for 
example arXiv:2108.00020, Gorantla et.al.
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3d optical lattice, with degenerate px, py, pz atomic states on each site, 
with the constraint n(x) + n(y) + n(z) = constant induced by interaction, 
the effective low energy theory is a 3d multi flavor ring exchange 
model:

There is an analogue of the gapless phase as the 2d Bose model 
phase, but it has two gapless modes, with 1d line nodes, and also 2d 
plane nodes, due to the subsystem symmetry:
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The dual theory of the 3d multi-flavor ring exchange model, is a U(1) 
gauge theory (or loop model) with subsystem symmetry:

This dual Lagrangian describes the gapless phase of  a “loop 
model”, where a unit loop hops along the direction orthogonal to it.

The same dispersion as the original model, 
i.e. modes have 1d line nodes, and also 2d 
plane nodes.
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The dual theory of the 3d multi-flavor ring exchange model, is a U(1) 
gauge theory (or loop model) with subsystem symmetry:

The analysis of the subsystem symmetry breaking perturbations 
also depend on UV details. 

Example:

The term has power-law correlation in the (z, τ) plane, but its decay 
power depends on the UV details. 



Summary for part 2:
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1, atoms excited to the p-orbital of an optical trap may have long 
life time, and can form many-body states on the p-orbital;

2, interacting p-orbital atoms can form exotic states of matter with 
subsystem symmetries in both 2d and 3d optical lattice;

Reference: cond-mat/0611620

3, analysis of the stability of the algebraic “Bose metal” like phases 
in both 2d and 3d depends on lattice scale physics.


