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Background + motivation

Fruitful interplay between quantum field theory, high-energy
and condensed matter physics

“Low-energy dogma:” in the IR relevant degrees of freedom
described by a continuum effective field theory

Notable: TQFTs for describing gapped phases of matter

* Responses: Hall viscosity, geometric responses [X.L.Qi, et. al; 20081, [Hoyos, Son; 2012],

FEGEY2Cho ot gl 2094 -
e anyonic excitations [S.C.Zhanget.al.; 1989],...

: o [M.Levin, X.G. Wen, 2006], [A.Kitaev, |.Preskill; 2006],
* entanglement entropies, negativities, etc.
[X.Wen, et.al., 2016],...

2 breaking of higher-form symmetries [X.G. Wen; 2019]



This dogma has been challenged by a growing understanding
of “fracton” phases of matter

[Chamon; 2005] [Bravyi, et. al.; 2011] [Bravyi, Haah; 2013] [Haah; 2011] [Yoshida; 2013] ....

e Excitations w/ no mobility, (+perhaps some with restricted mobility)
eEnforced by novel forms of symmetry (i.e. sub-system, extensive)

e Extensive ground state degeneracy
eUV / IR mixing

These features require new structures in IR QFT

e Discontinuous field configs [N.Seiberg, S.H.Shao; 2020-2021]

e Coupling to background foliations [W.Shirley, et.al.; 2019]  [K.Slagle; 2020]
® Tensor gauge theories [Pretko; 2017]  [Prem, et.al., 2018]



The fractonic “meat” of TGT lies in dipole conservation
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The focus of these theories: gapless phases in (3+1) dimensions

However, there is an interesting theory one can construct in
(2+1)d with a Chern-Simons-like term

[M. Pretko; 2017] [A. Prem, et.al., 2018]

e Fractons via dipole + trace-quadrupole conservation

e Gapped

e Displays many characteristics similar to FQH systems:
* “dipolar quantum Hall fluid”



Tensor Chern-Simons

Sics = — | dt / d*r (240 €7 6" 0,0 Aji — €7 6" A0y Ajy)
47'(' R2
Ao: scalar A;j : symmetric traceless tensor

Has a gauge symmetry
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Conservation of

Chigree (g — / d°z p
Dipole moment (. / d*x Zp
Trace quadrupole moment Q: = / d*x 2®p
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A note on units:

[Ayy] ~ €7 [Ao] ~ £°

( kis dimensionless, while a possible tensor-Maxwell coupling
is irrelevant)

Charge “density” ol

Gauge parameters |0 ~ ¢

Requires an (inverse) length scale pu



Path integration
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Ap appears linearly and enforces

i 27T Tt G :
i okl — ensor Gauss
1Ykl L law constraint

1
Ai; = Ay +(8:0; — §5¢j02)q5
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Path integral 1: wavefunction
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| This functional gauge variant
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and so not physical

Apply projector
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Unique state on R? once total charge, dipole moment,
trace quad moment sum to zero.




Path integral 2: edge modes
e 1

t\ Writing A;; = (0;0; — §5z’j)¢
= Bulk action is a total derivative
“\\J

1 k
S = — dt 6% 0;(0;¢)d(9;9)
\/_\\/L A7 JrRxy

Useful physical picture: chiral boundary dipoles
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[et the coordinate around Y be s andlet n be a normal
coordinate.

5(8) o n¢‘Y

We can think of the edge theories as chiral scalar
+ “chiral Lifshitz” scalar

k
S = o /dt ds (&gf&sf = 0t¢0§¢)

To keep in mind: one way to think of the entanglement
entropy ~ the correlations between edge modes on opposite
sides of an entangling cut.




Extended operators

There are no local gauge-inv operators.
However there are extended gauge invariant operators.

Firstly, line operators

Charge defect operator

}
L,(X) = exp (iuq / dt Ao(t,)_c')> [_\j

Modifies tensor-Gauss constraint
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Monopole string operator
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Dipole string operator
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Trace-quadrupole string operator
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Return to charge defect op.

Locked along time contour - fractonic physics

Consider two defects Eix L 5

: A = Lq L_Q Sq
Can use A;; to deform in direction

orthogonal to dipole moment

Restricted mobility =
local deformability of strip operators
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U(1) vs. IX: charge, level, and dipole quantization

So far: considered infinitesimal gauge tx’s.
Can we treat symmetry as U(1)?

Need inverse length scale: go = €xp (ipq)

What is the role of this length scale?

Invariance under large gauge tx’s quantizes defect charges,
q € 7

Can we quantize the level, other charges (string ops)?




Some inspiration from XY-plaquette model*

[A. Paramekanti, et.al., 2002] [H.He, et.al.; 2020]
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Global compact dipolar shift symmetry
¢ — ¢+ AP, + AR, A A 4 oop

The continuum Hamiltonian
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also possesses a shift symmetry....
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although in the continuum limit it is not compact.



However we might be interested in organizing states by the
integer charges of the lattice theory.

=g

and treat puZ as integer valued in gauge tx’s.

Invariance under large gauge tx’s requires of string ops

M, D F p,v,vEZ
and of the level
k e Z

Provides mechanism to quantize dipole moments in units of
lattice spacing.




Dipole condensation

Large dipolar gauge tx’s shift dipole moments by kZ

Invariance: physical dipoles fall in equivalency classes of Zj
gt — gl d

The vacuum forms a condensate, allowing “long-ish dipoles” to
become transparent.

Aside: there is rich connection between tensor gauge thy & elastic thy of 2d
lattices
[M.Pretko, L.Radzihovsky; 2018] [A. Gromov; 2019] [A. Gromov, P. Surowka; 2019]
Dipole condensation ~ condensation of dislocations ~ quantum melting

transition of the lattice.
[M.Pretko, L.Radzihovsky; 2018] [A. Kumar, A.C. Potter; 2019] [D.Nguyen, et.al.; 2020]



This condensate restores (macroscopic) mobility to dipoles
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On R?*we can decompose charges into dipoles and it is useful
to treat the dipoles as the fundamental objects
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These dipoles have Abelian “anyonic” statistics determined by
wrapping them with dipole string operators
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Entanglement entropy

Let us push/test the FQH analogy even further by looking at

the ground state entanglement entropy.
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[M.Levin, X.G. Wen; 2006]
[A. Kitaev, |. Preskill; 2006]

For an Abelian topo. phase:
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an important subtlety ...

In gauge theories, H # H 4 ® H - (even in a regularized sense...)

Simple diagnosis: dimHgz =1 What about dimH 4 ?

The generator of gauge tx’s
yields a boundary term Qla] = é L daly e/ 0" Opar Aji + ...
when the parameter has
support on 0A

The algebra of these charges is

[Q o], Q [5]} = 734% ]2 2 0 0;a0d(9;8) centrally extended and so it is

A

not consistent to set ) = 0 as
a constraint.



Instead H 4 must carry representations of this algebra

With a little massaging, we
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find it is isomorphic
to two u(1) Kac-Moody
algebras

(Physically, these stem from independent
dipolar edge modes)

The zero modes, J{ , are in fact what appear in the exponent
of dipole string operator and so the eigenvalues are the
total dipole moment (in the it"direction) contained in A

Importantly these representations are infinite dimensional.
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The fix: embed H — H. 4 ® H 4 and take trace within this
larger, extended Hilbert space

Physical ground state, [%), mapstoa [9) that we will identity
by imposing gauge invariance by hand.

(Jrin,A®1Ac 1A®Jim,AC) ‘?L>:O

Once dipole moment in A has been specified, solution is
unique: Ishibashi state(s)

) = |d") ® |d¥)



Bulk ent of tCS = LR ent of dipole Ishibashi states

This reduces to a known calculation.

[X. Wen, S. Matsuura, S. Ryu; 2016]

One subtlety:
[shibashi states have - e
divergent norm that ) = e )

require regularization

1. ME :MNE J9 * NE =
e [[j=sy O (K585 ) 1 (i)
o e—0 (n % 1)n

7N : Dedekind eta function: from m # 0 oscillators
U : Jacobi theta function: from summing over kZ dipoles equivalent by large gauge tx



Another perspective:

1S e

J=,y
- arises as the thermal partition
O e O function of the edge theory with

inverse temperature

ne
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The Jacobi theta arises from winding modes of 0;¢ that arise
when the symmetry group is compact



Taking the n — 1 and € — 0 limits we find

k[

The subleading constant is consistent with two separate Abelian
topological orders each with k anyons.



What if R instead of U(1)?

* No charge, level, or dipole quantizations
* Importantly, vacuum =/= “condensate of long-ish dipoles”...
“ Charges remain fractonic and dipoles retain restricted mobility

“ “fractonic insulator”

What is the entanglement entropy of such a phase?

{ l
SAzclg—log (E) F G
The coefficient of the log, 2 x (1/2), is universal but coarse:
only tells us that there are two polarizations to A;;




Other loose ends

* How robust is this quantum Hall analogue?

# Unlike Abelian CS, expect that the Hilbert space of tCS is sensitive to
curvature. [A. Gromov; 2019] [K. Slagle, et.al.; 2019]

+ Can be embedded into a theory of “chiral elasticity.” Relevant gauge
symmetry ~ Area preserving diffeos [A- Gromov; 2019

* Interesting connections between APDs, qH physics, TGT
[A. Cappelli, et.al.;1992] [Y.H. Du, et.al.; 2021]
* Higher-D and gapless tensor gauge theories?
* Two contributions to ent. entropy:

+ Edge modes
+ Bulk (gapless) modes.



* Entanglement signatures of gapped fracton phases
* Growing body of work for stabilizer fracton codes

[BaShy Y. Ve L 20181 Ma et.al. - 20181 [W.Shirley et.al 201 8]

* Field theory desc. of fracton phases is mature enough
to start investigating these types of questions.

+ Good first start: foliated field theories. ik .siagie: 20207






